ANG MO KIO SECONDARY SCHOOL

FINAL EXAMINATION 2018 SECONDARY ONE EXPRESS MATHEMATICS Paper 1 Setter: Mrs Linda Wang 10 October 2018 1 hour 15 minutes Wednesday Candidates answer on the Question Paper. **READ THESE INSTRUCTIONS FIRST** Write your name, index number and class on all the work you hand in. Write in dark blue or black pen. You may use a pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid. Answer all questions. If working is needed for any question it must be shown with the answer. Omission of essential working will result in loss of marks. Calculators should be used where appropriate. If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π . At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part auestion. For Examiner's Use The total of the marks for this paper is 50. 50 This document consists of 12 printed pages.

1 Express 984.6089 correct to (a)

(i) 3 decimal places,

Answer [1] 2 significant figures. (ii) Answer [1] Express the ratio 0.12 : 0.64 in its simplest form. (b) [1] Answer List all the integers that satisfy $-4 < x \le 2$. (a) Answer [1]

(b) Solve the inequality -4x < 36.

Answer [1]

-

100

Express 2016 as a product of its prime factors. Give your answer in index notation. 3 (a)

۰.

3

2016 = [2]

Find the smallest possible integer p such that 2016p is a perfect cube. **(b)**

Answer

.

Answer

[Turn Over

.....

۰.

Solve the following equations

(a) 7x - 15 = 18 - 4x,

an an that

Answer x = [3]

4048/01/2018

[Turn Over

- 5 James invested $\frac{1}{4}$ of his business income on research, $\frac{2}{5}$ on training workers and the remainder on operations of the business.
 - (a) Find the fraction of his income spent on operations.

Answer [2]

(b) Find the total income if James invested \$30 000 more on training workers than on research.

\$ [2] Answer Given that x = -1, y = 3 and z = -4, evaluate $\frac{x^2 y}{z - y}$. 6

[Turn Over

.....

[2]

7 In the diagram, SRQ, PRT are straight lines and MRN is parallel to OPQ. $\angle PQR = 38^{\circ}$ and $\angle SRT = 100^{\circ}$.

.

4048/01/2018

[Turn Over

8 The diagram below shows a distance-time graph for the journey of a car from Point A to

Point B and its journey back to A. It left Point A at 0900 hrs.

4048/01/2018

[Turn Over

9

بري سور سور

.

PQRS is a parallelogram with $\angle SPT = 65^{\circ}$, $\angle PTQ = 80^{\circ}$ and $\angle PST = 72^{\circ}$.

Stating your reasons clearly, calculate

The diagram shows a trapezoidal prism with four rectangular faces. BC = 6 cm, BF = 5 cm, FG = 18 cm, CG = 10 cm and GH = 45 cm. Calculate the

(a) volume of the prism,

10

Answer _____ cm³ [2]

(b) total surface area of the prism.

4048/01/2018

[Turn Over

[3]

10

11 In the figure below, *PQRV* is a parallelogram with height 12 cm.

PQ = VR = 25 cm, and PV = QR = 18 cm.

A semi-circle of diameter 12 cm is removed from the parallelogram as shown.

(b) perimeter of the unshaded region *PQRSTUV*.

[Turn Over

12 The graph of a line is shown below.

 Answer P = (, _ , _) [1]

 (b) State the y-intercept of the line PQ.

 Answer ______ [1]

 (c) Find the gradient of the line PQ.

Answer [2]

(d) Write down the equation of line R.

AMKSS 18	E FE
----------	------

Answer [1] 4048/01/2018 [Turn Over

13 The quadrilateral ABCD is such that AB = 5 cm, BC = CD = 7 cm, AD = 8 cm and $\angle ABC = 95^{\circ}$. AB and BC are drawn below.

(a)	Complete the quadrilateral.	[2]
(b)	Construct the perpendicular bisector of line BC.	[1]
(c)	Construct the angle bisector of $\angle BCD$.	[1]

Answer

4048/01/2018

[Turn Over

			•
Class	Index Number	Name	
A	AN	IG MO KIO SECONDA	RY SCHOOL
A		FINAL EXAMINATIO	N 2018 XPRESS
MATHEMATICS 4048/02 Paper 2			4048/02
Thurs	day	4 October 2018	1 hour 15 minutes
Additiona	al Materials: Ans Graj	wer Paper oh Paper (1 sheet)	EDOC
READ T Write yo Write in You ma	THESE INSTRUC our name, index no dark blue or black y use a pencil for use staples, paper	TIONS FIRST umber and class on all the wo of pen on both sides of the pay any diagrams or graphs.	ork you hand in. oer.
Answer	all questions.		

If working is needed for any question it must be shown with the answer. Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate. If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 50.

This document consists of 6 printed pages.

Answer all the questions.

2

1 (a) Evaluate
$$\sqrt[3]{\frac{2(1.6)^2 - 7.94 + 9.9}{4(-53.754)^3}}$$
, giving your answer correct to 3 significant

figures.

2

(b) Simplify the following expressions

(i)
$$6x+2y+5(y-2x)$$
, [1]

(ii)
$$\frac{x+3}{4} - \frac{2x-4}{5}$$
. [2]

(c) Factorise
$$18x - 36y + 54xy$$
 completely.

[1]

[2]

- (a) A shopkeeper earned a profit of \$500 when he sold a computer at a discount of 20% of its marked price. Calculate the marked price of the computer, given that the cost price of the computer is \$1700. [2]
 (b) A wallet costs 850 000 Korean Won (KRW). The exchange rate between Singapore dollars S\$1 and Korean Won is S\$1 = KRW815. Calculate the price of the wallet in Singapore dollars. [2]
- 3 The following shows the pricing for buffet dinner on weekends.

Restaurant Nice	
Each Adult : \$55	Each child : 50% of Adult Price
Promotion: For every 4 pay	ing adults, the 5 th adult dines free.

Restaurant Delicious	-
Each Adult : \$80	Each child : \$25
Promotion: 50% discount for adults of	only.

Mr Lim is planning to bring his family of 5 adults and 4 children for a buffet dinner.

- (a) How much must Mr Lim pay if his family is dining at Restaurant Nice? [2]
- (b) Explain, with clear mathematical working, which restaurant will offer a better deal.

[2]

The cash price of a new car is \$90 500.

John buys the car under the hire purchase scheme as shown below.

Calculate

4

5

- (a) the total amount of interest payable,
- the monthly instalment paid by John. (b)
- Three comets moving through the galaxy will pass through our solar (a) system every 75 years, 120 years and 300 years respectively. The three comets were last observed in our solar system in the year 1680. In which year will all the three comets be seen in our solar system together again? [3]
- The diagram below shows part of a regular *n*-sided polygon, ABCD. (b) It is given that $\angle BDC = 15^{\circ}$.

Calculate the number of sides that the polygon has. (ii)

[3]

[2]

6 The diagram shows a toy block with a vertical height of 8 cm and length 14 cm. AF = EF = 10 cm, AB = DE = 2 cm and AE = 12 cm.

Calculate the cost of painting the toy block.

7 The bar chart below shows the total ticket sales for a play that was held in a theatre with a seating capacity of 350.

- (a) How many tickets were sold altogether? [1]
 (b) How much money was collected from the ticket sales? [2]
- (c) Calculate the percentage of seats that was unoccupied. [2]

[4]

Answer the whole of this question on a sheet of graph paper. 8

The following table shows the corresponding values of x and y for $y = 4 - \frac{1}{2}x$.

x	0	2	4	8
у	4	р	2	0

- Find the value of *p*. [1] **(a)** Using a scale of 2 cm to 1 unit, draw a horizontal x-axis for $0 \le x \le 8$.
- **(b)** Using a scale of 4 cm to 1 unit, draw a vertical y-axis for $0 \le y \le 4$. On your axes, plot the points given in the table and join them with a straight EDUCATION line.
- From your graph, find the value of x when y = 1. [1] (c)
- [1] On the same axes, draw the graph of x = 3. (d) (i)
 - Write down the coordinates of the point of intersection of the graphs (ii)

of
$$y = 4 - \frac{1}{2}x$$
 and $x = 3$. [1]

3.0

.

[3]

9 The table below shows the different entrance fees to zoo.

Day / Time		Per Adult	Per Child
			(below 13 years old)
Monday	Before 2 p.m.	\$33	\$12
to Friday	After 2 p.m.	\$17	\$5
Saturday	Before 2 p.m.	\$40	\$18
and Sunday	After 2 p.m.	\$25	\$11

During a school excursion, a group of teachers and x Primary 2 students visited the zoo at 10 a.m. on a Thursday.

(a)	Write down an expression, in terms of x, for	
	(i) the total entrance fees for the students,	[1]
	(ii) the total entrance fees for the teachers if the number of teachers who	
	went on the excursion was 220 fewer than the number of students.	[1]
(b)	The total amount spent on entrance fees for teachers and students was	
	\$3540.	
	Form an equation, in terms of x , to represent the above information, and	
	show that it can be simplified to $45x - 7260 = 3540$.	[2]
(c)	Solve the equation $45x - 7260 = 3540$.	[1]
(d)	Hence, find the number of teachers who went on the school excursion.	[1]

END OF PAPER

EDUGATION

FO

FINAL EXAMINATION 2018

SECONDARY ONE EXPRESS

MATHEMATICS PAPER 1

NO	SOLUTIONS	MARKS
1(a)(i)	984.609	B1
1(a)(ii)	980	B1
1(b)	12 64	B1
	$\frac{1}{100}$ $\frac{1}{100}$	
	=12:64	
	= 3:16	1
		NAL
2(a)	-3, -2, -1, 0, 1, 2	B1
2(b)	-4x < 36	B1
	36	7
	$x > -\frac{1}{4}$	5
	x > -9	
3(a)		M1
	2 1008	-031
		c600-
	2 504 88	0-
	a lass cert only	
	90- (0)	
	1/2 126 (D) (D) (L) atsat	
	N 3 163 ALL WHO	
	3 2KOLUL ad	
	Var astrongelive.	
	1.48	
	- duna	NYA I
L D	$2016 = 2^3 \times 3^3 \times 7$	AI
3(b)	(3, -2)	B1
5(0)	$p = 2 \times 3 \times 7 = 294$	
4(a)	7x - 15 = 18 - 4x	
	11x = 33	M1
	<i>x</i> = 3	
		AI
4(b)	2x - 3x - 10 - 7	
	$\frac{1}{3}$ 2	
	4x - 3(3x - 10)	
	$\frac{1}{6}$	M1
	4x - 9x + 30	
	$\frac{1}{6} = 7$	MI
	0	

[
	$\frac{-5x+30}{2} = 7$	
	6	
	-5x + 30 = 42	
	-5x = 12	
	12	
	$x = -\frac{12}{5}$	
	$x = -2\frac{2}{5}$	A1
	Accept also $x = -2.4$	
5(a)	$1 - \frac{1}{2} - \frac{2}{7} - \frac{7}{7}$	B2
	4 5 20	NAP
5(b)	2 1 3	M1
	5 4 20	
	$\frac{2}{-1} = \frac{3}{-1}$	/
		A1
	$3 \text{ units} = \$30\ 000$	and a second sec
	1 unit = \$10 000 20 units = \$200 000	
6	$(-1)^2(3)$	M1
	$\left \frac{(-1)(5)}{4-3}\right $	~ ³¹
		6600
		Al ·
7(2)	(ORN = (PORtalt St=38%) (P) ONY	M1
/(a)	$MRS = 38$ (vert. opp z_{s})	A1
5	C C Columation	
7(b)	$4PRQ = 100^{\circ} (vert.(opp) \le s)$	M1
	$\angle OPR \approx 100^{\circ} + 38^{\circ} \Rightarrow 138^{\circ}$ $\therefore 2 = \text{sum of } 2 \text{ int. opp}$	A 1
	As Dell	AI
	$PQRM = PQRMatt (s) = 38^{\circ}$	WAL
L	$\angle PRM = \bigotimes ORN (Vert. Opp \angle s) = 38^{\circ}$	TCATION
1	$\angle MRS = 38^{\circ} (alt. \angle s)$	00.
	$\angle PRM = 180^{\circ} - 38^{\circ} - 100^{\circ} = 42^{\circ} (\angle s \text{ on str. line})$	
	$\angle QPR = 42^{\circ} (alt. \angle s)$	MI
	$\angle OPR = 180^{\circ} - 42^{\circ} = 138^{\circ} (\angle s \text{ on str. line})$	Al
	•	
8(a)	20km	B1
8(b)	11.15am	B1
8(c)	Total Distance = 160 km	
	Total Time = $2\frac{1}{4}$ hr	
	. т	

.

۰.

:

a 15.

1

•

	160	M1
	Average speed $-\frac{1}{2^1}$	
	$\frac{2}{4}$	
		Al
	= 71.1 km/h (to 3 s.t.)	
9(a)	$\angle ORT = 180^{\circ} - 72^{\circ} = 108^{\circ} (\angle s \text{ on str line})$	
	2 Q R I = 180 - 72 = 100 (23 of straine)	B1
0.0	(ODT 1000 TOO (CO 100/ C' / 1 1000)	
9(b)	$\angle QPT = 180^{\circ} - 72^{\circ} - 65^{\circ} = 43^{\circ}$ (sum of int. angles = 180°)	MI
	(DOT - 1000) 420 $900 - 570 ((sum of triangle))$	1411
	2 F Q I = 180 = 43 = 80 = 37 (2 sum of triangle)	
	$\angle OTR = 57^{\circ} (alt \ s)$	JAL
		NYM
	DICATION DI	JCATION
	SDUC (OF	A1
10(a)	$V_{01} = \frac{1}{6}(6+18)(5) \times 45$	M1
	$1 \sqrt{10} = \frac{1}{2} (0 + 10) (0) \times 10^{-10}$	
	$= 2700 \text{ cm}^3$	
		AI
10(b)	Surface area of 2 end faces $= 2 \times 60 = 120$ cm)
		AM
	Surface area of lateral faces	c600-
	$=(5+6+10+18) \times 45$	00
	= 1755 cm ²	M1
	generation of the second	
0	107a1 S. 4 = 120 + 1750 (3) C at 5 at 7	
	Man What	A 1
	of Section and	111
	Dan 2000 allive	
	Area of FGHE = $18 \times 49 = 810 \text{ cm}^2$	TNI
	Area of $CD = GH = 10 \times 45 = 450 \text{ cm}^2$	NYMAN
	Area of $AB6D = 6 \times 45 = 270 \text{ cm}^2$	JCATION
	Area of $ABFE = 5 \times 45 = 225 \text{ cm}^2$	0-
11(2)	Area of trapezium (2) = 5 x (6 + 18) - 120 cm ²	N(1
11(a)	Area of parallelogram = $25 \times 12 = 300 \text{ cm}^2$	IMI I
	Area of semi-circle = $\frac{1}{2} \times \pi \times (6)^2 = 18\pi cm^2$	
	2	
	Area of ration $POPSTUV =$	
	$300 - 18(3, 142) = 243.44 = 243 \text{ cm}^2(\text{to } 3 \text{ sf})$	A1
11(b)	17	
11(0)	Perimeter = $25 + 2(18) + (25 - 12) + \frac{12}{2}(3.142)$	
	= 92.852 cm = 92.9 cm (to 3 sf)	M1
	<i>52.052</i> cm <i>52.5</i> cm (10 5 5.1.)	A1
	Accept 92.84955592 = 92.8 cm when use calculator value of π .	
12(a)	P(4,-2)	B1

12(b)	<i>y</i> -intercept = 2	B1 .
12(c)	Grad= $\frac{5 - (-2)}{2} = -1$	M1
	-3-(4)	A1
12(c)	y = 3	B1
13(a)	See Appendix 1 & 2	
	All correct with construction lines	B2
	No construction lines	B1
13(b)	Perpendicular bisector correctly constructed	B1
13(c)	Angle bisector correctly constructed	B1
13(d)	$\angle BCD = 93^{\circ}$, for $BC = 7$ cm	NAL
\mathbb{D}	$\angle BCD = 91^{\circ}$, for $BC = 7.1$ cm	MOITION
13(e)	Point X marked	B1
13(f)	$CX = 5.0 \text{ cm} (\pm 0.2)$, for $BC = 7 \text{ cm}$	B1
	$CX = 5.1 \text{ cm} (\pm 0.2)$, for $BC = 7.1 \text{ cm}$	
7	A Delivery I whatsapp only 88	660031
D T	Islandwide D	NYAL

•

.

Appendix 1(BC = 7 cm)

Appendix 2 (BC = 7.1 cm)

		Based m
	12	5 1 cm
	*#,	and Alem
13	The quadrilateral ABCD is such that $AB = 5$ cm, $BC = CD = 7$ cm, $AD = 8$ cm and $\angle ABC = 95^\circ$. AB and BC are drawn below.	[2]
	(a) Complete the quadrilateral.	[1]
	(b) Construct the perpendicular disector of line <i>BC</i> .	(I)
	(c) Construct the angle bisector of <i>ZBCD</i> .	1-1
	Answer Answer f f f f f f f f f f	
	Answer $CX = 5.1$	cm [1]
	END OF PAPER	
	AMKSS 1E FE 4048/01/2018	

.

FINAL EXAMINATION 2018

SECONDARY ONE EXPRESS

MATHEMATICS PAPER 2

NO	SOLUTIONS	MARKS	
1(a)	$2(1.6)^2 - 7.94 + 9.9$		
	$\sqrt[3]{4(-53.754)^3}$		
	= -0.0225033393	M1	
	≈ -0.0225	A1	
1(b)(i)	6x + 2y + 5y - 10x		
	=7y-4x	B1	ALA
1(b)(ii)	x+3 $2x-4$		DANTA
}	4 5		CALL
	$= \frac{5(x+3) - 4(2x-4)}{2}$		L
	20		2
	$=\frac{5x+15-8x+16}{100}$	M1	
	20	11	
	$=\frac{31-3x}{2}$		\sim
1(a)	$\frac{20}{18\pi} = \frac{36\pi}{26\pi} = \frac{18(5-95)}{18\pi} = \frac{18}{2}$	D1	0 03
1(0)	18x - 36y + 34xy = 18(x - 2y + 5xy)		6600
2(a)	Selling price = 1700+500 = \$2200	XTC .	W 80-
-()	11120000	D' a	Nuis
	Marked price = $\frac{2200}{20}$ ×100 m	Mbbb	
	NS 110 80 10 CONSIN	pt.	
	=\$2750 0 14.	AI	
2(b)	KRW 815 77 58 1 0 0011		
-	KRW850000		- 11
	divels	M1	NYA
]	Islan		DELICATIC
	=S\$1042.94/\$1040/\$1043	Al	EDUC
3(2)	Amount to be paid = $4 \times 55 + 2 \times 55$	M1	-
5(a)	Amount to be paid $= 4 \times 55 + 2 \times 55$	Al	
	=\$330.		
3(b)	Amount payable at Restaurant Delicious		
	$= 5 \times 80 \times 50\% + 4 \times 25$	M1	
	= \$300	1411	
			1
	Should dine at Restaurant Delicious as	Al	
	It is cheaper by \$30.		
1		1	1

5(b)	Total surface area of prism		
	$= 2(22.867258) + 14[4\pi + 2 + 10 + 10 + 2]$	M1, M1	
	= 557.66370		••
	$Cost = 557.66370 \times 5.20$ = 2899.85	M1	
	Alternative solution	AI	
	<i>S</i> . <i>A</i> = 2(22.867258)	M1	JAT .
	$+2(14 \times 10) + 2(14 \times 2)$		DANTON
\mathcal{V}	$+\frac{1}{2}(2\times 2\pi \times 4\times 14)$	MI	CALL
	2	M1	L
	= 557.6630 Cost = 557.66370 × 5.20 = \$ 2899.85 / \$2900	AL	TP
7(a)	120 + 70 + 50 + 20 + 30 = 290 tickets	BI	
7(b)	Amount collected from the ticket sales) = $120 \times 10 + 70 \times 20 + 50 \times 30 + 20$		nW 8866000
7	×40+30×50 1200+1400+1500+800+1500	atsapp A1	
7(c)	Percentage of unoccupied seats		WAL
D	15131350-290 350 ×100	M1	DANTION
	= 17.1428.		
	= 17.1% (3 s.f.) or $17\frac{1}{7}$ %	A1	
8(a)	<i>p</i> = 3	B1	1
8(b)	Axes, origin labelled	B1]
	Correct scale	B1	
9(-)	Correct plots + Straight line	BI	-
8(C)	x = 0	BI	4
o(u)(1) S(d)(:;)	Correct $x = 3$ graph	DI DI	4
9(a)(i)	12r	B1	-
714/11			1

.

9(a)(ii)	33(x-220) or $33x-7260$	B1
9(b)	12x + 33(x - 220) = 3540	M1
	12x + 33x - 7260 = 3540	Ml
	45x - 7260 = 3540(shown)	
9(c)	45x = 12000	
	x = 240	B1 .
0(1)	240 220 20	
9(d)	240 - 220 = 20	BI

doc0120162018101

•

.

.

5122457.pdf Slandwide Delivery I Whatsapp Only 88660031