Class	Index Number	Candidate Name

ANG MO KIO SECONDARY SCHOOL FINAL EXAMINATION 2018
 SECONDARY ONE EXPRESS

MATHEMATICS

Paper 1

Setter: Mrs Linda Wang

Wednesday

10 October 2018
1 hour 15 minutes
Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on all the work you hand in.
Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
Answer all questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
Calculators should be used where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total of the marks for this paper is $\mathbf{5 0}$.

For Examiner's Use
50

This document consists of $\mathbf{1 2}$ printed pages.

1 (a) Express 984.6089 correct to
(i) 3 decimal places,

Answer

(ii) 2 significant figures.

Answer
(b) Express the ratio $0.12: 0.64$ in its simplest form.

Answer

2 (a) List all the integers that satisfy $-4<x \leq 2$.

Answer
(b) Solve the inequality $-4 x<36$.

> Answer

3 (a) Express 2016 as a product of its prime factors. Give your answer in index notation.
\qquad
Answer
$2016=$
(b) Find the smallest possible integer p such that $2016 p$ is a perfect cube.
$p=$
(a) $7 x-15=18-4 x$,

$$
\text { Answer } \quad x=\text {.. [2] }
$$

(b) $\frac{2 x}{3}-\frac{3 x-10}{2}=7$.

5 James invested $\frac{1}{4}$ of his business income on research, $\frac{2}{5}$ on training workers and the remainder on operations of the business.
(a) Find the fraction of his income spent on operations.

Answer

(b) Find the total income if James invested $\$ 30000$ more on training workers than on research.

$$
\text { Answer } \quad \$ \text {.. }
$$

[2]

6 Given that $x=-1, y=3$ and $z=-4$, evaluate $\frac{x^{2} y}{z-y}$.

Answer

7 In the diagram, $S R Q, P R T$ are straight lines and $M R N$ is parallel to $O P Q . \angle P Q R=38^{\circ}$ and $\angle S R T=100^{\circ}$.

Find, stating your reasons clearly, (a) $\angle M R S$,
\qquad
(b) $\angle O P R$.

8 The diagram below shows a distance-time graph for the journey of a car from Point A to
Point B and its journey back to A. It left Point A at 0900 hrs.

(a) How far was the car from Point A at 0915 ?
km
(b) Find the time the car arrived back at Point A.

> Answer
(c) Find the average speed of the car, in km / h, for the whole journey.
$9 P Q R S$ is a parallelogram with $\angle S P T=65^{\circ}, \angle P T Q=80^{\circ}$ and $\angle P S T=72^{\circ}$.

Stating your reasons clearly, calculate
(a) $\angle Q R T$,
(b) $\angle Q T R$.

The diagram shows a trapezoidal prism with four rectangular faces. $B C=6 \mathrm{~cm}, B F=5 \mathrm{~cm}$, $F G=18 \mathrm{~cm}, C G=10 \mathrm{~cm}$ and $G H=45 \mathrm{~cm}$.

Calculate the
(a) volume of the prism,

$$
\text { Answer .. } \mathrm{cm}^{3}
$$

(b) total surface area of the prism.

11 In the figure below, $P Q R V$ is a parallelogram with height 12 cm .
$P Q=V R=25 \mathrm{~cm}$, and $P V=Q R=18 \mathrm{~cm}$.
A semi-circle of diameter 12 cm is removed from the parallelogram as shown.

Find the
(a) area of the region PQRSTUV after semi-circle $S T U$ is removed,
\qquad
(b) perimeter of the unshaded region $P Q R S T U V$.

12 The graph of a line is shown below.

(a) Write down the coordinates of the point P.

(b) State the y-intercept of the line $P Q$.

> Answer
(c) Find the gradient of the line $P Q$.

Answer
(d) Write down the equation of line R.

13 The quadrilateral $A B C D$ is such that $A B=5 \mathrm{~cm}, B C=C D=7 \mathrm{~cm}, A D=8 \mathrm{~cm}$ and $\angle A B C=95^{\circ} . A B$ and $B C$ are drawn below.
(a) Complete the quadrilateral.
(b) Construct the perpendicular bisector of line $B C$.
(c) Construct the angle bisector of $\angle B C D$.

Answer

(d) Measure $\angle B C D$.
(e) Mark the point X where the two bisectors in (b) and (c) meet.
(f) Measure and write down the length of $C X$

$$
\text { Answer } \quad C X=
$$

cm

Class	Index Number	Name

MATHEMATICS
4048/02
Paper 2

Thursday

4 October 2018
1 hour 15 minutes

Additional Materials: Answer Paper
Graph Paper (1 sheet)

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on all the work you hand in.
Write in dark blue or black pen on both sides of the paper.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
Answer all questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total of the marks for this paper is 50 .

Answer all the questions.

1 (a) Evaluate $\sqrt[3]{\frac{2(1.6)^{2}-7.94+9.9}{4(-53.754)^{3}}}$, giving your answer correct to 3 significant figures.
(b) Simplify the following expressions
(i) $6 x+2 y+5(y-2 x)$,
(ii) $\frac{x+3}{4}-\frac{2 x-4}{5}$.
(c) Factorise $18 x-36 y+54 x y$ completely.

2 (a) A shopkeeper earned a profit of $\$ 500$ when he sold a computer at a discount of 20% of its marked price. Calculate the marked price of the computer, given that the cost price of the computer is $\$ 1700$.
(b) A wallet costs 850000 Korean Won (KRW). The exchange rate between

Singapore dollars $\mathbf{S} \$ 1$ and Korean Won is $\mathbf{S} \$ 1=$ KRW815.
Calculate the price of the wallet in Singapore dollars.

3 The following shows the pricing for buffet dinner on weekends.

Restaurant Nice	
Each Adult : \$55	Each child : 50% of Adult Price
Promotion: For every 4 paying adults, the $5^{\text {th }}$ adult dines free.	

Restaurant Delicious	
Each Adult : \$80	Each child : $\$ 25$
Promotion: 50% discount for adults only.	

Mr Lim is planning to bring his family of 5 adults and 4 children for a buffet dinner.
(a) How much must Mr Lim pay if his family is dining at Restaurant Nice?
(b) Explain, with clear mathematical working, which restaurant will offer a better deal.

4 The cash price of a new car is $\$ 90500$.
John buys the car under the hire purchase scheme as shown below.

Hire Purchase Scheme

- a deposit of 20% of cash price
- simple interest of 3% per year over 5 years
- repayment to be made monthly

Calculate
(a) the total amount of interest payable,
(b) the monthly instalment paid by John.
(a) Three comets moving through the galaxy will pass through our solar system every 75 years, 120 years and 300 years respectively. The three comets were last observed in our solar system in the year 1680. In which year will all the three comets be seen in our solar system together again?
(b) The diagram below shows part of a regular n-sided polygon, $A B C D$. It is given that $\angle B D C=15^{\circ}$.

(i) Find the exterior angle of the regular polygon.
(ii) Calculate the number of sides that the polygon has.

6 The diagram shows a toy block with a vertical height of 8 cm and length 14 cm . $A F=E F=10 \mathrm{~cm}, A B=D E=2 \mathrm{~cm}$ and $A E=12 \mathrm{~cm}$.

(a) Calculate the volume of the toy block.
(b) It costs $\$ 5.20$ per cm^{2} to paint the toy block.

Calculate the cost of painting the toy block.

7 The bar chart below shows the total ticket sales for a play that was held in a theatre with a seating capacity of 350 .

(a) How many tickets were sold altogether?
(b) How much money was collected from the ticket sales?
(c) Calculate the percentage of seats that was unoccupied.

8 Answer the whole of this question on a sheet of graph paper.

The following table shows the corresponding values of x and y for $y=4-\frac{1}{2} x$.

x	0	2	4	8
y	4	p	2	0

(a) Find the value of p.
(b) Using a scale of 2 cm to 1 unit, draw a horizontal x-axis for $0 \leq x \leq 8$.

Using a scale of 4 cm to 1 unit, draw a vertical y-axis for $0 \leq y \leq 4$.
On your axes, plot the points given in the table and join them with a straight line.
(c) From your graph, find the value of x when $y=1$.
(d) (i) On the same axes, draw the graph of $x=3$.
(ii) Write down the coordinates of the point of intersection of the graphs

$$
\begin{equation*}
\text { of } y=4-\frac{1}{2} x \text { and } x=3 \tag{1}
\end{equation*}
$$

9 The table below shows the different entrance fees to zoo.

Day / Time		Per Adult	Per Child (below 13 years old)
Monday to Friday	Before 2 p.m.	$\$ 33$	$\$ 12$
	After 2 p.m.	$\$ 17$	$\$ 5$
Saturday and Sunday	Before 2 p.m.	$\$ 40$	$\$ 18$
	After 2 p.m.	$\$ 25$	$\$ 11$

During a school excursion, a group of teachers and x Primary 2 students visited the zoo at 10 a.m. on a Thursday.
(a) Write down an expression, in terms of x, for
(i) the total entrance fees for the students,
(ii) the total entrance fees for the teachers if the number of teachers who went on the excursion was 220 fewer than the number of students.
(b) The total amount spent on entrance fees for teachers and students was $\$ 3540$.

Form an equation, in terms of x, to represent the above information, and show that it can be simplified to $45 x-7260=3540$.
(c) Solve the equation $45 x-7260=3540$.
(d) Hence, find the number of teachers who went on the school excursion.

END OF PAPER

FINAL EXAMINATION 2018

SECONDARY ONE EXPRESS

MATHEMATICS PAPER 1

	$\begin{aligned} & \frac{-5 x+30}{6}=7 \\ & -5 x+30=42 \\ & -5 x=12 \\ & x=-\frac{12}{5} \\ & x=-2 \frac{2}{5} \end{aligned}$ Accept also $x=-2.4$	A1
5(a)	$1-\frac{1}{4}-\frac{2}{5}=\frac{7}{20}$	B2
5(b)	$\begin{aligned} & \frac{2}{5}-\frac{1}{4}=\frac{3}{20} \\ & \frac{2}{5}-\frac{1}{4}=\frac{3}{20} \\ & 3 \text { units }=\$ 30000 \\ & 1 \text { unit }=\$ 10000 \\ & 20 \text { units }=\$ 200000 \end{aligned}$	M1 A1
6	$\begin{aligned} & \frac{(-1)^{2}(3)}{-4-3} \\ & =-\frac{3}{7} \end{aligned}$	$00^{3^{31}}$
7(a)		$\mathrm{Al}^{\mathrm{M} 1}$
7(b)		M1 A1 M1 A1
8(a)	20 km	B1
8(b)	11.15 am	B1
8(c)	$\begin{aligned} & \text { Total Distance }=160 \mathrm{~km} \\ & \text { Total Time }=2 \frac{1}{4} \mathrm{hr} \end{aligned}$	

\begin{tabular}{|c|c|c|}
\hline \& \[
\begin{aligned}
\text { Average speed } \& =\frac{160}{2 \frac{1}{4}} \\
\& =71.1 \mathrm{~km} / \mathrm{h} \text { (to } 3 \text { s.f.) }
\end{aligned}
\] \& M1
A1 \\
\hline 9(a) \& \(\angle Q R T=180^{\circ}-72^{\circ}=108^{\circ}(\angle s\) on str line \()\) \& B1 \\
\hline 9(b) \& \[
\begin{aligned}
\& \angle Q P T=180^{\circ}-72^{\circ}-65^{\circ}=43^{\circ}\left(\text { sum of int. angles }=180^{\circ}\right) \\
\& \angle P Q T=180^{\circ}-43^{\circ}-80^{\circ}=57^{\circ}(\angle \text { sum of triangle }) \\
\& \angle Q T R=57^{\circ}(\text { alt. } \angle s)
\end{aligned}
\] \& M1 \\
\hline 10(a) \& \[
\begin{aligned}
\mathrm{Vol} \& =\frac{1}{2}(6+18)(5) \times 45 \\
\& =2700 \mathrm{~cm}^{3}
\end{aligned}
\] \& M1 \\
\hline 10(b) \& \& \begin{tabular}{l}
\(3^{314}\) \\
M1 \\
A1
\end{tabular} \\
\hline 11(a) \& \begin{tabular}{l}
Area of parallelogram \(=25 \times 12=300 \mathrm{~cm}^{2}\) Area of semi-circle \(=\frac{1}{2} \times \pi \times(6)^{2}=18 \pi \mathrm{~cm}^{2}\) \\
Area of region \(P Q R S T U V=\) \(300-18(3.142)=243.44=243 \mathrm{~cm}^{2}\) (to 3 s.f.)
\end{tabular} \& M1

A1

\hline 11(b) \& | $\begin{aligned} & \text { Perimeter }=25+2(18)+(25-12)+\frac{12}{2}(3.142) \\ & =92.852 \mathrm{~cm}=92.9 \mathrm{~cm} \text { (to } 3 \text { s.f. }) \end{aligned}$ |
| :--- |
| Accept $92.84955592=92.8 \mathrm{~cm}$ when use calculator value of π. | \& \[

$$
\begin{gathered}
\text { M1 } \\
\text { A1 }
\end{gathered}
$$
\]

\hline 12(a) \& $P(4,-2)$ \& B1

\hline
\end{tabular}

Appendix 1($\mathrm{BC}=7 \mathrm{~cm}$)

13 The quadrilateral $A B C D$ such that $A B=5 \mathrm{~cm}, B C=C D=7 \mathrm{~cm}, A D=8 \mathrm{~cm}$ and $\angle A B C=95^{\circ} . A B$ and $B C$ are drawn below.

$$
\text { Answer } C X=5.0 \quad \mathrm{~cm}
$$

END OF PAPER

Appendix 2 ($\mathrm{BC}=7.1 \mathrm{~cm}$)

$$
12 . \quad \begin{aligned}
& \text { Based in } \\
& 51 \mathrm{com} \\
& \text { and } \\
& 71 \mathrm{con}
\end{aligned}
$$

13. The quadrifateral $A B C D$ is such that $A B=5 \mathrm{~cm}, B C=C D=7 \mathrm{~cm}, A D=8 \mathrm{~cm}$ and $\angle A B C=95^{\circ} . A B$ and $B C$ are drawn below.
(a) Complete the quadrilateral.
(b) Construct the perpendicular bisector of line $B C$.
(c) Construct the angle bisector of $\angle B C D$.

$$
\text { Answer } C X=5.1 \mathrm{~cm}
$$

END OF PAPER

FINAL EXAMINATION 2018

SECONDARY ONE EXPRESS

MATHEMATICS PAPER 2

NO	SOLUTIONS	MARKS
1(a)	$\begin{aligned} & \sqrt[3]{\frac{2(1.6)^{2}-7.94+9.9}{4(-53.754)^{3}}} \\ & =-0.0225033393 \\ & \approx-0.0225 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$
1(b)(i)	$\begin{aligned} & 6 x+2 y+5 y-10 x \\ & =7 y-4 x \end{aligned}$	B1
1(b)(ii)	$\begin{aligned} & \frac{x+3}{4}-\frac{2 x-4}{5} \\ & =\frac{5(x+3)-4(2 x-4)}{20} \\ & =\frac{5 x+15-8 x+16}{20} \\ & =\frac{31-3 x}{20} \end{aligned}$	M1
1(c)	$18 x-36 y+54 x y=18(x-2 y+3 x y)$	$\mathrm{B} 1$
2(a)		$\mathrm{M}_{3} \mathrm{y}^{2} 0$ A1
2(b)		$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
3(a)	$\begin{aligned} \text { Amount to be paid } & =4 \times 55+2 \times 55 \\ & =\$ 330 . \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$
3(b)	Amount payable at Restaurant Delicious $\begin{aligned} & =5 \times 80 \times 50 \%+4 \times 25 \\ & =\$ 300 \end{aligned}$ Should dine at Restaurant Delicious as it is cheaper by $\$ 30$.	M1 A1

4(a)	$\begin{aligned} \text { amount borrowed } & =\frac{80}{100} \times 90500 \\ & =\$ 72400 \\ \text { total interest } & =72400 \times \frac{3}{100} \times 5 \\ & =\$ 10860 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$
4(b)	$\begin{aligned} \text { total amount payable } & =72400+10860 \\ & =\$ 83260 \\ \text { monthly instalment } & =\frac{83260}{60} \\ & =\$ 1387.67 / \$ 1388 / \$ 1390 \end{aligned}$	$\begin{array}{\|l} \hline \text { M1 } \\ \text { A1 } \\ \hline \end{array}$
5(a)	$\begin{aligned} & \begin{array}{l} \text { LCM }(75,120,300)=2^{3} \times 3 \times 5^{2} \\ 1680+600=2280 \end{array} \\ & \therefore \text { All the three comets will be seen } \\ & \text { together again in the year 2280. } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
5(bi)		$\begin{aligned} & \mathrm{M1} \\ & \mathrm{~S}^{2} \mathrm{~S}^{2} \end{aligned}$
5(bii)	$N o . \text { of sides }=360-300$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
6(a)	$\begin{aligned} \text { Radius of semiditcle } & =\frac{12-2(2)}{2} \\ & =4 \mathrm{~cm} \end{aligned}$ \therefore Area of $A B C D E F$ $\begin{aligned} =\left(\frac{1}{2} \times 12 \times 8\right)-\left[\frac{1}{2} \times\right. & \left.\pi(4)^{2}\right] \\ & =22.867258 \end{aligned}$ $\begin{aligned} \text { Volume }= & 22.867258 \times 14 \\ & =320 \mathrm{~cm}^{3} \end{aligned}$	M1 A1

6(b)	$\begin{aligned} & \text { Total surface area of prism } \\ & =2(22.867258)+14[4 \pi+2+10+10+2] \\ & =557.66370 \\ & \begin{array}{l} \text { Cost }=557.66370 \times 5.20 \\ \quad=2899.85 \end{array} \end{aligned}$ Alternative solution $\begin{aligned} & S . A=2(22.867258) \\ & +2(14 \times 10)+2(14 \times 2) \\ & +\frac{1}{2}(2 \times 2 \pi \times 4 \times 14) \\ & =557.6630 \\ & \begin{array}{r} \text { Cost }=557.66370 \times 5.20 \\ =\$ 2899.85 / \$ 2900 \end{array} \end{aligned}$	$\begin{aligned} & \text { M1, M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \\ & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \end{aligned}$
7(a)	$120+70+50+20+30=290 \text { tickets }$	
7(b)	Amount collected from the ticket sales $\begin{aligned} & =120 \times \sqrt{00+70 \times 20+50 \times 30+20} \\ & =1200+40 \times 50 \\ & =\$ 6400 \%, 80,0+800+15000 \end{aligned}$	n's
7(c)	Pergentare osmoccupect seats $\begin{aligned} & 5 \frac{9.50-290}{350} \times 100 \\ & =17.1428 \\ & =17.1 \%(3 \text { s.f. }) \text { or } 17 \frac{1}{7} \% \end{aligned}$	M1 A1
8(a)	$p=3$	B1
8(b)	$\begin{aligned} & \text { Axes, origin labelled } \\ & \text { Correct scale } \\ & \text { Correct plots }+ \text { Straight line } \end{aligned}$	$\begin{array}{\|l} \hline \mathrm{B} 1 \\ \mathrm{~B} 1 \\ \mathrm{~B} 1 \\ \hline \end{array}$
8(c)	$x=6$	B1
8(d)(i)	Correct $x=3$ graph	B1
8(d)(ii)	$(3,2.5)$	B1
9(a)(i)	$12 x$	B1

9(a)(ii)	$33(x-220)$ or $33 x-7260$	B1
9(b)	$12 x+33(x-220)=3540$ $12 x+33 x-7260=3540$ $45 x-7260=3540($ shown $)$	M1
9(c)	$45 x=12000$ $x=240$	M1
9(d)	$240-220=20$	B1

20
doc012062018101
5122457.pdf

