Name:	Index Number:	Class:

YIO CHU KANG SECONDARY SCHOOL END-OF-YEAR EXAMINATION 2018 SECONDARY ONE EXPRESS

MATHEMATICS
Paper 1

READ THESE INSTRUCTIONS FIRST

Candidates answer on the Question Paper.

Write your index number and name on all the work you hand in.
Write in dark blue or black pen.
You may use a HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
Answer all the questions.
The number of marks is given in brackets [] at the end of each question or part question.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
The total of the marks for this paper is 40 .
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π, use either your calculator value or 3.142.
For Examiner's Use

1 (a) Using a calculator, evaluate $1 \frac{2}{3}-\frac{5}{6} \div\left(-3 \frac{1}{7}\right)$ and correct your answer to 2 decimal places.

Answer

(b) Using a calculator, evaluate $\sqrt{\frac{15.9-3.1^{2}}{4.9 \times 0.2}}$ and correct your answer to 4 significant figures.

Answer

2 Lucas bought 8 bottles of fresh milk and 6 cartons of soft drinks from a shop. The price of a bottle of fresh milk is $\$ 2.95$ and that of a carton of soft drink is $\$ 19.50$.

Without using a calculator, estimate the total price of Lucas's purchase to the nearest dollar.

3 Solve the equation $10 s-\frac{5 s+4}{3}=7$.

Find the gradient of the line $A B$.

5 Jane travelled from City P to City Q. She covered $\frac{5}{9}$ of her journey by train, 0.75 of her remaining journey by bus and the rest of the journey on foot.
(a) Find the fraction of the journey that she covered on foot.

Answer

(b) If she travelled 35 km by train, how far apart are the 2 cities?

Answer

6 (a) Factorise $a b-a c$.

Answer

(b) Hence find the exact value of $16249 \times 769-16249 \times 759$.

7 Alan's height is 1.6 m . Daniel's height is 115% of Alan's height and 98% of Calvin's height. Find Calvin's height.

Answer

m [3]

8 (a) Express 216 as a product of its prime factors.

Answer

[1]
(b) Hence without the use of a calculator, evaluate $\sqrt[3]{216}$.

9 At a carnival, the ratio of the number of adults to the number of children was $5: 13$. The ratio of the number of women to the number of men is $8: 7$.
(a) Find the ratio of the number of children to the number of men.

Answer

(b) If there are 896 more children than men, how many people attended the carnival?

10 Adrian wants to plan for a dinner gathering for his friends. He has a budget of $\$ 600$ for the dinner gathering. The cost per person is $\$ 22.80$.
(a) Write down an inequality for the number of people Adrian can invite with his budget. Let x be the number of people he can invite.

Answer
(b) Solve the inequality, in part (a), to find the maximum number of people Adrian can invite.

11 It is given that $180=2^{2} \times 3^{2} \times 5$ and $300=2^{2} \times 3 \times 5^{2}$.
(a) Find the largest integer that is a factor of both 180 and 300 .

Answer

(b) Find the smallest integer value of x such that the lowest common multiple of 180,300 and x is 1800 .

12 The figure below is made up of a regular octagon with sides 11 cm and a circle with centre O and diameter 27 cm .

Find the area of the shaded region.
Correct your answer to 3 significant figures.
cm^{2}

13 (a) Construct triangle $A B C$ where $B C=7.5 \mathrm{~cm}$ and $A C=8 \mathrm{~cm} . A B$ has already been drawn for you.

A
 B

(b) Construct the
(i) bisector of angle $A B C$,
(ii) perpendicular bisector of $A B$.
(c) The two bisectors in part (b) meet at a point P.

Measure and write down the length $A P$.

14 A group of 30 people was asked to state the type of fruits they prefer. Their responses are given below.

M	G	M	A	W	W	M	W	G	G
A	W	A	M	W	W	W	M	G	A
G	M	A	W	M	M	G	W	M	A

Key: A - Apple, G - Grape, M - Mango, W - Watermelon
(a) Complete the table below.

Type of Fruits	Tally	Number of people		
Apple	$\mathrm{HH//}$	6		
Grape	$\mathrm{H} / \mathrm{/I}$	6		
Mango	-			
Watermelon		30		

(b) Express the number of people who prefer mango as a percentage of the number of people who prefer apple.

Answer
\%
[2]
(c) This distribution is to be shown in a pie chart.

Calculate the angle representing the number of people who prefer grape.

YIO CHU KANG SECONDARY SCHOOL END-OF-YEAR EXAMINATION 2018 SECONDARY ONE EXPRESS

MATHEMATICS

Paper 2
1 hour 30 minutes
Additional Materials:
9 October 2018 (Tuesday)
Writing Paper
Graph Paper (1 Sheet)

READ THESE INSTRUCTIONS FIRST

Write your index number and name on all the work you hand in.
Write in dark blue or black pen on both sides of the paper.
You may use a HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
Answer all questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 60 .

1 The figure shows the floor plan of a ballroom at a hotel made up of a semicircle $A B C$ and a rectangle $A C D G$. $C A=36 \mathrm{~m}$ and $C D=16 \mathrm{~m}$.

Taking $\pi=3.142$, calculate
(a) the area of the ballroom, giving your answer correct to the nearest m^{2},
(b) the cost of carpeting the entire ballroom if the price of the carpet is $\$ 7.80 \mathrm{per} \mathrm{m}^{2}$, giving your answer correct to the nearest dollar.

2 The charges for photocopy and binding services by two printers are given in the table below.

	Printer A	Printer B
Photocopy service	2 cents per page	1.8 cents per page
Binding service	$\$ 1$ per book	$\$ 1.50$ per book

(a) Calculate
(i) the amount that you need to pay if you go to printer A to photocopy 410 pages. [1]
(ii) the number of pages you can photocopy with printer B for $\$ 8.10$.
(b) You want to photocopy 2500 pages and bind them into a booklet. Which printer will you go to? Explain your choice clearly with workings.

3

$A B C D$ is a trapezium. $C D$ and $A B$ are the two parallel sides. $A B=(5 x+2 y) \mathrm{cm}$, $B C=(2+x) \mathrm{cm}, C D=(1-3 y) \mathrm{cm}$ and the perimeter of the trapezium is $(5 x-2 y+9) \mathrm{cm}$.
(a) Find the length of $A D$ in terms of x and y.
(b) Given $x=5$ and $y=-3$, find
(i) the perimeter of trapezium $A B C D$,
(ii) the area of the trapezium $A B C D$.

4 The Oriental Express train leaves Singapore at 0945 hours and arrives at Kuala Lumpur station 4 hours and 45 minutes later. Calculate
(a) the time at which the train reaches Kuala Lumpur. Give your answer in 24-hour notation.

On the return trip, the train travels $10 \mathrm{~km} / \mathrm{h}$ faster.
(b) How long will the train take to reach Singapore, assuming that the distance between Singapore and Kuala Lumpur is 356.25 km ? Give your answer in hours and minutes.
(c) If the train stops at Kuala Lumpur for 3 hours, calculate the average speed of the train as it travels from Singapore to Kuala Lumpur and back.

5 In the diagram below, $A B$ is parallel to $C D$ and $P Q$ is parallel to $B R$ and triangle $P Q R$ is an isosceles triangle. $P R$ is perpendicular to $C D$. It is given that angle $Q P B=112^{\circ}$, angle $C R Q=68^{\circ}$, angle $B D R=56^{\circ}$.

Find
(a) angle $R B D$,
(b) angle $B R Q$,
(c) angle $Q R P$,
(d) angle $P Q R$.

6 Answer the whole of this question on a sheet of graph paper.

During a science practical lesson, a hot test tube is left to cool. The temperature $y^{\circ} \mathrm{C}$ of the test tube after x minute can be represented by the equation $y=a x+b$. The table below gives some values of x and the corresponding values of y.

x (minutes)	0	4	8	14
$y\left({ }^{\circ} \mathrm{C}\right)$	140	108	76	28

(a) Using a scale of 1 cm to represent 1 unit on the x-axis and 2 cm to represent 20 units on the y-axis, draw the graph of $y=a x+b$ for $0 \leq x \leq 14$.
(b) Use your graph to find
(i) the temperature of the test tube after 11 minutes,
(ii) the value of b,
(iii) the value of a. Describe briefly what this value of a represents.

7 The diagram shows part of a regular 12-sided polygon $A B C D$ and part of a regular octagon $P B C Q$ which are drawn on opposite sides of the common line $B C$.

Calculate
(a) angle $A B C$,
(b) angle $B P Q$,
(c) angle $A B P$.

8 (a) Andy bought an antique watch for $\$ 480$.
Ten years later, he sold the watch at a profit of 250% of what he paid.
Calculate the selling price.
(b) The original value of a car is $\$ 80000$.

The value of the car decreases by 15% of its value at the end of each year.

Calculate the value of the car at the end of the third year.
(c) Berlin invests $\$ 25000$ in a savings plan with a bank that pays simple interest rate of 5% per annum.

Find the length of time, in years, for her investment to grow to $\$ 32500$.

9 The diagrams below show patterns consisting of grey and white squares.

Diagram 1 Diagram 2

Diagram 3

Diagram 4

Diagram	Number of grey squares (G)	Number of white squares (W)	Total number of squares (T)
1	1	0	1
2	5	4	9
3	9	16	25
4	13	36	49
5	\vdots	\vdots	\vdots
6	21	x	y

(a) Find the values of x and of y.
(b) Write down an expression, in terms of n, for the number of grey squares (G) in Diagram n.
(c) Calculate the number of grey squares in Diagram 123.
(d) (i) Write down an expression, in terms of n, for the total number of squares (T) in Diagram n.
(ii) Explain why there is no diagram with a total number of 530 squares.
(e) Write down an equation connecting G, W and T.
(f) If there are 89 grey squares in Diagram 23, calculate the number of white squares.

Yio Chu Kang Secondary School
2018 End-of-Year Examination Sec 1 Express Maths
Paper 1 Marking Scheme

12

$$
\begin{align*}
\text { Area of octagon } & =8 \times\left(\frac{1}{2} \times 11 \times \frac{27}{2}\right) \\
& =594 \tag{M1}
\end{align*}
$$

Area of cìrcle $=\pi \times\left(\frac{27}{2}\right)^{2}$

$$
=572.55 \text { (} 5 \text { s.f.) }
$$

Area of shaded region $=594-572.55$

$$
\begin{align*}
& =21.45 \\
& =21.5 \mathrm{~cm}^{2} \quad(3 \text { s.f. }) \tag{A1}
\end{align*}
$$

13 (a) triangle $A B C$ where $B C=7.5 \mathrm{~cm}$ and $A C=8 \mathrm{~cm}$ C must be labelled
(b) (i) bisector of angle $A B C$
(ii) perpendicular bisector of $A B$
(c) $A P=5.4 \pm 0.1 \mathrm{~cm}$

14 (a)
(b)

(c) $\frac{6}{30} \times 360$

$$
=72^{\circ}
$$

Sec One Express

EOY Exam Paper 22018 Marking Scheme

QN	Solution	Mark Allocation
1a	$\begin{aligned} \text { Radius of semicircle } A B C & =C A \div 2 \\ & =36 \div 2 \\ & =18 \mathrm{~m} \\ \text { Area of semicircle } A B C & =\frac{1}{2} \times \pi r^{2} \\ & =\frac{1}{2} \times \pi(18)^{2} \\ & =162 \pi \mathrm{~m}^{2} \end{aligned}$ $\text { Area of rectangle } \begin{aligned} A C D G & =\text { length } \times \text { breadth } \\ & =36 \times 16 \\ & =576 \mathrm{~m}^{2} \end{aligned}$ Area of ballroom $=162(\pi)+576=1085 \mathrm{~m}^{2}$ (to the nearestan)	M1 M1 A1
1b	$\begin{aligned} \text { Cost } & =1085.004 \times \$ 7.80 \\ & =\$ 8463 \end{aligned}$	M1 VM1 A1 ecf their O3 answer (a)
2ai	Cost $=410 \times 0.02=\$ 8.20$, (o) n V^{8}	B1
2aii	$\left.\frac{8.10}{0.018}=450 \text { pages } 0 \sqrt{0}\right)^{0}$	B1
2b		$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & {\left[\begin{array}{l} \text { M1 } \\ \\ {[} \end{array} .\right.} \end{aligned}$
3a	$\begin{aligned} \mathrm{AD} \quad & =(5 x-2 y+9)-(5 x+2 y)-(2+x)-(1-3 y) \\ = & 5 x-2 y+9-5 x-2 y-2-x-1+3 y \\ & =-x-y+6 \mathrm{~cm} \end{aligned}$	$\begin{array}{\|l} \mathrm{M} 1 \\ \mathrm{~A} 1 \end{array}$
3bi	When $x=5, y=-3$,	

\begin{tabular}{|c|c|c|}
\hline \& \[
\begin{aligned}
\text { Perimeter } \& =(5 x-2 y+9) \\
\& =5(5)-2(-3)+9=40 \mathrm{~cm}
\end{aligned}
\] \& B1 \\
\hline 3bii \& \[
\left.\begin{array}{l}
\text { When } x=5, y=-3 \\
\mathrm{AD}=-5-(-3)+6=4 \mathrm{~cm} \\
\mathrm{CD}=1-3(-3)=10 \mathrm{~cm} \\
\mathrm{AB}=5(5)+2(-3)=19 \mathrm{~cm} \\
\therefore \text { Area of trapezium }=\frac{1}{2}(4)(10+19) \\
=58 \mathrm{~cm}^{2}
\end{array}\right\}
\] \& \begin{tabular}{l|l}
\begin{tabular}{l}
M1 \\
All 3 are cor \\
calculated
\end{tabular} \& \begin{tabular}{l}
\(\sqrt{ }\) M2 \\
ecf \\
their \\
answer
\end{tabular} \\
M1 \\
(a)
\end{tabular} \\
\hline 4a \& \(0945+4\) hours 45 mins \(=1430\) hours \& B1 \\
\hline 4b \& \[
\begin{aligned}
\text { Speed }(\mathrm{SG} \text { to } \mathrm{KL}) \& =\frac{356.25}{4.75} \\
\& =75 \mathrm{~km} / \mathrm{h} \\
\text { Time }(\mathrm{KL} \text { to } \mathrm{SG} \& =\frac{356.25}{85} \\
\& =4.19 \text { hours } \\
\& =4 \mathrm{~h} \text { ours } 11.5 \text { minutes }
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
Accept 11 min
\end{tabular} \\
\hline \(4 c\)

\square

\therefore \& \& | M1$3^{1}$
 M1
 A1
 لM2
 ecf
 their
 answer
 (b)
 Part (b) answered
 correctly.
 No marks will be
 awarded if
 calculate total
 time wrongly due
 to calculation
 error |
| :--- |

\hline \& \&

\hline
\end{tabular}

5a	```\anglex=5\mp@subsup{6}{}{\circ}}\mathrm{ (alt. }\angle\textrm{s},AB//CD) (\anglex is added in, extend linePB \angleRBD = 112'-56 = 56 Or \angleDBR=68' (interior angles) \angleRBD= 180 =56}\mp@subsup{}{}{\circ}\mathrm{ (interior angles)```	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
5b	$\begin{aligned} \angle B R D & =180^{\circ}-56^{\circ}-56^{\circ} \quad(\angle \text { sum of } \triangle) \\ & =68^{\circ} \\ \angle B R Q & =180^{\circ}-68^{\circ}-68^{\circ} \quad(\text { adj. } \angle \text { on a st. line }) \\ & =44^{\circ} \end{aligned}$	M1 A1
5c	$\begin{aligned} \angle Q R P & =90^{\circ}-68^{\circ} \\ & =22^{\circ} \end{aligned}$	${ }^{81}$
5d	$\begin{aligned} \angle P Q R & =180^{\circ}-22^{\circ} \times 2 \\ & =136^{\circ} \end{aligned}$	
6a		Correct scale and labelled axes 1 m Straight line passing through all correctly plotted points 1 m
6 bi	$52^{\circ} \mathrm{C}$ cor	B1
6 bii	140	B1
6biii	$\begin{aligned} a & =\frac{140-28}{0-14} \\ & =-8 \end{aligned}$ a represents the rate of the temperature change per min.	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$
7 a	$\begin{aligned} & \text { Sum of interior angles of } 12 \text { sided polygon }=(12-2) \times 180^{\circ} \\ & \\ & =1800^{\circ} \\ & \begin{aligned} \angle A B C & =\frac{1800^{\circ}}{12} \\ & =150^{\circ} \end{aligned} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$

7b	Since $P B C Q$ is a regular octagon, $\begin{aligned} \angle P B C & =\frac{(8-2) \times 180^{\circ}}{8} \\ & =135^{\circ} \\ \angle B P C & =\angle C P Q \\ & =\frac{135^{\circ}}{6} \\ & =22.5^{\circ} \\ \angle B P Q & =22.5^{\circ}+22.5^{\circ} \\ & =45^{\circ} \end{aligned}$ $\begin{aligned} & \text { Or } \\ & \angle B P Q+\angle C Q P+213^{\circ} 5^{\circ}=36 \\ & \angle B P Q+\triangle C Q P=90^{\circ} \\ & \angle B P=45^{\circ} \quad \\ & \angle P B C=12 \\ & \angle B P Q=135^{\circ}-90^{\circ}=45^{\circ} \end{aligned}$	A1 31 M1 A1 M1 A1
7c	$\begin{aligned} & \text { Size of exterior angle of } 12 \text { sided polygon } \begin{aligned} & =180^{\circ}-150^{\circ} \\ & =30^{\circ} \end{aligned} \\ & \begin{aligned} \text { Size of exterior angle of octagon } & =180^{\circ}-135^{\circ} \\ & =45^{\circ} \end{aligned} \\ & \begin{aligned} \angle A B P & =30^{\circ}+45^{\circ} \\ & =75^{\circ} \end{aligned} \end{aligned}$ Or $\begin{aligned} \angle A B P= & 360^{\circ}-150^{\circ}-135^{\circ} \\ & =75^{\circ} \end{aligned}$	M1 M1 A1 M2 Al

8a	$\begin{aligned} \text { Selling price } & =\frac{350}{100} \times \$ 480 \\ & =\$ 1680 \end{aligned}$	M1 A1
8b	$\begin{aligned} \text { Value of car (end of } \left.1^{\text {st }} \text { year }\right) & =\frac{85}{100} \times \$ 80000 \\ & =\$ 68000 \end{aligned}$ Value of car (end of $2^{\text {nd }}$ year) $=\frac{85}{100} \times \$ 68000$ $=\$ 57800$ \therefore Value of car (end of $3^{\text {rd }}$ year) $=\frac{85}{100} \times \$ 57800$ $=\$ 49130$	M1 A1
8c	Let n be the number of years required. Amount of interest $=\$ 32500-\$ 25000$ \therefore Requirea no. ofyears $=6$ Heals Or Amount of intergest $\$ 32500-\$ 25000$ $=\$ 7500$ $\begin{aligned} 5 \% \times \$ 25000 & =\$ 1250 \\ \text { Number of years } & =\$ 75000 \div \$ 1250 \\ & =6 \end{aligned}$	M1M1A1M1M1A1
9a	$x=100 ; y=121$	B1, B1
9b	$G_{n}=-3+4 n$	B1
9 c	No. of grey squares in Diagram 123 $\begin{aligned} & =-3+4(123) \\ & =489 \end{aligned}$	B1
9di	$T_{n}=(2 n-1)^{2}$	B1
9dii	Column (T) consists of perfect squares only but 530 is not a perfect square. Or	B1

	530 cannot be square rooted to get an interger	
9 e	$W+G=T$	B 1
9 f	$T_{23}=(2(23)-1)^{2}$ $=2025$	M 1
No. of white squares $=2025-89$ 1936	A 1	

6 (a)

6 a		Correct scale and labelled axes 1 m Straight line passing through all correctly plotted points 1 m
6 bi	$52^{\circ} \mathrm{C}$	B 1 No mark awarded for answer obtained by calculation

6bii	140	B1
6biii	$a=\frac{140-28}{0-14}$ $=-8$	B1
a represents the rate of the temperature change per min.	B1	

