ZHONGHUA SECONDARY SCHOOL
 PRELIMINARY EXAMINATION 2020
 SECONDARY 4E/4N/5N

Candidate's Name

Class	Register Number

MATHEMATICS

4048/01
PAPER 1
31 August 2020
2 hours

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use paper clips, glue or correction fluid.
Answer all questions.
The number of marks is given in brackets [] at the end of each question or part question.

If working is needed for any question, it must be shown with the answer.
Omission of essential working will result in loss of marks.
The total of the marks for this paper is 80 .
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

Compound Interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

Curved surface area of a cone $=\pi r l$

$$
\text { Surface area of a sphere }=4 \pi r^{2}
$$

$$
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h
$$

$$
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3}
$$

$$
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
$$

Arc length $=r \theta$, where θ is in radians

$$
\text { Sector area }=\frac{1}{2} r^{2} \theta, \text { where } \theta \text { is in radians }
$$

Trigonometry

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\Sigma f x}{\Sigma f} \\
\text { Standard deviation } & =\sqrt{\frac{\Sigma f x^{2}}{\Sigma f}-\left(\frac{\Sigma f x}{\Sigma f}\right)^{2}}
\end{aligned}
$$

Answer all the questions.
1 Simplify $a^{2} b \div \sqrt[3]{\left(8 a^{0} b^{6}\right)}$

> Answer
[2]

2 Write the following numbers in order of size, starting with the largest.

$$
0.83, \quad \frac{5}{6}, \quad\left(\frac{7}{8}\right)^{2}, \quad \frac{\pi}{4}
$$

Answer

3 One solution of the equation $k x^{2}+(k-1) x-3=0$ is $x=1$.
Find
(a) the value of k,

> Answer
(b) the second possible value of x.

> Answer

4 (a) Write down the next two terms in the following number sequence:

$$
384,-192,96,-48, \ldots
$$

Answer
[1]
(b) Write down an expression for the $n^{\text {th }}$ term of this sequence in (a).

Answer

5 Paul invests $\$ 43000$ in a bank product.
The balance, $\$ A$ of this product after t years is given by the formula

$$
A=43000 \times 1.041^{t}
$$

(a) Calculate A when $t=6$.

Give your answer correct to the nearest cent.

> Answer \$.
(b) Find the percentage increase in the balance over 6 years. Give your answer correct to two decimal places.

6 (a) Express 540 as the product of its prime factors.

$$
\text { Answer } 540=
$$

(b) The number $540 k$ is a perfect cube.

Find the smallest positive integer value of k.

Answer

7 The scale of a map is $4 \mathrm{~cm}: 600 \mathrm{~m}$.
(a) Write this scale in the form $1: n$.

(b) An industrial park is represented by an area of $840 \mathrm{~cm}^{2}$ on the map. Calculate the actual area of the industrial park in square kilometres.

8 A bag contains 15 coins, n of which are 50 cents and the rest are 20 cents. One coin is chosen at random and not replaced.
(a) Write down, in terms of n, the probability that the first coin chosen is 20 cents.

> Answer
(b) A second coin is chosen at random.
(i) Find, in terms of n, the probability that both coins chosen are 20 cents.
\qquad
(ii) The probability that both coins chosen are 20 cents is $\frac{1}{5}$. Show that $n^{2}-29 n+168=0$.
(iii) Find the number of 50 cents coins in the bag initially.

9 (a) Expand and simplify $(300-p)^{2}$.
Answer [2]
(b) Hence, evaluate the value of 297^{2}.

10 The masses of two similar round mooncakes are 250 g and 54 g respectively.
(a) Find the ratio of the diameter of the larger mooncake to the diameter of the smaller mooncake.
\qquad
(b) Given that the total surface area of the larger mooncake is $100 \mathrm{~cm}^{2}$, find the total surface area of the smaller mooncake.
\qquad
Answer
cm^{2}
(c) If the mass of the larger mooncake is increased by 50%, what is the corresponding change in total surface area of the mooncake?
$\xi=\{$ integers $x: 2 \leq x<16\}$
$A=$ \{integers that are prime numbers $\}$
$B=\left\{\right.$ integers $\left.x: 2 x^{2}-10 x+12=0\right\}$
(a) Draw a Venn diagram to illustrate this information.

(b) List the elements in $A \cap B^{\prime}$.

$$
\text { Answer } A \cap B^{\prime}=\{. ~\} ~
$$

(c) Write down the number of elements in B^{\prime}.

Answer

12 (a) Find the sum of interior angles of a pentagon.

Answer。

In the diagram above, find the value of x.

13 The masses (in kg) of 14 boys and 14 girls in a class are shown in the stem-and-leaf diagram below:

(a) Write down the mode of the boys' mass.
\qquad
(b) Write down the median of the girls' mass.

Answer

kg [1]
(c) Write down the values for the mean and standard deviation of the boys' mass.

$$
\begin{aligned}
& \text { Answer Mean =kg [1] } \\
& \text { Standard } \\
& \text { deviation }=\ldots \ldots . k g ~[1] ~
\end{aligned}
$$

(d) Explain briefly whether the boys or the girls are heavier in this class.

Answer \qquad are heavier because \qquad
\qquad
\qquad

14 In store A, paint costs $\$ 23.20$ per litre, detergent costs $\$ 4.50$ per litre and alcohol costs $\$ 9.80$ per litre. In store B, paint costs $\$ 19.70$ per litre, detergent costs $\$ 5.50$ per litre and alcohol costs $\$ 9.20$ per litre.

This information can be represented by the matrix $\mathbf{Q}=\left(\begin{array}{cc}23.2 & 19.7 \\ 4.5 & 5.5 \\ 9.8 & 9.2\end{array}\right)$ Petergent $\begin{gathered}\text { Paint } \\ \text { Alcohol }\end{gathered}$
(a) John buys 8 litres of paint, 6 litres of detergent and 5 litres of alcohol. Paul buys 7 litres of paint, 5 litres of detergent and 10 litres of alcohol.

Represent their purchases in a 2×3 matrix \mathbf{P}.

$$
\begin{equation*}
\text { Answer } \quad \mathbf{P}= \tag{1}
\end{equation*}
$$

(b) Evaluate the matrix $\mathbf{R}=\mathbf{P Q}$.

$$
\text { Answer } \quad \mathbf{R}=
$$

(c) How much money would Paul save by shopping in store B?

Answer \$

(d) John shops in store A.

He has a shopping voucher that gives a discount of 20%.
How much does he pay in total for his items?

Answer \$

15 The graphs below show the result of sales of two competing brands over a few years.

State one aspect of the graphs which may be misleading and explain how this may lead to a misinterpretation of the graphs.

Answer

\qquad
\qquad

16 (a) Solve the inequalities $-7 \leq 2 x+5<13$.

Answer
(b) A rectangular card is measured to have a length of 8.3 cm and a width of 4.6 cm with accuracy of 0.1 cm .
Find the smallest possible area of this card.
Answer ..cm²
(c) The sketch shows the graph of $y=k a^{-x}$. The points $(0,3)$ and $(-4,1875)$ lie on the graph. Find the value of k and of a.

$\left.\begin{array}{lll}\text { Answer } & k=\ldots \ldots \ldots . ~\end{array}\right]$

17 Alan buys a car on hire purchase which costs $\$ 110,000$.
Two banks offer him their respective hire purchase packages as follows:

United Bank	$\bullet 30 \%$ down-payment
Instalment Plan A	\bullet Equal monthly instalments for 7 years
	$\bullet 3.5 \%$ simple interest per annum
Overseas Bank	$\bullet 40 \%$ down-payment
Instalment Plan B	\bullet Equal monthly instalments for 5 years
	$\bullet 4 \%$ simple interest per annum

(a) Calculate the down-payment required for United Bank.

Answer \$.
(b) Calculate the total interest that Alan would pay if he chooses United Bank.

Answer \$.
(c) Calculate the monthly instalment for Overseas Bank.

Answer \$.
(d) Give a suitable reason why Alan chose United Bank instead of Overseas Bank.

Answer \qquad
\qquad
\qquad

18 The line $\frac{x}{3}+\frac{y}{5}=1$ cuts the x-axis at A and the y-axis at B.

Find

(a) the coordinates of A.

$$
\text { Answer } A=
$$

(b) the length of the line $A B$.

Answer ..units
(c) the equation of the line which passes through the point $(5,-7)$ and has the same gradient as line $A B$.

19 The line $A B$ is drawn below.

(a) Construct triangle $A B C$ where angle $A B C=80^{\circ}$ and $B C=6 \mathrm{~cm}$.
(b) Construct the bisector of angle $B A C$.
(c) Construct the perpendicular bisector of $B C$
(d) Mark clearly a possible point which is outside the triangle, equidistant from B and C, and nearer to $A B$ than $A C$.

Label this point P.
$20 A, B, C, D$ and E lie on a circle. $A C$ is a diameter of the circle and $A E$ is parallel to $B D$. F is the point of intersection of $A C$ and $B D$ and angle $A B F=61^{\circ}$.
Find,

(a) angle $A B C$,

Answer

- [1]
(b) angle $C B D$,

Answer

- [1]
(c) angle $C A D$,

> Answer

- [1]
(d) angle $A E D$.

ZHONGHUA SECONDARY SCHOOL PRELIMINARY EXAMINATION 2020 SECONDARY 4E/4N/5N

Candidate's Name
Class
Register Number

MATHEMATICS

PAPER 2

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in.
Write in dark blue or black pen on both sides of the paper.
You may use an HB pencil for any diagrams or graphs.
Do not use paper clips, glue or correction fluid.
Answer all questions.
If working is needed for any question, it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is $\mathbf{1 0 0}$.

For Examiner's Use		
Marks Obtained		100
Marks Deducted		
Final Total		

Mathematical Formulae

Compound Interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\begin{gathered}
\text { Curved surface area of a cone }=\pi r l \\
\text { Surface area of a sphere }=4 \pi r^{2} \\
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3}
\end{gathered}
$$

$$
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
$$

Arc length $=r \theta$, where θ is in radians

$$
\text { Sector area }=\frac{1}{2} r^{2} \theta, \text { where } \theta \text { is in radians }
$$

Trigonometry

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

Statistics

$$
\text { Mean }=\frac{\Sigma f x}{\Sigma f}
$$

Standard deviation $=\sqrt{\frac{\Sigma f x^{2}}{\Sigma f}-\left(\frac{\Sigma f x}{\Sigma f}\right)^{2}}$

1 (a) $p=4 q(r-2)$
(i) Evaluate p when $q=2$ and $r=-3$.
Answer ... [1]
(ii) Express r in terms of p and q.

Answer
(b) Simplify $\frac{9-6 x}{3-2 x+3 y-2 x y}$.

1 (c) (i) Express $7-4 x+x^{2}$ in the form $(x-h)^{2}+q$.

Answer

(ii) Sketch the graph of $y=7-4 x+x^{2}$.

Indicate clearly the coordinates of the points where the graph crosses the axes and the turning point on the graph.

Answer

(iii) Write the equation of line of symmetry of the graph $y=7-4 x+x^{2}$.

1 (d) Solve $\frac{x}{2-x}+\frac{5}{3 x-1}=\frac{5+10 x}{(3 x-1)(2-x)}$.

2 The table shows electricity consumption, in watt hours, in Singapore in 2018.

Households	Commerce	Industrial	Others	Total
72×10^{11}	186×10^{11}	215×10^{11}	32×10^{11}	505×10^{11}

(a) 1000 watt $=1$ kilowatt

Convert the total amount of electricity consumed into kilowatt hours (kWh).
Give your answer in standard form.

Answer \qquad kWh
(b) Calculate the percentage of the total electricity that was consumed by Commerce in 2018.

Answer
\% [2]
(c) The electricity consumed by Households in 2008 was $p \times 10^{12}$ watt hours.

Find the ratio of electricity consumed by Households in 2008 and 2018 in terms of p.
(d) The table shows the total residents in households of Singapore in 2008 and 2018.

Year	2008	2018
Total residents in households	4.84×10^{6}	5.64×10^{6}

(i) Calculate the mean amount of electricity consumed per resident per day in 2018. Give your answer correct to the nearest hundred.

Answer

(ii) A student, Albert, made the following claim:

The total residents in households of Singapore increased between 2008 and 2018.

Thus, on average, the electricity consumed per resident per day in 2008 would be larger than in 2018.

What is wrong with his claim?
Answer \qquad
\qquad
\qquad

3 Two groups of staff were surveyed.
Their weights are shown in the box-and-whisker diagrams.

(a) Find the range of masses for Group A.
\qquad
(b) Find the interquartile range for Group B.

Answer
kg [1]
(c) Make two comparisons between the weights of the two groups of staff.

Answer
(1) \qquad
\qquad
\qquad
(2) \qquad
\qquad
\qquad

4 (a) Eng bought a mobile phone at $\$ 2020$.
A week later, he decided to sell it in an online platform where every customer is entitled for 5% discount.
Eng would like to earn a profit of 10% of the cost.
Calculate the selling price of the mobile phone in the online platform. Give you answer correct to the nearest dollar.

Answer \$

(b) Forty-five staff needs to work for 8 hours a day to complete a project in a week. Five workers were transferred to another department before the project begins.

Find the number of extra hours the remaining staff need to work in a day to complete the project in a week.

4 (c) Gina wishes to exchange her Singapore dollars (SGD) into Australia dollars (AUD). At a money changer, the exchange rate SGD $1=$ AUD 0.987.
However, the exchange rate in a bank is AUD $1=$ SGD 1.12.
Where should Gina exchange her SGD 1200 into AUD?
Support your answer with suitable justification.
\qquad
(d) A hospital is raising money by collecting 20-cent coins.

The target is to collect sufficient coins so that they would be one kilometre long when they are placed edge-to-edge in a straight line.

A 20 -cent coin is 21.00 mm in diameter.
The hospital meets their target of one kilometre.
The local bank charges 12 cents per coin deposited into the saving accounts.
Calculate the amount of money raised after the deposit to the bank.
Give you answer in dollars.
(e) The diagram shows the speed-time graph for a bus's journey between two bus-stops.

Find

(i) the acceleration of the bus 10 seconds before reaching the next stop,

$$
\text { Answer ... m/s }{ }^{2} \text { [1] }
$$

(ii) average speed of the bus for the journey between the two bus-stops.

5 The variables x and y are connected by the equation $y=\frac{x}{5}\left(4+4 x-x^{2}\right)$.
Some corresponding values of x and y correct to 1 decimal place, are given below.

x	-2	-1	-0.5	0	1	2	3	4	5
y	3.2	0.2	p	0	1.4	3.2	4.2	3.2	-1

(a) Find the value of p.

> Answer
[1]
(b) On the grid given, draw the graph $y=\frac{x}{5}\left(4+4 x-x^{2}\right)$ for $-2 \leq x \leq 5$.
(c) Use your graph to write an inequality in x to describe the range of values where $y>3$.

Answer

(d) By drawing a tangent, estimate the gradient of the curve when $x=-1$.

Answer

(e) The equation $4 x+4 x^{2}-x^{3}=20$ only has only 2 solutions for $-2 \leq x \leq 5$.

Explain how this can be seen from your graph.
Answer \qquad
\qquad
\qquad
\qquad

5 (f) (i) On the same grid, draw the graph $2 y+x=4$ for $-2 \leq x \leq 5$.
(ii) Write down the x-coordinates of the points when the line and the curve intersect.

$$
\text { Answer } x=
$$

(iii) The value of x obtained in (f)(ii) are solutions of the equation

$$
2 x^{3}+A x^{2}+B x+40=0
$$

Determine the values of A and B.

$$
\text { Answer } \begin{aligned}
A & = \\
B & =
\end{aligned}
$$

(a)

$T A$ and $T B$ are tangents to a circle with centre C. $A T$ produced meets $C B$ produced at X.
$X B=4 \mathrm{~cm}$ and $T B=3 \mathrm{~cm}$.
Prove that triangle $B T X$ is similar to triangle $A C X$.
Answer
(b) In the diagram, $P Q R S$ and $S T U V$ are both squares.

Prove that triangle $P S T$ is congruent to triangle $R S V$.

Answer

A, B, C and D are points on horizontal ground.
$A B=8 \mathrm{~m}, B D=7 \mathrm{~m}, A D=5 \mathrm{~m}$.
(a) Show that angle $A B D=38.2^{\circ}$, correct to 1 decimal place.

Answer
(b) Calculate the area of triangle $A B D$.

$$
\text { Answer ... } \mathrm{m}^{2}
$$

(c) Point C is due east of point B and C is 12 m away from D.

Find the bearing of D from C.
$7 \quad$ A 4.5 m tall vertical pole is erected at D.
A camera is placed at the top of the pole.
Fanny walks along the path $A C$.
(d) (i) Calculate the shortest distance Fanny is from D as she walks along $A C$.

Answer

m
(ii) Calculate the greatest angle of depression of Fanny from the camera.

8 An open container is made of a hollow cylinder and a cone, shown in Diagram I.

Diagram I
Both cylinder and cone have radius $3 r \mathrm{~cm}$.
The height of the cylinder is $8 r \mathrm{~cm}$.
The slant height of the cone is 5 rcm .
The conical part of the container can hold $96 \pi \mathrm{~cm}^{3}$ of water.
(a) Show that $r=2$.

Answer
(b) Find the height of the water when $600 \mathrm{~cm}^{3}$ of water is poured into the container.

Answer
cm
(c) On the grid below, sketch the graph that depicts how the water level increases over time when the container in Diagram I is completely filled with water in 28 minutes. Indicate clearly the time when the water level reaches $4 r$.

Answer On the diagram
(d) In Diagram II, a solid sphere of radius 3 cm is placed into the container such that it touches the curved surface area of the cone.

Diagram I

Diagram II
(i) Find, in terms of π, the volume of the sphere.

> Answer
cm^{3}
(ii) The container contains $600 \mathrm{~cm}^{3}$ of water before the placement of the sphere.

Calculate the rise of the height of the water when the sphere is placed in the container.

9 Three integers, a, b and c, are such that $a<b<c$.
The three integers are said to form Pythagorean triple (PT) if $c^{2}=a^{2}+b^{2}$ or $c^{2}-b^{2}=a^{2}$.

For example,

$$
3,4,5 \text { form a PT because } 5^{2}-4^{2}=(5-4)(5+4)=(1)(9)=9=3^{2}
$$

and $5,12,13$ form a PT because $13^{2}-12^{2}=(13-12)(13+12)=(1)(25)=25=5^{2}$
(a) Form a Pythagorean triple
(i) in which the last two integers are 40 and 41,
(ii) in which the first integer is 11 .

Answer

It is also possible to form a Pythagorean triple in which the last two integers differ by 2.
(b) (i) Simplify $\left(4 n^{2}+1\right)^{2}-\left(4 n^{2}-1\right)^{2}$ and hence express it as a perfect square.

Answer

(ii) Form a Pythagorean triple in which the first integer is 400 and the other two integers differ by 2 .

The tables below show the specifications of an empty oil tanker and a pumping pipe.
Specifications of Oil Tanker

- Radius (r) $\quad: 0.9 \mathrm{~m}$
- Length $(l) \quad: 10.4 \mathrm{~m}$
- Model : cylindrical as shown below. Point O is the centre of circular cross section

- Safety information : the oil tanker can only be filled up to 15 cm from its brim

Specifications of Pumping Pipe

- Radius (r) $: 4.8 \mathrm{~cm}$
- Maximum flow of oil $: 350 \mathrm{~cm} / \mathrm{s}$
- Model : cylindrical
(a) Calculate the cross sectional area, in square metres, of the tank.

10 (b) To provide an extra protection to the container, the external area has to be painted by a special paint.
A tin of paint can be used to polish an area of $8.5 \mathrm{~m}^{2}$.
Find the number of tins required to paint the container.

Answer
(c) A pumping pipe is used to fill the container with oil.

Calculate the minimum time, in minutes, needed to fill the container to its safe volume.

Continuation of working space for Question 10c.

Answers:

1ai)	$p=-40$	4c)	money changer
1aii)	$r=p+8 q$	4d)	\$3809.60
	$4 q$	$4 \mathrm{ei})$	-1.25
	3	4eii)	17.1875
1b)	$\frac{3}{1+y}$		
1ci)	$(x-2)^{2}+3$	5a)	-0.175
$1 \mathrm{ciii})$	$x=2$	5c)	$1.9<x<4.1$ or
1d)	$x=5$		$\begin{aligned} x & <-1.95 \text { or } \\ -2 & <x<-1.95 \end{aligned}$
		5fii)	$-1.95,1.05,4.9$
2a)	5.05×10^{10}	5fiii)	$A=-8, \quad B=-13$
2b)	36.8\%		
2c)	$5 p: 36$		
2di)	3500	7b)	17.3
2dii)	The claim assumed that the total	7c)	291.2°
	electricity consumed in 2008 is the	7di)	4.33
	same as in 2018.	7dii)	46.1°
3a)	31	8b)	10.6
3 b)	11	8di)	36π
3c)	1) On average, the staff in Group B are heavier because their median weight (66 kg) is larger than the	8dii)	9,40
	2) The weights in Group B is more	9ai) 9aii)	9, 40, 41 $11,60,61$
	consistent because their	$9 \mathrm{bi})$	$(4 n)^{2}$
	interquartile range (11 kg) is smaller than the weights in Group A (15 kg)	$9 \mathrm{bii})$	400, 39999, 40001
		10a)	2.54
4a)	\$2111 or \$2339	10b)	8
4b)	1	10c)	16.7

ZHONGHUA SECONDARY SCHOOL
 PRELIMINARY EXAMINATION 2020
 SECONDARY 4E/4N/5N

Candidate's Name
Class
Register Number
ANSWERS

MATHEMATICS

4048/01

PAPER 1
31 August 2020
2 hours

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use paper clips, glue or correction fluid.
Answer all questions.
The number of marks is given in brackets [] at the end of each question or part question.

If working is needed for any question, it must be shown with the answer.
Omission of essential working will result in loss of marks.
The total of the marks for this paper is $\mathbf{8 0}$.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

Mathematical Formulae

Compound Interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\begin{gathered}
\text { Curved surface area of a cone }=\pi r l \\
\text { Surface area of a sphere }=4 \pi r^{2} \\
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3} \\
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
\end{gathered}
$$

Arc length $=r \theta$, where θ is in radians

$$
\text { Sector area }=\frac{1}{2} r^{2} \theta, \text { where } \theta \text { is in radians }
$$

Trigonometry

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\Sigma f x}{\Sigma f} \\
\text { Standard deviation } & =\sqrt{\frac{\Sigma f x^{2}}{\Sigma f}-\left(\frac{\Sigma f x}{\Sigma f}\right)^{2}}
\end{aligned}
$$

Answer all the questions.
1 Simplify $a^{2} b \div \sqrt[3]{\left(8 a^{0} b^{6}\right)}$
$=a^{2} b \div 2 b^{2} \quad(\mathrm{M} 1-$ applying law of indices $)$

Answer

$$
\begin{equation*}
\frac{a^{2}}{2 b} \tag{2}
\end{equation*}
$$

2 Write the following numbers in order of size, starting with the largest.

$$
0.83, \quad \frac{5}{6}, \quad\left(\frac{7}{8}\right)^{2}, \quad \frac{\pi}{4}
$$

$$
\begin{equation*}
\text { Answer } \frac{5}{6}, 0.83, \frac{\pi}{4},\left(\frac{7}{8}\right)^{2} \tag{1}
\end{equation*}
$$

3 One solution of the equation $k x^{2}+(k-1) x-3=0$ is $x=1$.
Find
(a) the value of k,

$$
\begin{aligned}
k+(k-1)-3 & =0 \\
2 k-4 & =0 \\
k & =2
\end{aligned}
$$

(b) the second possible value of x.

$$
\begin{aligned}
k^{2} x^{2}+x-3 & =0 \\
(2 x+3)(x-1) & =0 \\
x & =-\frac{3}{2} \text { or } 1
\end{aligned}
$$

Answer

$$
-\frac{3}{2}
$$

4 (a) Write down the next two terms in the following number sequence:

$$
384,-192,96,-48, \ldots
$$

Answer 24, -12
(b) Write down an expression for the $n^{\text {th }}$ term of this sequence in (a).

$$
\begin{aligned}
& T_{n}=\frac{384}{(-2)^{n-1}} \\
& \text { or } T_{n}=-\frac{768}{(-2)^{n}}
\end{aligned}
$$

Answer

$$
\begin{equation*}
T_{n}=\frac{384}{(-2)^{n-1}} \tag{1}
\end{equation*}
$$

5 Paul invests $\$ 43000$ in a bank product.
The balance, $\$ A$ of this product after t years is given by the formula

$$
A=43000 \times 1.041^{t}
$$

(a) Calculate A when $t=6$.

Give your answer correct to the nearest cent.

$$
\begin{aligned}
A & =43000 \times 1.041^{6} \\
& =54723.37
\end{aligned}
$$

(b) Find the percentage increase in the balance over 6 years. Give your answer correct to two decimal places.

$$
\text { Increase }=11723.37
$$

$$
\begin{aligned}
\text { Percentage increase } & =\frac{11723.37}{43000} \times 100 \% \\
& =27.26 \%
\end{aligned}
$$

6 (a) Express 540 as the product of its prime factors.

$$
\begin{equation*}
\text { Answer } \quad 540=2^{2} \times 3^{3} \times 5 \tag{1}
\end{equation*}
$$

(b) The number $540 k$ is a perfect cube.

Find the smallest positive integer value of k.

$$
k=2 \times 5^{2}
$$

7 The scale of a map is $4 \mathrm{~cm}: 600 \mathrm{~m}$.
(a) Write this scale in the form $1: n$.

4: 60000
1: 15000

Answer
1: 15000
(b) An industrial park is represented by an area of $840 \mathrm{~cm}^{2}$ on the map. Calculate the actual area of the industrial park in square kilometres.

$$
\begin{aligned}
& 1 \mathrm{~cm}: 0.15 \mathrm{~km} \\
& 1 \mathrm{~cm}^{2}: 0.15^{2} \mathrm{~km}^{2} \\
& 840 \mathrm{~cm}^{2}: 840 \times 0.15^{2} \\
& \\
& : 18.9 \mathrm{~km}^{2}
\end{aligned}
$$

8 A bag contains 15 coins, n of which are 50 cents and the rest are 20 cents. One coin is chosen at random and not replaced.
(a) Write down, in terms of n, the probability that the first coin chosen is 20 cents.

$$
\text { Answer } \quad \frac{15-n}{15}
$$

(b) A second coin is chosen at random.
(i) Find, in terms of n, the probability that both coins chosen are 20 cents.

$$
\text { Answer } \quad \frac{(15-n)(14-n)}{210}
$$

(ii) The probability that both coins chosen are 20 cents is $\frac{1}{5}$. Show that $n^{2}-29 n+168=0$.

$$
\begin{align*}
& \frac{n^{2}-29 n+210}{210}=\frac{1}{5} \tag{M1}\\
& n^{2}-29 n+210=42 \tag{M1}\\
& n^{2}-29 n+168=0 \tag{AG}
\end{align*}
$$

(iii) Find the number of 50 cents coins in the bag initially.

$$
\begin{align*}
&(n-21)(n-8)=0 \quad \text { (M1 - any method) } \\
& n=21 \text { or } n=8 \\
&\text { since the total number of coins is } 15, \quad \text { (B1 - reject } 21) \\
& 50 \text { cents }=8
\end{aligned} \quad \text { (A1) } \quad l \begin{aligned}
& \text { (M) }
\end{align*}
$$

9 (a) Expand and simplify $(300-p)^{2}$.

$$
\begin{align*}
& =300^{2}-2(1)(300) p+p^{2} \tag{M1}\\
& =p^{2}-600 p+90000 \tag{A1}
\end{align*}
$$

$$
\text { Answer } \quad p^{2}-600 p+90000
$$

(b) Hence, evaluate the value of 297^{2}.

$$
\begin{aligned}
297^{2} & =(300-3)^{2} \quad(\text { M1 }) \text { for } \mathrm{p}=3 \\
& =3^{2}-600(3)+90000 \\
& =88209 \quad \text { (A1) }
\end{aligned}
$$

10 The masses of two similar round mooncakes are 250 g and 54 g respectively.
(a) Find the ratio of the diameter of the larger mooncake to the diameter of the smaller mooncake.

$$
\begin{align*}
\left(\frac{d_{1}}{d_{2}}\right)^{3} & =\frac{250}{54} \quad \text { (M1 } \tag{M1}\\
\frac{d_{1}}{d_{2}} & =\sqrt[3]{\left(\frac{250}{54}\right)} \\
& =\frac{5}{3} \quad \text { (A1 } \tag{A1}
\end{align*}
$$

> Answer
$5: 3$
(b) Given that the total surface area of the larger mooncake is $100 \mathrm{~cm}^{2}$, find the total surface area of the smaller mooncake.

$$
\begin{align*}
\frac{A_{1}}{A_{2}} & =\left(\frac{5}{3}\right)^{2} \tag{M1}\\
\frac{100}{A_{2}} & =\left(\frac{25}{9}\right) \\
A_{2} & =36 \tag{A1}
\end{align*}
$$

$$
\begin{equation*}
\text { Answer } \quad 36 \mathrm{~cm}^{2} \tag{2}
\end{equation*}
$$

(c) If the mass of the larger mooncake is increased by 50%, what is the corresponding change in total surface area of the mooncake?

Let y be the new mass of the mooncake

$$
\begin{aligned}
& \left(\sqrt[3]{\frac{3}{2} \times 250}\right)^{24}=\frac{3.6399}{1} \quad \text { or M1 for } \frac{375}{54} \text { seen } \\
& \frac{3.6399}{1}=\frac{y}{36} \\
& y=\frac{3.6399}{1} \times 36 \\
& =131.0364
\end{aligned}
$$

$$
\text { Percentage change }=\frac{131.0364-100}{100} \times 100 \%
$$

$$
=31.0 \%
$$

$$
\text { Answer } \quad 31.0 \%
$$

$\xi=\{$ integers $x: 2 \leq x<16\}$
$A=$ \{integers that are prime numbers $\}$
$B=\left\{\right.$ integers $\left.x: 2 x^{2}-10 x+12=0\right\}$
(a) Draw a Venn diagram to illustrate this information.

(b) List the elements in $A \cap B^{\prime}$.

$$
\text { Answer } A \cap B^{\prime}=\{5,7,11,13\}
$$

(c) Write down the number of elements in B^{\prime}.

12 (a) Find the sum of interior angles of a pentagon.

Sum of interior angles

$$
\begin{array}{ll}
=(5-2) \times 180^{\circ} & (\mathrm{M} 1) \\
=540^{\circ} & (\mathrm{A} 1) \tag{A1}
\end{array}
$$

$$
\text { Answer } \quad 540^{\circ}
$$

(b)

In the diagram above, find the value of x.

$$
\begin{align*}
x+(x-8)+x+150+(x-34) & =540 \tag{M1}\\
x & =108^{\circ} \tag{A1}
\end{align*}
$$

13 The masses (in kg) of 14 boys and 14 girls in a class are shown in the stem-and-leaf diagram below:

(a) Write down the mode of the boys' mass.

$$
\text { Answer } \quad 49 \mathrm{~kg}
$$

[1]
(b) Write down the median of the girls' mass.

$$
\text { Answer } \quad 49 \mathrm{~kg}
$$

(c) Write down the values for the mean and standard deviation of the boys' mass.

$$
\begin{array}{cl}
\text { Answer } & \text { Mean }=57.2 \mathrm{~kg} \\
\mathrm{SD} & =9.93 \mathrm{~kg} \tag{1}
\end{array}
$$

(d) Explain briefly whether the boys or the girls are heavier in this class.

AnswerBoys.... are heavier because their median of 53 kg is greater than the girls' median weight of 49 kg
Or compare mean weight - Boys (57.2 kg) vs Girls (51.2 kg)

In store A, paint costs $\$ 23.20$ per litre, detergent costs $\$ 4.50$ per litre and alcohol costs $\$ 9.80$ per litre. In store B, paint costs $\$ 19.70$ per litre, detergent costs $\$ 5.50$ per litre and alcohol costs $\$ 9.20$ per litre.

This information can be represented by the matrix $\mathbf{Q}=\left(\begin{array}{cc}23.2 & \text { 19.7 } \\ 4.5 & 5.5 \\ 9.8 & 9.2\end{array}\right) \begin{gathered}\text { Paint } \\ \text { Detergent } \\ \text { Alcohol }\end{gathered}$
(a) John buys 8 litres of paint, 6 litres of detergent and 5 litres of alcohol. Paul buys 7 litres of paint, 5 litres of detergent and 10 litres of alcohol.

Represent their purchases in a 2×3 matrix \mathbf{P}.
Answer $\left[\begin{array}{ccc}8 & 6 & 5 \\ 7 & 5 & 10\end{array}\right]$
(b) Evaluate the matrix $\mathbf{R}=\mathbf{P Q}$.

$$
\begin{align*}
R & =\left[\begin{array}{ccc}
8 & 6 & 5 \\
7 & 5 & 10
\end{array}\right]\left[\begin{array}{cc}
23.2 & 19.7 \\
4.5 & 5.5 \\
9.8 & 9.2
\end{array}\right] \tag{M1}\\
& =\left[\begin{array}{ll}
261.6 & 236.6 \\
282.9 & 257.4
\end{array}\right] \tag{A1}
\end{align*}
$$

$$
\begin{equation*}
\text { Answer } \quad \mathbf{R}=\text {. } \tag{2}
\end{equation*}
$$

(c) How much money would Paul save by shopping in store B?

Saving $=282.9-257.4$

$$
\text { Answer } \quad \$ 25.50
$$

(d) John shops in store A.

He has a shopping voucher that gives a discount of 20%. How much does he pay in total for his items?

15 The graphs below show the result of sales of two competing brands over a few years.

State one aspect of the graphs which may be misleading and explain how this may lead to a misinterpretation of the graphs.

Answer The scale of the y-axis for both graphs are different (B1)
Brand B looks like the preferred brand as the graph appears higher compared to Brand A (B1)

16 (a) Solve the inequalities $-7 \leq 2 x+5<13$.

$$
\begin{array}{ll}
& x>6 \text { and } x<4 \\
-6 \leq x<4 & \text { (B1 - either correct) } \tag{A1}\\
\text { (A1) }
\end{array}
$$

$$
\begin{equation*}
\text { Answer }-6 \leq x<4 \tag{2}
\end{equation*}
$$

(b) A rectangular card is measured to have a length of 8.3 cm and a width of 4.6 cm with accuracy of 0.1 cm .
Find the smallest possible area of this card.

$$
\begin{align*}
\text { Smallest Area } & =8.25 \times 4.55 \tag{M1}\\
& =37.5375 \tag{A1}
\end{align*}
$$

$$
\text { Answer } \quad 37.5375 \mathrm{~cm}^{2}
$$

(c) The sketch shows the graph of $y=k a^{-x}$.

The points $(0,3)$ and $(-4,1875)$ lie on the graph. Find the value of k and of a.

$$
\begin{array}{ll}
\text { Answer } & k=3 \\
\text { Answer } & a=5
\end{array}
$$

17 Alan buys a car on hire purchase which costs $\$ 110,000$.
Two banks offer him their respective hire purchase packages as follows:

United Bank	\bullet 30\% down-payment
Instalment Plan A	\bullet Equal monthly instalments for 7 years
	$\bullet 3.5 \%$ simple interest per annum
Overseas Bank	\bullet • 40% down-payment
Instalment Plan B	\bullet Equal monthly instalments for 5 years
	$\bullet 4 \%$ simple interest per annum

(a) Calculate the down-payment required for United Bank.

$$
\text { Answer \$ } 33000
$$

(b) Calculate the total interest that Alan would pay if he chooses United Bank.
Answer \$18865
(c) Calculate the monthly instalment for Overseas Bank.
$\begin{aligned} \text { Total loan amount including interest } & =66000+13,200 \quad(\mathrm{~B} 1-13200) \\ & =79200\end{aligned}$

Monthly instalment $\quad \frac{79200}{5 \times 12}$

$$
\begin{equation*}
=1320 \tag{M1}
\end{equation*}
$$

$$
\text { Answer } \$ 1320
$$

(d) Give a suitable reason why Alan chose United Bank instead of Overseas Bank.

Answer United Bank has lower down-payment than Overseas Bank
Or Monthly instalment $\$ 1141.25<\$ 1320$
Or United Bank has lower interest rate.

18 The line $\frac{x}{3}+\frac{y}{5}=1$ cuts the x-axis at A and the y-axis at B.
Find
(a) the coordinates of A.

$$
\begin{equation*}
\text { Answer } A=(3,0) \tag{1}
\end{equation*}
$$

(b) the length of the line $A B$.

$$
\begin{align*}
A B & =\sqrt{3^{2}+5^{2}} \tag{M1}\\
& =5.83 \tag{A1}
\end{align*}
$$

$$
\text { Answer } 5.83 \text { units }
$$

(c) the equation of the line which passes through the point $(5,-7)$ and has the same gradient as line $A B$.

$$
\begin{align*}
\text { Gradient } A B & =-\frac{5}{3} \tag{B1}\\
y-(-7) & =-\frac{5}{3}(x-5) \tag{M1}\\
y & =-\frac{5}{3} x+\frac{4}{3} \tag{A1}
\end{align*}
$$

Answer

$$
\begin{equation*}
y=-\frac{5}{3} x+\frac{4}{3} \tag{3}
\end{equation*}
$$

19 The line $A B$ is drawn below.

(a) Construct triangle $A B C$ where angle $A B C=80^{\circ}$ and $B C=6 \mathrm{~cm}$.
(b) Construct the bisector of angle $B A C$.
(c) Construct the perpendicular bisector of $B C$
(d) Mark clearly a possible point which is outside the triangle, equidistant from B and C, and nearer to $A B$ than $A C$.

Label this point P.
$20 A, B, C, D$ and E lie on a circle. $A C$ is a diameter of the circle and $A E$ is parallel to $B D$. F is the point of intersection of $A C$ and $B D$ and angle $A B F=61^{\circ}$.
Find,

(a) angle $A B C$,

$$
\angle A B C=90^{\circ} \text { (angle in semi-circle) }
$$

(b) angle $C B D$,

$$
\angle C B D=29^{\circ} \quad \text { (complementary angles) }
$$

$$
\text { Answer } 29^{\circ}
$$

(c) angle $C A D$,

$$
\angle C A D=29^{\circ} \quad \text { (angles in the same segment) }
$$

$$
\text { Answer } 29^{\circ}
$$

(d) angle $A E D$.

$$
\begin{align*}
\angle A E D & =180-61 \quad \text { (angles in the opposite segment) (B1) } \\
& =119^{\circ} \quad \text { (A1) } \tag{A1}
\end{align*}
$$

ZHONGHUA SECONDARY SCHOOL PRELIMINARY EXAMINATION 2020 SECONDARY 4E/4N/5N

Candidate's Name Class \quad Register Number

MATHEMATICS

PAPER 2

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in.
Write in dark blue or black pen on both sides of the paper.
You may use an HB pencil for any diagrams or graphs.
Do not use paper clips, glue or correction fluid.
Answer all questions.
If working is needed for any question, it must be shown with the answer. Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is $\mathbf{1 0 0}$.

For Examiner's Use		
Marks Obtained	$\mathbf{1 0 0}$	
Marks Deducted		
Final Total		

Mathematical Formulae

Compound Interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\begin{gathered}
\text { Curved surface area of a cone }=\pi r l \\
\text { Surface area of a sphere }=4 \pi r^{2} \\
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3} \\
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
\end{gathered}
$$

Arc length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\Sigma f x}{\Sigma f} \\
\text { Standard deviation } & =\sqrt{\frac{\Sigma f x^{2}}{\Sigma f}-\left(\frac{\Sigma f x}{\Sigma f}\right)^{2}}
\end{aligned}
$$

1 (a) $p=4 q(r-2)$
(i) Evaluate p when $q=2$ and $r=-3$.

$$
\begin{aligned}
p & =4(2)(-3-2) \\
& =-40
\end{aligned}
$$

Answer

(ii) Express r in terms of p and q.

$$
\begin{aligned}
p & =4 q r-8 q & & \text { M1 - expansion } \\
p+8 q & =4 q r & & \\
r & =\frac{p+8 q}{4 q} & & \text { A1 }
\end{aligned}
$$

Answer
(b) Simplify $\frac{9-6 x}{3-2 x+3 y-2 x y}$.

$$
\begin{aligned}
\frac{9-6 x}{3-2 x+3 y-2 x y} & =\frac{3(3-2 x)}{3-2 x+y(3-2 x)} & \\
& =\frac{3(3-2 x)}{(1+y)(3-2 x)} & \text { B1 - factorisation by grouping } \\
& =\frac{3}{1+y} & \text { A1 }
\end{aligned}
$$

1 (c) (i) Express $7-4 x+x^{2}$ in the form $(x-p)^{2}+q$.

$$
\begin{align*}
7-4 x+x^{2} & =(x-2)^{2}-(2)^{2}+7 & & \text { B2 } \tag{B2}\\
& =(x-2)^{2}+3 & & \text { B1 }- \text { for either } p \text { or } q
\end{align*}
$$

Answer

(ii) Sketch the graph of $y=7-4 x+x^{2}$.

Indicate clearly the coordinates of the points where the graph crosses the axes and the turning point on the graph.

Answer

(iii) Write the equation of line of symmetry of the graph $y=7-4 x+x^{2}$. $x=2$

B1

1 (d) Solve $\frac{x}{2-x}+\frac{5}{3 x-1}=\frac{5+10 x}{(3 x-1)(2-x)}$.

$$
\begin{aligned}
x(3 x-1)+5(2-x) & =5+10 x & & \text { M1 - removing denominators } \\
3 x^{2}-x+10-5 x & =5+10 x & & \\
3 x^{2}-16 x+5 & =0 & & \text { M1 - quadratic eqn " }=0 " \\
(3 x-1)(x-5) & =0 & & \text { M1 } \\
x & \left.=\frac{1}{3} \text { (rej. }\right) \quad \text { or } \quad x=5 & & \text { A1 }
\end{aligned}
$$

2 The table shows electricity consumption, in watt hours, in Singapore in 2018.

Households	Commerce	Industrial	Others	Total
72×10^{11}	186×10^{11}	215×10^{11}	32×10^{11}	505×10^{11}

(a) 1000 watt $=1$ kilowatt

Convert the total amount of electricity consumed into kilowatt hours (kWh). Give your answer in standard form.

$$
\begin{align*}
& \text { B2 } \\
& \text { B1 - either } 5.05 \text { or } 10^{6} \\
& \text { Answer } 5.05 \times 10^{10} \mathrm{kWh} \tag{2}
\end{align*}
$$

(b) Calculate the percentage of the total electricity that was consumed by commerce in 2018.

$$
\begin{array}{rlr}
\% \text { required } & =\frac{186 \times 10^{11}}{505 \times 10^{11}} \times 100 \% & \text { M1 } \\
& =36.8 \% & \text { A1 }
\end{array}
$$

\qquad
\%
(c) The electricity consumed by households in 2008 was $p \times 10^{12}$ watt hours.

Find the ratio of electricity consumed by the household in 2008 and 2018 in terms of p.

$$
\begin{aligned}
\text { ratio required } & =p \times 10^{12} \quad: 72 \times 10^{11} \\
& =10 p \times 10^{11}: 72 \times 10^{11} \\
& =5 p \quad: 36
\end{aligned}
$$

$$
=10 p \times 10^{11}: 72 \times 10^{11} \quad \text { M1 }- \text { both in multiple of } 10^{11} \text { or } 10^{12}
$$

A 1 - accept answers in fractions or decimals
:
(d) The table shows the total residents in households of Singapore in 2008 and 2018.

Year	2008	2018
Total residents in households	4.84×10^{6}	5.64×10^{6}

(i) Calculate the mean amount of electricity consumed per resident per day in 2018. Give your answer correct to the nearest hundred.

$$
\begin{aligned}
\text { mean required } & =\frac{72 \times 10^{11}}{5.64 \times 10^{6} \times 365} & & \text { M1 }- \text { divide by } 5.64 \times 10^{6} \\
& =3497.5225 & & \text { M1 }- \text { divide by } 365 \\
& =3500 & & \text { A1 }
\end{aligned}
$$

Answer
(ii) A student, Albert, made the following claim:

The total residents in households of Singapore increased between 2008 and 2018.

Thus, on average, the electricity consumed per resident per day in 2008 would be larger than in 2018.

What is wrong with his claim?
Answer
the claim assumes that the total electricity consumed in 2008 is the same as in 2018.
\qquad

3 Two groups of staff were surveyed.
Their weights are shown in the box-and-whisker diagrams.

(a) Find the range of masses for Group A.

$$
\text { Answer } 31 \mathrm{~kg} \quad \mathrm{~B} 1
$$

(b) Find the interquartile range for Group B.
interquartile range $=71-60$

$$
\begin{equation*}
=11 \mathrm{~kg} \tag{B1}
\end{equation*}
$$

Answer
kg
(c) Make two comparisons between the weights of the two groups of staff.

Answer
(1) On average, the staff in Group B are heavier because their median weight (66 kg) is larger than the staff in Group A (63.5 kg)
(2) The weights in Group B is more consistent because their interquartile range (11 kg) is smaller than the weights in Group A (15 kg)

B1 - using medians to compare and interpret with values stated
B1 - using interquartile range (or range) to compare and interpret with values stated

4 (a) Eng bought a mobile phone at $\$ 2020$.
A week later, he decided to sell it in an online platform where every customer is entitled for 5% discount.
Eng would like to earn a profit of 10% of the cost.
Calculate the selling price of the mobile phone in the online platform.
Give you answer correct to the nearest dollar.

Case 1: The online platform excluded 5\% discount from the selling price. selling price $=110 \% \times 95 \% \times 2020 \quad$ M1 - multiply by 110%

$$
=\$ 2111 \text { (nearest dollar) } \quad \mathrm{A} 1
$$

Case 2: The online platform factored in 5% discount in the selling price.

$$
\begin{aligned}
\text { selling price } & =\frac{110 \% \times 2020}{95 \%} \\
& =\$ 2339(\text { nearest dollar })
\end{aligned}
$$ M1 - multiply by 110%

A1
(b) Forty-five staff needs to work for 8 hours a day to complete a project in a week. Five workers were transferred to another department before the project begins.

Find the number of extra hours the remaining staff need to work in a day to complete the project in a week.

Let S be the number of staff and H be the number of hours.

$$
\begin{align*}
S & =\frac{k}{H} \\
45 & =\frac{k}{8} \\
k & =360 \tag{B1}\\
\text { When } S & =40 \\
40 & =\frac{360}{H} \\
H & =9 \\
& \therefore \text { extra hour }=1
\end{align*}
$$

4 (c) Gina wishes to exchange her Singapore dollars (SGD) into Australia dollars (AUD). At a money changer, the exchange rate SGD $1=$ AUD 0.987 .
However, the exchange rate in a bank is AUD $1=$ SGD 1.12.
Where should Gina exchange her SGD 1200 into AUD?
Support your answer with suitable justification.
In the bank, the exchange rate is equivalent to

$$
\begin{aligned}
\text { SGD } 1 & =\text { AUD } \frac{1}{1.12} \quad \text { M1 }- \text { division shown } \\
& =\text { AUD } 0.89285
\end{aligned}
$$

In the bank, the exchange rate is equivalent to

$$
\begin{aligned}
\text { SGD } 1 & =\text { AUD } \frac{1}{1.12} \quad \text { M1 }- \text { division shown } \\
& =\text { AUD } 0.89285
\end{aligned}
$$

Answer money changer because 1 Singapore dollar worth more than in the bank. B1
\qquad
\qquad
(d) A hospital is raising money by collecting 20-cent coins.

The target is to collect sufficient coins so that they would be one kilometre long when they are placed edge-to-edge in a straight line.

A 20-cent coin is 21.00 mm in diameter.
The hospital meets their target of one kilometre.
The local bank charges 12 cents per coin deposited into the saving accounts.
Calculate the amount of money raised after the deposit to the bank.
Give you answer in dollars.

$$
\begin{aligned}
\text { number of coins required } & =\frac{1000000}{21} & & \text { B1 - conversion to mm } \\
& =47619.04762 & & \text { A1 } \\
& =47620 & & \text { A1 }
\end{aligned}
$$

4 (e) The diagram shows the speed-time graph for a bus's journey between two bus-stops.

Find
(i) the acceleration of the bus 10 seconds before reaching the next stop, acceleration $=$ gradient of line segment

$$
=\frac{0-25}{80-60}
$$

$$
=-1.25 \mathrm{~m} / \mathrm{s}^{2}
$$

B1

Answer \qquad $\mathrm{m} / \mathrm{s}^{2}$
(ii) average speed of the bus for the journey between the two bus-stops.

$$
\begin{aligned}
\text { average speed } & =\frac{0.5(80+30)(25)}{80} & & \begin{array}{l}
\text { M1 - using area under graph to } \\
\text { find distance travelled }
\end{array} \\
& =17.1875 \mathrm{~m} / \mathrm{s} & & \text { A1 }
\end{aligned}
$$

5 The variables x and y are connected by the equation $y=\frac{x}{5}\left(4+4 x-x^{2}\right)$.
Some corresponding values of x and y correct to 1 decimal place, are given below.

x	-2	-1	-0.5	0	1	2	3	4	5
y	3.2	0.2	p	0	1.4	3.2	4.2	3.2	-1

(a) Find the value of p.

$$
\begin{equation*}
\text { Answer }-0.175 \quad \mathrm{~B} 1-\text { accept }-0.2 \tag{1}
\end{equation*}
$$

(b) On the grid given, draw the graph $y=\frac{x}{5}\left(4+4 x-x^{2}\right)$ for $-2 \leq x \leq 5$. P 2 - all points plotted correctly $\quad \mathrm{P} 1$ - at least 7 points plotted $\quad \mathrm{S} 1$ - all 9 points are connected
(c) Use your graph to write an inequality in x to describe the range of values where $y>3$.

$$
\begin{equation*}
1.9<x<4.1 \quad \text { or } \quad x<-1.95 \tag{B1}
\end{equation*}
$$

Answer
(d) By drawing a tangent, estimate the gradient of the curve when $x=-1$.

$$
\begin{array}{rlrl}
\text { Points are }(-2,1.6) \text { and }(0,-1.2) & \text { B1 -- suitable tangent seen } \\
\begin{array}{rlrl}
\text { gradient } & =\frac{1.6-(-1.2)}{-2-0} & & \\
& =-1.4 & \text { A1 - with working seen }
\end{array}
\end{array}
$$

Answer

(e) The equation $4 x+4 x^{2}-x^{3}=20$ only has only 2 solutions for $-2 \leq x \leq 5$.

Explain how this can be seen from your graph.

Answer
$\frac{x}{5}\left(4+4 x-x^{2}\right)=4$
The line $y=4$ intersects the curve at only 2 points for $-2 \leq x \leq 5$ therefore there are only 2 solutions in the equation $4 x+4 x^{2}-x^{3}=20$.

B1 - "y $=4$ " seen \quad B1 - intersect at 2 points with concluding remark

5 (f) (i) On the same grid, draw the graph $2 y+x=4$ for $-2 \leq x \leq 5$.
B1 - straight line with gradient -0.5
B1 - straight line with y-intercept 2
(ii) Write down the x-coordinates of the points when the line and the curve intersect.

$$
\text { Answer } x=-1.95,1.05,4.9 \mathrm{~A} 1
$$

(iii) The value of x obtained in (e)(ii) are solutions of the equation

$$
2 x^{3}+A x^{2}+B x+20=0
$$

Determine the values of A and B.

$$
\begin{aligned}
\text { Sub } y & =-\frac{1}{2} x+2 \text { into } y=\frac{x}{5}\left(4+4 x-x^{2}\right), \\
-\frac{1}{2} x+2 & =\frac{x}{5}\left(4+4 x-x^{2}\right) \quad \text { M1 -solving simultaneous eqns } \\
-5 x+20 & =8 x+8 x^{2}-2 x^{3} \\
2 x^{3}-8 x^{2}-13 x+20 & =0 \\
A & =-8 \quad B=-13 \quad \text { A1 }
\end{aligned}
$$

Answer $A=$ \qquad

$$
\begin{equation*}
B= \tag{2}
\end{equation*}
$$

(a)

$T A$ and $T B$ are tangents to a circle with centre C.
$A T$ produced meets $C B$ produced at X.
$X B=4 \mathrm{~cm}$ and $T B=3 \mathrm{~cm}$.
Prove that triangle $B T X$ is similar to triangle $A C X$.

Answer

In triangle $B T X$ and triangle $A C X$, angle $B X T=$ angle $A X C \quad$ (common angle)
angle $T B X=$ angle $C A X$. (tangent perpendicular to radius) B1-2 pairs of angles with angle $B T X=$ angle $A C X \quad$ (angles sum of triangle)

B2 - all 3 pairs of angles with reasons

Therefore, both triangles are similar because all three corresponding angles are equal.
A1 - with all reasons stated
(b) In the diagram, $P Q R S$ and $S T U V$ are both squares.

Prove that triangle PST is congruent to triangle $R S V$.

Answer

In triangle $P S T$ and triangle $R S V$,

$$
\begin{aligned}
P S & =R S & & \text { (sides of square } P Q R S) \\
S T & =S V & & \\
\text { angle } B T X & =\text { angle } A C X & & \left(90^{\circ}+\text { angle } R S V\right)
\end{aligned} \quad \begin{array}{ll}
\text { B1 }- \text { sides of square used } \\
\text { and }-90^{\circ}+\text { angle } R S V
\end{array}
$$

Therefore, both triangles are congruent because two pairs of corresponding sides and their included angles are equal.

A1 - with all reasons stated

A, B, C and D are points on horizontal ground. $A B=8 \mathrm{~m}, B D=7 \mathrm{~m}, A D=5 \mathrm{~m}$.
(a) Show that angle $A B D=38.2^{\circ}$, correct to 1 decimal place.

Answer

$$
\begin{aligned}
\cos \angle A B D & =\frac{7^{2}+8^{2}-5^{2}}{2(7)(8)} & & \mathrm{M} 1 \\
\angle A B D & =38.213^{\circ} & & \mathrm{Al} \\
& =38.2^{\circ} & & \mathrm{AG}
\end{aligned}
$$

(b) Calculate the area of triangle $A B D$.

$$
\text { area of triangle } \begin{aligned}
A B D & =\frac{1}{2}(8)(7) \sin 38.213^{\circ} \quad \text { M1 } \\
& =17.320 \\
& =17.3 \mathrm{~m}^{2} \quad \mathrm{Al}
\end{aligned}
$$

Answer

m^{2}
(c) Point C is due east of point B and C is 12 m away from D.

Find the bearing of D from C.

$$
\begin{aligned}
& \frac{\sin \left(180^{\circ}-38.213^{\circ}\right)}{12}=\frac{\sin \angle A B D}{7} \\
& \angle A B D=21.151 \\
& \text { Bearing required }=270^{\circ}+21.151 \\
&=291.151^{\circ} \\
&=291.2^{\circ} \quad(1 \mathrm{dp}) \quad \mathrm{A} 1 \\
& \text { A1 }
\end{aligned}
$$

$7 \quad$ A 4.5 m tall vertical pole is erected at D. A camera is placed at the top of the pole. Fanny walks along the path $A C$.
(d) (i) Calculate the shortest distance Fanny is from D as she walks along $A C$.

Let M the point on $A C$ such that $M D$ is perpendicular to $A C$. In triangle $B M D$,

$$
\begin{aligned}
\sin 38.213^{\circ} & =\frac{M D}{7} \\
M D & =7 \sin 38.213^{\circ}
\end{aligned}
$$

M1

Answer

$$
=4.33 \mathrm{~m}(3 \mathrm{sf}) \quad \mathrm{A} 1
$$

m [2]
(ii) Calculate the greatest angle of depression of Fanny from the camera.

In triangle $M D T$,

$$
\begin{aligned}
\tan \angle T M D & =\frac{4.5}{7 \sin 38.213^{\circ}} \\
\angle T M D & =46.102^{\circ}
\end{aligned}
$$

M1 - tangent ratio with shortest distance used

The greatest angle of depression is 46.1°. A1

8 An open container is made of a hollow cylinder and a cone, shown in Diagram I.

Diagram I

Both cylinder and cone have radius $3 r \mathrm{~cm}$.
The height of the cylinder is $8 r \mathrm{~cm}$.
The slant height of the cone is $5 r \mathrm{~cm}$.
The conical part of the container can hold $96 \pi \mathrm{~cm}^{3}$ of water.
(a) Show that $r=2$.

Answer

$$
\begin{aligned}
\text { height of cone } & =\sqrt{(5 r)-(3 r)^{2}} \quad \text { M1 } \\
& =4 r
\end{aligned}
$$

Volume of cone $=\frac{1}{3} \pi(3 r)^{2}(4 r) \quad$ M1 - apply the volume of cone

$$
\begin{aligned}
96 \pi & =\frac{1}{3} \pi(3 r)^{2}(4 r) \\
96 & =12 r^{3} \\
r^{3} & =8 \quad \text { A1 }
\end{aligned}
$$

$$
r=2 \quad \mathrm{AG}
$$

(b) Find the height of the water when $600 \mathrm{~cm}^{3}$ of water is poured into the container. Volume of water in cylinder $=600-96 \pi$

$$
\begin{aligned}
\pi(6)^{2} h & =600-96 \pi \\
h & =\frac{600-96 \pi}{36 \pi} \\
\text { height of water } & =4(2)+\frac{600-96 \pi}{36 \pi} \\
& =10.638 \\
& =10.6 \mathrm{~cm}
\end{aligned}
$$

8 c) On the grid below, sketch the graph that depicts how the water level increases over time when the container in Diagram I is completely filled with water in 28 minutes. Indicate clearly the time when the water level reaches $4 r$.

B1 - concave down to height $4 r$
B1 - straight line from height $4 r$ to $12 r \quad$ B1 -4 minutes to reach $4 r$
Answer On the diagram
(d) In Diagram II, a solid sphere of radius 3 cm is placed into the container such that it touches the curved surface area of the cone.

Diagram I

Diagram II
(i) Find, in terms of π, the volume of the sphere.

$$
\begin{aligned}
\text { Volume of sphere } & =\frac{4}{3} \pi(3)^{3} \\
& =36 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

(ii) The container contains $600 \mathrm{~cm}^{3}$ of water before the placement of the sphere.

$$
\begin{aligned}
& \text { Calculate the rise of the height of the water when the sphere is placed in the } \\
& \text { container. } \\
& \text { Volume of sphere }=\text { Volume of water with increased height } \\
& \qquad \begin{aligned}
\frac{4}{3} \pi(3)^{3} & =\pi(6)^{2} H \\
H & =1
\end{aligned}
\end{aligned}
$$

$$
\text { The rise is } 1 \mathrm{~cm} \text {. A1 }
$$

\qquad

9 Three integers, a, b and c, are such that $a<b<c$.
The three integers are said to form Pythagorean triple (PT) if $c^{2}=a^{2}+b^{2}$ or $c^{2}-b^{2}=a^{2}$.
For example,
$3,4,5$ form a PT because $5^{2}-4^{2}=(5-4)(5+4)=(1)(9)=9=3^{2}$
and $5,12,13$ form a PT because $13^{2}-12^{2}=(13-12)(13+12)=(1)(25)=25=5^{2}$
(a) Form a Pythagorean triple
(i) in which the last two integers are 40 and 41,

$$
9,40,41 \quad \mathrm{~B} 1
$$

Answer
(ii) in which the first integer is 11 .
$11,60,61 \quad \mathrm{~B} 2$
$\mathrm{B} 1-$ for answer given as $61^{2}=11^{2}+60^{2}$

Answer

It is also possible to form a Pythagorean triple in which the last two integers differ by 2.
(b) (i) Simplify $\left(4 n^{2}+1\right)^{2}-\left(4 n^{2}-1\right)^{2}$ and hence express it as a perfect square.

$$
\begin{aligned}
\left(4 n^{2}+1\right)^{2}-\left(4 n^{2}-1\right)^{2} & =\left(4 n^{2}+1-4 n^{2}+1\right)\left(4 n^{2}+1+4 n^{2}-1\right) \mathrm{M} 1 \\
& =16 n^{2} \\
& =(4 n)^{2} \quad \text { A1 -perfect square form }
\end{aligned}
$$

Answer

(ii) Form a Pythagorean Triple in which the first integer is 400 and the other two integers differ by 2 .

$$
\begin{aligned}
4 n & =400 \quad \text { M1 }- \text { determining the value of } n \\
n & =100
\end{aligned}
$$

$$
400,39999,40001 \mathrm{Al}
$$

The tables below show the specifications of an empty oil tanker and a pumping pipe.

Specifications of Pumping Pipe

- Radius (r) : 4.8 cm
- Maximum flow of oil $: 350 \mathrm{~cm} / \mathrm{s}$
- Model : cylindrical
(a) Calculate the cross sectional area, in square metres, of the tank. cross sectional area $=\pi(0.9)^{2}$

$$
\begin{align*}
& =0.81 \pi \\
& =2.54 \mathrm{~m}^{2} \tag{B1}
\end{align*}
$$

10 (b) To provide an extra protection to the container, the external area has to be painted by a special paint. A tin of paint can be used to polish an area of $8.5 \mathrm{~m}^{2}$.

Find the number of tins required to paint the container.

$$
\begin{aligned}
\text { total surface area } & =2(0.81) \pi+2 \pi(0.9)(10.4) \quad \text { M1 }- \text { total surface area } \\
& =20.34 \pi \\
\text { number of tins required } & =\frac{20.34 \pi}{8.5} \quad \mathrm{M} 1-\checkmark \text { their TSA } \\
& =7.5176 \\
& =8 \quad \text { (rounded up to nearest integer) A1 }
\end{aligned}
$$

(c) A pumping pipe is used to fill the container with oil.

Calculate the minimum time, in minutes, needed to fill the container to its safe volume.

$$
\cos \theta=\frac{0.9-0.15}{0.9}
$$

M1

$$
\theta=33.557^{\circ}
$$

area of major segment $=\frac{1}{2}(0.9)^{2} \sin \left(2 \times 33.557^{\circ}\right)+\frac{360^{\circ}-2 \times 33.557^{\circ}}{360^{\circ}} \times \pi(0.9)^{2} \quad \mathrm{M} 1$

$$
=2.44340
$$

Volume of fuel required $=2.44340 \times 10.4$
M1 - area of segment $\times 10.4$

$$
=25.41136
$$

$$
\begin{aligned}
\text { Maximum rate flow } & =\pi(0.048)^{2}(3.5) \quad \text { B1 } \\
\text { Minimum time taken } & =\frac{25.41136}{\pi(0.048)^{2}(3.5)} \quad \text { M1 }- \text { even the denominator is in } \mathrm{cm} \\
& =1003.0613 \text { seconds } \\
& =16.7 \text { minutes (3sf) A1 }
\end{aligned}
$$

