CANDIDATE

NAME

\square
CLASS \square

INDEX

 NUMBER \square
MATHEMATICS
 4 Express/5 Normal Academic

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number in the spaces provided on the work you hand in.
Write in dark blue or black ink on both sides of the paper.
Do not use staples, paper clips, highlighters, glue ' correction fluid.
Answer all the questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.
The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is $\mathbf{8 0}$.

Compound interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

Curved Surface area of a cone $=\pi r l$
Surface area of a sphere $=4 \pi r^{2}$

$$
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h
$$

Volume of a sphere $=\frac{4}{3} \pi r^{3}$

$$
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
$$

Arc length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

1 Write the following numbers in order of size, starting with the largest.

$$
-\frac{22}{7},-\pi,-3.142,-3.3
$$

Answer: largest smallest[1]

2 Bob's test marks for six of his tests are listed below.
24
a
22
33
b
26

The median mark is 26 .
The mean mark is 27 .

Given that $a<b$, find the values of a and b.

$$
\begin{aligned}
& \text { Answer: } a= \\
& b=
\end{aligned}
$$

$3 \quad n$ is a positive integer.
Show that $(2 n+1)^{2}-(2 n-3)^{2}$ is a multiple of 8 for all integer values of n.
Answer
$4 \quad$ Simplify $\left(\frac{27 x^{9}}{y^{6}}\right)^{-\frac{2}{3}}$.

Answer:

5 One solution of the equation $5 x^{2}-p x+40=0$ is $x=2$.
Find
(a) the value of p,

$$
\begin{equation*}
\text { Answer: (a) } p= \tag{1}
\end{equation*}
$$

(b) the second possible value of x.

$$
\text { Answer: (b) } x=\text {. }
$$

6 When it is 1100 in Singapore, the time in Dubai is 0700 .
A flight from Singapore departs at 1510 and arrives at Dubai at 1825. Given that the distance from Singapore to Dubai is 5840 km , find the average speed of the plane in kilometres per hour.

7 Write down the sets represented by the following shaded regions.
(a)

Answer: (a)
(b)

Answer: (b)

Figure 1: Bar graph showing the number of Coronavirus Cases in United States (Source: NBC NEWS)
(a) State one misleading feature about the presentation of the data in Figure 1.
\qquad
(b)

> No. of new Coronavirus cases confirmed

Figure 2: Bar graph showing the number of new coronavirus cases in Singapore everyday
(Source: Channel News Asia)
After studying the trend in Figure 2, Sam claims that the total number of
Coronavirus cases in Singapore will decrease in April.
Do you agree with Sam? Explain your answer.
\qquad

9 To purchase a washing machine, Jamie had to pay a deposit of 15% of the cash price.
The hire-purchase price of the washing machine is $\$ 2106$ which comprises of the deposit plus 12 equal monthly payments of $\$ 153$.

Find the cash price of the washing machine.

10

In the diagram, A, B and C are points on a circle.
$A B=9 \mathrm{~cm}, A C=7.4 \mathrm{~cm}$ and angle $A B C=55.3^{\circ}$.

Explain why $A B$ is not the diameter of the circle.

Answer: \qquad
\qquad
\qquad
\qquad

11 In the diagram, A, B, C, D and E are points on a circle. $A C$ is a diameter of the circle and $A E$ is parallel to $B D$. F is the point of intersection of $A C$ and $B D$.

Given that angle $A B D=58^{\circ}$ and angle $A C B=30^{\circ}$, find
(a) angle $D B C$,
\qquad
\circ
(b) angle $A E D$,
\qquad
(c) angle $A D E$.

12 (a) 5 men take 9 days to build a house. How many days would 3 men take to build the house?

Answer: (a) days
(b) The volume of water, $V \mathrm{~m}^{3}$, flowing through a cylindrical pipe is directly proportional to the square of its cross-sectional radius, $R \mathrm{~m}$. If the radius of the pipe is increased by 150%, find the percentage increase of the volume.

13 The test results of 40 students from Class A and 40 students from Class B were recorded. The results are shown in the stem-and-leaf diagram.

				Class A								Class B									
				9	8	8	7	5		3	0	3	4	4							
8	8	7	7	6	5	4	4)	1	3	3	5	6	8	8	8	8	9	
		7	7	6	6	5	3			1	2	2	2	4	4	5	6	6	7	8	8
	9	9	7	4	4	3	1	0		0	3	0	0	1	1	2	2	3	5	5	
			9	9	8	7	7	6		5	4		2	2	4	4	5	9			

Key $($ Class $A)$	Key $($ Class $B)$
$1 \mid 2$ means 21	$1 \mid 3$ means 13

(a) Write down the median result of Class B.

Answer: (a)
(b) Make one comment comparing the test results of Class A and Class B.

Answer: (b)
\qquad
\qquad
\qquad
\qquad

14 (a) Express 1176 as the product of its prime factors.

> Answer: (a)
(b) Two integers, written as product of their prime factors, are

$$
\begin{aligned}
& 2^{p} \times 3 \times 7^{q} \text { and } \\
& 2^{2} \times 3^{r} \times 7^{2}
\end{aligned}
$$

The highest common factor of these two integers is 12 and the lowest common multiple of these two integers is 1176 . Find the values of p, q and r.

Answer: (b) $p=$ \qquad

$$
q=
$$

\qquad

$$
r=
$$

15 Factorise completely
(a) $27 a^{2} b-48 b^{3}$,

Answer: (a)
(b) $28 d y-4 y-7 d+1$.

16 Rearrange the formula $t=2 \pi \sqrt{\frac{h+g}{h}}$ to make h the subject.

Answer:

17 The points $(-1,4),(2,-5)$ and $(0,-3)$ lie on the curve given by the equation $y=a x^{2}+b x+c$. Use an algebraic method to find the values of a, b and c.

Answer: $a=$

$$
b=
$$

$$
c=
$$

18 The diagram shows an incomplete n-sided regular polygon $A B C D E$, a square and a pentagon. The polygons fit together at C. Find the value of n.

Answer: $n=$

19 The ratio of the surface areas of two geometrically similar pyramids is $64: 121$.
(a) Find the ratio of the volume of the smaller pyramid to the volume of the larger pyramid.

Answer: (a) \qquad :
(b) Given that the volume of the smaller pyramid is $921.6 \mathrm{~cm}^{3}$, find the volume of the larger pyramid.
$20 \quad A C D E$ is a trapezium. B is a point on $A C$ such that $B C=D C=8 \mathrm{~cm}$, angle $B C D=68^{\circ}$ and $A E=9.05 \mathrm{~cm}$.

(a) Show that the height of trapezium $A C D E$ is 7.417 cm , correct to 3 decimal places. Answer
(b) Explain why $A E$ is not parallel to $B D$.

Answer: (b) \qquad
\qquad
\qquad
(c) Given that the area of $A C D E$ is $111 \mathrm{~cm}^{2}$, find the area of $A B D E$.
$21 A B C D$ is a rectangle. Points P, Q, R and S lie on $A B, B C, C D$ and $D A$ respectively such that $A P=C R$ and $Q C=S A$.

(a) Giving reasons clearly,
(i) show that $P B=R D$,

Answer (a)(i)
(ii) show that triangle $P B Q$ is congruent to triangle $R D S$.

Answer (a)(ii)
(b) Given that angle $B P Q=20^{\circ}$ and angle $A P R=105^{\circ}$, find angle $P R S$.
A, B and C are three points on a horizontal field. A is 220 m due west of B. X is a point on $B C$ such that $B X=70 \mathrm{~m}, C X=100 \mathrm{~m}$ and $A X=175 \mathrm{~m}$.

(a) Calculate the bearing of C from B.

Answer: (a)
. [3]
(b) Calculate the shortest distance from X to $A B$.

23 The diagram shows a major segment of circle $A B C$ with centre O.

(a) Given that $A B=24 \mathrm{~cm}$ and angle $O A C$ is $\frac{2 \pi}{9}$ radian, show that the length of the $\operatorname{arc} B C=16.8 \mathrm{~cm}$, correct to 3 significant figures.

Answer
(b) Hence, find the perimeter of the major segment $A B C$.

24 The graph of $y=x^{2}-3 x-4$ is drawn on the grid.

(a) Write down the equation of the line of symmetry of the curve.

Answer: (a)
(b) Use the graph to solve the equation $x^{2}-3 x-1=0$.
(c) The point P has coordinates $(-1,-1)$.

A tangent to the curve can be drawn so that the tangent passes through P.
(i) Draw this tangent on the grid above.
(ii) Find the equation of this tangent.

End of Paper

CANDIDATE

NAME \square
\square INDEX NUMBER \square

MATHEMATICS

4 Express / 5 Normal Academic
Paper 2
31 August 2020
Candidates answer on the Question Paper. 2 hours 30 minutes

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in.
Write in dark blue or black pen.
You may use a HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.

Answer all questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.
The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 100 .

Mathematical Formulae

Compound interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration
Curved surface area of a cone $=\pi r l$

$$
\text { Surface area of a sphere }=4 \pi r^{2}
$$

$$
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h
$$

Volume of a sphere $=\frac{4}{3} \pi r^{3}$

$$
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
$$

Arc length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

Answer all the questions.
(a) Write as a single fraction in its simplest form
(i) $\frac{27 p}{q^{3}} \div\left(\frac{-6 p}{q}\right)^{3}$,

Answer

(ii) $\frac{1}{1-3 y}-\frac{2}{y+2}$.

Answer .
(b) Simplify $\frac{9-25 x^{2}}{5 x^{2}-12 x-9}$.
(c) Solve the equation $\frac{5}{x+1}=2 x-7$.

$$
\begin{equation*}
\text { Answer } x=\ldots \ldots \ldots \ldots \ldots \text { or } \tag{3}
\end{equation*}
$$

(a) In 2019, Bob earned a total of $\$ 45600$.

The percentage increase in his income from 2018 to 2019 is 3.5%.
Calculate his monthly income in 2018, to the nearest dollar.

> Answer \$
(b) A bank offers a savings account with a compound interest rate of 2.2% per annum. Bob invests $\$ 7000$ in his account. Calculate the total amount of interest he earns after 5 years. Give your answer correct to the nearest cent.
(c) The exchange rate between Singapore dollars and Macau Pataca (MOP\$) is $\$ 1=$ MOP $\$ 5.55$. The exchange rate between Hong Kong dollars (HK\$) and Singapore dollars is HK $\$ 1=\$ 0.19$.

Bob is planning a trip to Hong Kong and Macau. He finds these hotel prices on a website.

Hong Kong Hotel	HK\$825
Macau Hotel	MOP\$825

(i) By comparing the exchange rates, explain which hotel costs lower per night. Show your workings clearly.

Answer

The \qquad hotel costs lower per night.
(ii) Bob books 4 nights in the Hong Kong hotel and 2 nights in the Macau hotel.

He pays using his credit card. The credit card company converts the prices to Singapore dollars and charges a fee of $k \%$ for the currency conversion.

Given that the total amount Bob pays for the two hotels, including the credit card fee, is $\$ 940$, find the value of k.
$3 \quad P Q R$ is a triangle. The coordinates of P and Q are $(0,5)$ and $(-2,1)$ respectively. The equation of the line $P R$ is $5 y-2 x=25$.
(a) Given the coordinates of R are $(k, k+2)$, show that $k=5$.

Answer
(b) Find the equation of $P Q$.

Answer
 [1]

(c) Find the length of diagonal $Q R$.

Answer

units
(d) Calculate angle $P Q R$.
(e) Calculate the area of triangle $P Q R$.

4 The first four terms in a sequence of numbers are given below.

$$
\begin{aligned}
& T_{1}=2^{2}+5=9 \\
& T_{2}=4^{2}+3=19 \\
& T_{3}=6^{2}+1=37 \\
& T_{4}=8^{2}-1=63
\end{aligned}
$$

(a) Find T_{5}.

Answer
(b) Explain why the value of T_{n} must be odd for all values of n.
\qquad
(c) Show that the nth term of the sequence, T_{n}, is given by $4 n^{2}-2 n+7$. Answer
(d) T_{k} and T_{k+1} are consecutive terms in the sequence. Find and simplify an expression, in terms of k, for $T_{k+1}-T_{k}$.

Answer
(e) Explain why two consecutive terms of the sequence cannot have a difference of 6 .

5 An enrichment centre offers music and dance lessons at basic (B) and advanced (A) levels. Each student has a 8-week block of lessons, with one lesson per week.

The matrix \mathbf{L} shows the number of students attending the lessons each week.

$$
\mathbf{L}=\left(\begin{array}{cc}
\text { B } & \text { A } \\
68 & 76 \\
43 & 38
\end{array}\right) \text { Masic } \begin{aligned}
& \text { Dance }
\end{aligned}
$$

(a) Evaluate the matrix $\mathbf{P}=8 \mathbf{L}$.
\qquad
Answer
(b) The fee for each basic lesson is $\$ 45$ and the fee for each advanced lesson is $\$ 65$. Represent these fees in a 2×1 column matrix \mathbf{F}.

Answer .. [1]
(c) Evaluate the matrix $\mathbf{Q}=\mathbf{P F}$.

Answer
(d) State what the elements of \mathbf{Q} represent.
\qquad
(e) The enrichment centre increased the fees by 10%. As a result, the number of students attending basic level and advanced level lessons reduced by 12.5% and 6.25% respectively.

Using appropriate matrix multiplication, determine if the enrichment centre has made a profit or a loss in a 8-week block of lessons after the increase in fees.
Answer

The enrichment centre made a in a 8 -week block of lessons after the increase in fees.

6 Yan and Zac run a small business that sells hand-painted ornaments.
(a) Yan takes x minutes to paint one ornament.

Write an expression, in terms of x, for the number of ornaments she paints in one hour.

Answer
(b) Zac takes 6 minutes less than Yan to paint one ornament.

Write an expression, in terms of x, for the number of ornaments he paints in one hour.
(c) One day, Yan and Zac each work for 6 hours.

Altogether, they paint a total of 27 ornaments.
Write down an equation, in terms of x, to represent this information, and show that it reduces to

$$
3 x^{2}-98 x+240=0 .
$$

Answer
(d) Solve the equation $3 x^{2}-98 x+240=0$.

Answer $x=\ldots \ldots \ldots \ldots$. or
(e) (i) Explain why one of the solutions in part (d) must be rejected.
\qquad
\qquad
(ii) Hence, find the number of ornaments Zac paints in one hour.

The diagram shows a circle that passes through the points A, B and C, with its centre at O. $A C$ is the diameter of the circle. $C D$ is a tangent that meets $A B$ produced at D.
(a) Show that triangles $A C D$ and $C B D$ are similar. Give a reason for each statement you make.
\qquad
\qquad
\qquad
\qquad
(b) The ratio of the area of triangle $C B D$: area of triangle $A C D$ is $1: 4$. Show that angle $C A D$ is 30°.

Answer
(c) Given that the radius of the circle is 5 cm , calculate the shaded area.

In the diagram, $A B C D E F G H$ is a cuboid with dimensions 8 cm by 6 cm by 15 cm . V is the centre of the rectangular base.
(a) Show that $E V=15.8 \mathrm{~cm}$, correct to 3 significant figures. Answer
(b) Calculate angle $A C E$.
(c) A pyramid $E D A C$ is cut out from the cuboid.

(i) Find the total surface area of the pyramid.

Answer

\qquad
(ii) Another pyramid is to be made with volume half of pyramid EDAC.

Given that the two pyramids are geometrically similar, find the vertical height of the smaller pyramid.

9 (a) 50 students from School P took part in a Mathematics competition.
The cumulative frequency curve below shows the distribution of the marks they scored.

(i) Complete the grouped frequency table of the marks scored by the students.

Marks (x)	$40 \leq x<50$	$50 \leq x<60$	$60 \leq x<70$	$70 \leq x<80$	$80 \leq x<90$
Frequency	4	15			

(ii) Calculate an estimate of the mean mark.

Answer
(iii) Calculate an estimate of the standard deviation.
(iv) The minimum mark for a student to be awarded a certificate of merit is 65 . Find the number of students who were awarded a certificate of merit.

Answer
(v) Another group of 50 students from school Q took part in the same competition and had the same interquartile range of marks as School P. However, half of the students from School Q scored at least 68 marks.

Describe how the cumulative frequency curve for School Q may differ from the curve for School P.
\qquad
\qquad
(b) This table shows information about a group of students.

	Wears spectacles	Does not wear spectacles
Lower Secondary	3	9
Upper Secondary	7	5

(i) One of the students is selected at random.

Find, as a fraction in its lowest terms, the probability that the student
(a) is in upper secondary,

> Answer
(b) does not wear spectacles.

Answer

(ii) Two of the students are selected at random.

Find, as a fraction in its lowest terms, the probability that
(a) both students are in lower secondary,

Answer
(b) at least one of them wears spectacles.

10 Kate is designing open cylindrical gift boxes with base radius $x \mathrm{~cm}$. She uses rectangular pieces of cardboard of length 20 cm and a variable width.

She cuts the net of the gift boxes out from each piece of cardboard. By changing the base radius of the cylinders, she can change the volume of the gift boxes.
(a) Work out the volume of a gift box of base radius 2 cm .

Answer
(b) Show, in terms of x, the volume of the gift boxes she makes is given by $2 \pi x^{2}(10-x)$. Answer
(c) Explain why $0<x<10$.
\qquad
\qquad
(d) Kate paints the external curved surface area of the gift boxes with acrylic paint. With one bottle of acrylic paint, Kate can paint up to $0.6 \mathrm{~m}^{2}$ of cardboard. At the same time, she wants the volume of the each gift box to be at least $600 \mathrm{~cm}^{3}$.

By drawing a suitable graph, work out the maximum number of gift boxes she can paint with one bottle of acrylic paint.

Answer for Question 10(d)

End of Paper

2020 4E5N Prelims Mathematics Paper 1 Marking Scheme
Setter: Miss Ang Yue Hua

Qns	Worked solution	Marking Scheme
1	$\begin{aligned} & -\pi=-3.141592 \\ & -\frac{22}{7}=-3.142857 \\ & -3 . \dot{3}=-3.33333 \ldots \end{aligned}$$-\pi$, -3.142, $-\frac{22}{7}$,$-3 . \dot{3}$ largest	B1
2	Arrange the 4 known numbers first. 22 24 Since the median mark is 26 , the average of the $3^{\text {rd }}$ and $4^{\text {th }}$ number is 26 . So one of the unknown numbers must be 26 . Since the mean mark is 27 , the total of the 6 numbers is $27 \times 6=162$. Hence, the last number is $162-22-24-26-26-33=31$ Since $a<b, a=26$ and $b=31$	B1 - for finding value of a. B1 - for finding value of b.
3	Method 1: Using special product $\begin{aligned} & (2 n+1)^{2}-(2 n-3)^{2} \\ & =[(2 n+1)+(2 n-3)][(2 n+1)-(2 n-3)] \\ & =[4 n-2][4] \\ & =16 n-8 \\ & =8(2 n-1) \end{aligned}$ Method 2: Directly expanding $\begin{aligned} & (2 n+1)^{2}-(2 n-3)^{2} \\ & =\left(4 n^{2}+4 n+1\right)-\left(4 n^{2}-12 n+9\right) \\ & =4 n^{2}+4 n+1-4 n^{2}+12 n-9 \\ & =16 n-8 \\ & =8(2 n-1) \end{aligned}$ Hence, for all integer values of $n,(2 n+1)^{2}-(2 n-3)^{2}$ is a multiple of 8	M1 A1 M1 A1

4	$\begin{aligned} & \left(\frac{27 x^{9}}{y^{6}}\right)^{-\frac{2}{3}} \\ & =\left(\frac{y^{6}}{27 x^{9}}\right)^{\frac{2}{3}} \\ & =\frac{\left(y^{6}\right)^{\frac{2}{3}}}{27^{\frac{2}{3}}\left(x^{9}\right)^{\frac{2}{3}}} \\ & =\frac{y^{4}}{9 x^{6}} \end{aligned}$	M1 A1
5(a)	Substitute $x=2$ into $5 x^{2}-p x+40=0$ $\begin{aligned} & 5(2)^{2}-p(2)+40=0 \\ & 2 p=60 \\ & p=30 \end{aligned}$	B1
5(b)	$\begin{aligned} & 5 x^{2}-30 x+40=0 \\ & x^{2}-6 x+8=0 \\ & (x-2)(x-4)=0 \\ & x-2=0 \quad \text { or } \quad x-4=0 \\ & x=2 \quad \text { or } \quad x=4 \end{aligned}$ The second possible value of x is 4 .	B1
6	Singapore is 4 hours ahead of Dubai. When the flight arrives in Dubai, the time in Singapore is 2225. $1510 \rightarrow 2225$ This means the flight time is 7 hr 15 min . $\begin{aligned} \text { Average speed } & =\frac{5840 \mathrm{~km}}{7.25 \mathrm{~h}} \\ & =806 \mathrm{~km} / \mathrm{h} \text { (to } 3 \text { s.f.) } \end{aligned}$	M1 - for finding flight time A1
7(a)	$A^{\prime} \cap B$	B1
7(b)	$(A \cup B)^{\prime} \quad$ or $\quad A^{\prime} \cap B^{\prime}$	B1
8(a)	The horizontal axis showing the dates have unequal intervals. For example, it is 1 month apart between the first bar and the second bar. But it is 7 days apart between the second bar and the third bar. OR The last bar states "Today" and it is unclear which day that is. OR any other reasonable answers.	B1

\begin{tabular}{|c|c|c|}
\hline 8(b) \& \begin{tabular}{l}
No, I do not agree with Sam. The data presents the number of new coronavirus cases confirmed on a daily basis. It does not report the total number of coronavirus cases in Singapore. \\
OR \\
As we do not have the data for the whole of March, there is not enough information to predict the total number of cases in April. \\
OR any other reasonable answers.
\end{tabular} \& B1 \\
\hline 9 \& \begin{tabular}{l}
\[
\begin{aligned}
\& \text { Deposit }=2106-(12 \times 153)=\$ 270 \\
\& 15 \% \rightarrow \$ 270 \\
\& 1 \% \rightarrow \$ 18 \\
\& 100 \% \rightarrow \$ 1800
\end{aligned}
\] \\
The cash price of the washing machine is \(\$ 1800\).
\end{tabular} \& \begin{tabular}{l}
M1 \\
M1 \\
A1
\end{tabular} \\
\hline 10 \& \begin{tabular}{l}
By Sine rule,
\[
\begin{aligned}
\frac{\sin \angle A C B}{9} \& =\frac{\sin 55.3^{\circ}}{7.4} \\
\sin \angle A C B \& =\frac{9 \sin 55.3^{\circ}}{7.4} \\
\angle A C B \& =89.2^{\circ}
\end{aligned}
\] \\
Since \(\angle A C B=89.2^{\circ} \neq 90^{\circ}\), angle \(A C B\) is not an angle in a semicircle. \(A B\) is not the diameter of the circle.
\end{tabular} \& M1

M1
A1

\hline 11(a) \& $\angle D B C=90^{\circ}-58^{\circ}=32^{\circ}(\angle s$ in a semicircle $)$ \& B1

\hline 11(b) \& $\angle A E D=180^{\circ}-58^{\circ}=122^{\circ}$ ($\angle s$ in opp. segment) \& B1

\hline 11(c) \& $$
\begin{aligned}
& \angle A D F=30^{\circ}(\angle s \text { in the same segment }) \\
& \left.\angle A D E=180^{\circ}-30^{\circ}-122^{\circ}=28^{\circ} \text { (int } \angle s, A E / / D F\right)
\end{aligned}
$$ \& B1

\hline 12(a) \& $$
\begin{aligned}
& 5 \text { men } \rightarrow 9 \text { days } \\
& 1 \text { man } \rightarrow 45 \text { days } \\
& 3 \text { men } \rightarrow 15 \text { days }
\end{aligned}
$$ \& B1

\hline 12(b) \& | $V=k R^{2}$, where k is a constant Let $V=V_{1}$ when $R=R_{1}$, then $k=\frac{V_{1}}{R_{1}^{2}}$ |
| :--- |
| New $R=250 \%$ of R_{1} $\begin{aligned} & =2.5 R_{1} \\ & V_{2}=\frac{V_{1}}{R_{1}^{2}}\left(2.5 R_{1}\right)^{2} \\ & V_{2}=6.25 V_{1} \end{aligned}$ |
| Percentage increase $=\frac{V_{2}-V_{1}}{V_{1}} \times 100 \%$ | \& M1

\hline
\end{tabular}

	$\begin{aligned} & =\frac{6.25 V_{1}-V_{1}}{V_{1}} \times 100 \% \\ & =525 \% \end{aligned}$	A1
13(a)	Median is the average value of $20^{\text {th }}$ and $21^{\text {st }}$ student. $\text { Median }=\frac{26+27}{2}=26.5$	B1
13(b)	Any of the comments 1. The mean of Class A is 25.6 which is lower than the mean of class $B, 29.275$. On average, Class B's performance in the test is better than Class A's. 2. The median of Class A is 25.5 which is lower than the median of class B. On average, Class B 's performance in the test is better than Class A's.	B1 - for comparing mean/median B1 - for making the correct conclusion on class' performance
14(a)	$1176=2^{3} \times 3 \times 7^{2}$	B1
14(b)	$\begin{aligned} & 2^{p} \times 3 \times 7^{q} \\ & 2^{2} \times 3^{r} \times 7^{2} \\ & 12=2^{2} \times 3 \\ & 1176=2^{3} \times 3 \times 7^{2} \end{aligned}$ By comparison, $p=3, r=1 \text { and } q=0$	B1 for each correct value.
15(a)	$\begin{aligned} & 27 a^{2} b-48 b^{3} \\ & =3 b\left(9 a^{2}-16 b^{2}\right) \\ & =3 b(3 a+4 b)(3 a-4 b) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
15(b)	$\begin{aligned} & 28 d y-4 y-7 d+1 \\ & =4 y(7 d-1)-(7 d-1) \\ & =(7 d-1)(4 y-1) \end{aligned}$	M1 A1

16	$\begin{aligned} & t=2 \pi \sqrt{\frac{h+g}{h}} \\ & \sqrt{\frac{h+g}{h}}=\frac{t}{2 \pi} \\ & \frac{h+g}{h}=\frac{t^{2}}{4 \pi^{2}} \\ & 4 \pi^{2}(h+g)=h t^{2} \\ & 4 \pi^{2} h+4 \pi^{2} g=h t^{2} \\ & 4 \pi^{2} h-h t^{2}=-4 \pi^{2} g \\ & h\left(4 \pi^{2}-t^{2}\right)=-4 \pi^{2} g \\ & h=\frac{-4 \pi^{2} g}{4 \pi^{2}-t^{2}} \end{aligned}$	M1 - square both sides M1 - simplified fraction M1 A1
17	$c=-3$ So, $y=a x^{2}+b x-3$ Using ($-1,4$), we have $\begin{align*} & 4=a(-1)^{2}+b(-1)-3 \\ & a=7+b \quad------- \tag{1} \end{align*}$ Using ($2,-5$), we have $\begin{align*} & -5=a(2)^{2}+b(2)-3 \\ & 4 a+2 b=-2 \\ & 2 a+b=-1 \tag{2} \end{align*}$ Substitute (1) into (2), $\begin{aligned} & 2(7+b)+b=-1 \\ & 14+3 b=-1 \\ & 3 b=-15 \\ & b=-5 \\ & a=7+(-5)=2 \\ & \therefore a=2, b=-5, c=-3 \end{aligned}$	M1 - Substituting points to find both equations (1) and (2) M1 - any method to solve simultaneous equations A1
18	Method 1: Using ext. L One int. \angle of pentagon $=\frac{180(5-2)}{5}=108^{\circ}$ One int. \angle of polygon $=360^{\circ}-90^{\circ}-108^{\circ}=162^{\circ}$ One ext. \angle of polygon $=180^{\circ}-162^{\circ}=18^{\circ}$ $\therefore n=\frac{360}{18}=20$ Method 2: Using int. \angle	M1 M1 M1 A1

	$\begin{aligned} & \text { One int. } \angle \text { of pentagon }=\frac{180(5-2)}{5}=108^{\circ} \\ & \text { One int. } \angle \text { of polygon }=360^{\circ}-90^{\circ}-108^{\circ}=162^{\circ} \\ & 162 n=180(n-2) \\ & 162 n=180 n-360 \\ & 18 n=360 \\ & n=20 \end{aligned}$	M1 M1 M1 A1
19(a)	$\begin{aligned} & \frac{A_{1}}{A_{2}}=\frac{64}{121} \\ & \frac{l_{1}}{l_{2}}=\sqrt{\frac{64}{121}}=\frac{8}{11} \\ & \frac{V_{1}}{V_{2}}=\left(\frac{8}{11}\right)^{3}=\frac{512}{1331} \end{aligned}$ Therefore, the ratio of their volumes is $512: 1331$	M1 A1
19(b)	$\begin{aligned} & \frac{912.6}{V_{2}}=\frac{512}{1331} \\ & V_{2}=2372.4 \\ & V_{2}=2370 \mathrm{~cm}^{3} \text { (to } 3 \text { s.f.) } \end{aligned}$	M1 A1
20(a)	$\begin{aligned} & \sin 68^{\circ}=\frac{h}{8} \\ & h=8 \sin 68^{\circ} \\ & h=7.417 \mathrm{~cm}(\mathrm{SHOWN}) \end{aligned}$	$\begin{array}{\|l} \text { M1 } \\ \text { A1 } \end{array}$
20(b)	$\begin{aligned} & \sin \angle E A B=\frac{7.417}{9.05} \\ & \angle E A B=55.041^{\circ} \\ & \angle D B C=\frac{180^{\circ}-68^{\circ}}{2}=56^{\circ} \\ & \angle A B D=180^{\circ}-56^{\circ}=124^{\circ} \\ & \angle E A B+\angle A B D=55.041^{\circ}+124^{\circ}=179.041^{\circ} \end{aligned}$ Since $\angle E A B+\angle A B D \neq 180^{\circ}$, the property of interior angles not fulfilled/satisfied. $A E$ is not parallel to $B D$.	M1 A1
20(c)	$\begin{aligned} & \text { Area of triangle } B C D=\frac{1}{2}(8)(8)\left(\sin 68^{\circ}\right) \\ &=29.66988 \mathrm{~cm}^{2} \\ &\text { Area of } \left.A B D E=111-29.66988=81.3 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f. }\right) \end{aligned}$	$\begin{array}{\|l} \mathrm{M} 1 \\ \mathrm{~A} 1 \end{array}$
$\begin{array}{\|l\|} \hline 21(a) \\ \text { (i) } \end{array}$	$\begin{aligned} & A B=C D \text { (opp sides of rectangle) } \\ & A P=C R \text { (given) } \\ & P B=A B-A P \end{aligned}$	B1 - statements shown

	$\begin{aligned} & =C D-C R \\ & =R D \end{aligned}$	
$\begin{aligned} & \text { 21(a) } \\ & \text { (ii) } \end{aligned}$	$P B=R D$ (from (ai)) $B Q=D S$ (opp sides of rectangle and $A S=C Q$ (given)) $\angle P B Q=\angle R D S=90^{\circ}$ (angles in rectangle) $\therefore \triangle P B Q=\triangle R D S(S A S)$	B1 - for correct statements \& SAS stated B1 - for correct reasons
21(b)	$\begin{aligned} & \angle D R S=\angle B P Q=20^{\circ} \\ & \angle P R D=180^{\circ}-105^{\circ}=75^{\circ}(\text { int } \angle \mathrm{s}) \\ & \angle P R S=75^{\circ}-20^{\circ}=55^{\circ} \end{aligned}$	B1
22(a)	$\begin{aligned} & \cos B=\frac{220^{2}+70^{2}-175^{2}}{2(220)(170)} \\ & \begin{aligned} B=42.591^{\circ} \end{aligned} \\ & \begin{aligned} \text { Bearing of C from } B & =360^{\circ}-42.591^{\circ}-90^{\circ} \\ & =227.409^{\circ} \\ & \left.=227.4^{\circ} \text { (to } 1 \text { d.p. }\right) \end{aligned} \end{aligned}$	M1 M1 A1
22(b)	$\begin{aligned} & \sin 42.591^{\circ}=\frac{d}{70} \\ & d=70 \sin 42.591^{\circ} \\ & =47.4 \mathrm{~m} \text { (to 3.s.f.) } \end{aligned}$	M1 $\mathrm{A} 1$
23(a)	$\angle B O C=\frac{2 \pi}{9}+\frac{2 \pi}{9}=\frac{4 \pi}{9} \mathrm{rad}$ (sum of ext. \angle of triangle) Arc length $B C=12\left(\frac{4 \pi}{9}\right)$ $\begin{aligned} & =\frac{16 \pi}{3} \\ & =16.755 \\ & =16.8 \mathrm{~cm} \text { (to 3.s.f.) [Shown] } \end{aligned}$	M1 M1 A1
23(b)	Arc length $A B=12 \pi$ $\begin{aligned} & \cos \frac{2 \pi}{9}=\frac{1 / 2 A C}{12} \text { (angle from centre bisects chord) } \\ & A C=24 \cos \frac{2 \pi}{9} \\ & A C=18.385 \end{aligned}$ Perimeter of major segment $A B C$ $\begin{aligned} & =\text { Arc length } B C+\text { Arc length } A B+A C \\ & =\frac{16 \pi}{3}+12 \pi+18.385 \\ & =72.839 \mathrm{~cm} \\ & =72.8 \mathrm{~cm} \text { (to } 3 \text { s.f.) } \end{aligned}$	M1 M1 A1 (Accept 72.9 cm for students who

		used 16.8 instead of $\frac{16 \pi}{3}$)
24(a)	Equation of the line of symmetry is $x=1.5$	B1
24(b)	$\begin{aligned} & x^{2}-3 x-1=0 \\ & x^{2}-3 x-1-3=-3 \\ & x^{2}-3 x-4=-3 \end{aligned}$ Draw $y=-3$ When $y=-3, x=-0.3$ or $x=3.3$.	M1

1(a)(i)	$\begin{aligned} & \frac{27 p}{q^{3}} \div\left(\frac{-6 p}{q}\right)^{3} \\ & =\frac{27 p}{q^{3}} \times\left(\frac{q^{3}}{-216 p^{3}}\right) \\ & =-\frac{1}{8 p^{2}} \end{aligned}$	M1 A1
1(a)(ii)	$\begin{aligned} & \frac{1}{1-3 y}-\frac{2}{y+2} \\ & =\frac{y+2-2(1-3 y)}{(1-3 y)(y+2)} \\ & =\frac{7 y}{(1-3 y)(y+2)} \end{aligned}$	M1 $\mathbf{A} 1$
1(b)	$\begin{aligned} & \frac{9-25 x^{2}}{5 x^{2}-12 x-9} \\ & =\frac{(3+5 x)(3-5 x)}{(x-3)(5 x+3)} \\ & =\frac{3-5 x}{x-3} \end{aligned}$	M2 A1
1(c)	$\begin{aligned} & \frac{5}{x+1}=2 x-7 \\ & 5=(2 x-7)(x+1) \\ & 2 x^{2}-5 x-12=0 \\ & (x-4)(2 x+3)=0 \\ & x=4 \quad \text { or } \quad x=-1.5 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$
2(a)	Monthly income in 2018 $\begin{aligned} & =\left(\frac{45600}{103.5} \times 100\right) \div 12 \\ & =3671.497585 \\ & =\$ 3671 \text { (nearest dollar) } \end{aligned}$	M1 - total income in 2018 A1
2(b)	$\begin{aligned} & \text { Amount of interest } \\ & =7000\left(1+\frac{2.2}{100}\right)^{5}-7000 \\ & =\$ 804.63 \end{aligned}$	M1 - total amount in 5 yrs A1
2(c)(i)	$\begin{aligned} & \mathrm{HK} \$ 1=\$ 0.19 \\ & \$ 1=\mathrm{HK} \$ \frac{1}{0.19} \\ &= \text { HK } \$ 5.2632 \end{aligned}$ Since $\$ 1$ can only get HK $\$ 5.26$, by comparison with $\$ 1=$ MOP $\$ 5.55$, HK $\$$ is stronger than MOP\$. Thus, Macau hotel costs lower per night.	M1 (or compare MOP\$1 = \$0.18) A1

2(c)(ii)	Total cost without card fee $\begin{aligned} = & (4 \times 825 \times 0.19)+\left(2 \times 825 \times \frac{1}{5.55}\right) \\ = & \$ 924.297 \\ k & =\frac{940-924.297}{924.297} \times 100 \\ & =1.70(3 \text { s.f. }) \end{aligned}$	M2 - Total cost in SGD M1 A1
3(a)	$\operatorname{Sub}(k, k+2)$, $\begin{aligned} 5(k+2)-2 k & =25 \\ 3 k & =15 \\ k & =5 \end{aligned}$	B1
3(b)	Gradient of $P Q=\frac{5-1}{0-(-2)}$ $=2$ Since line passes through $(0,5), y$-intercept is 5 . Equation of $P Q: y=2 x+5$	B1
3(c)	$\begin{aligned} Q R & =\sqrt{(5+2)^{2}+(7-1)^{2}} \\ & =\sqrt{85} \\ & =9.22 \text { units (3 s.f.) } \end{aligned}$	M1 A1
3(d)	$\begin{aligned} \angle P Q R & =\tan ^{-1}\left(\frac{4}{2}\right)-\tan ^{-1}\left(\frac{6}{7}\right) \\ & =22.834^{\circ} \\ & =22.8^{\circ}(1 \text { d.p. }) \end{aligned}$	M2 (Alternative: find $P Q$ and $P R$, then apply Cosine Rule) A1
3(e)	$\begin{aligned} P Q & =\sqrt{4^{2}+2^{2}} \\ & =\sqrt{20} \end{aligned}$ Area of $\triangle P Q R=\frac{1}{2}(\sqrt{20})(\sqrt{85}) \sin 22.834$ $=8 \text { units }^{2}$ Alternative: Use "Shoe-lace" method from Add Math	M1 M1 A1
4(a)	$T_{5}=10^{2}-3=97$	B1 - Award once 97 is seen.
4(b)	The square number of an even number is always even. Hence, adding/subtracting an odd number with/from an even number will always result in an odd number.	B1 - Award when the idea of difference between odd and even number is seen.
4(c)	$\begin{aligned} T_{n} & =(2 n)^{2}+[5-2(n-1)] \\ & =4 n^{2}+5-2 n+2 \\ & =4 n^{2}-2 n+7 \text { (shown) } \end{aligned}$	M2 A1
4(d)	$\begin{aligned} T_{k+1}-T_{k} & =\left[4(k+1)^{2}-2(k+1)+7\right]-\left(4 k^{2}-2 k+7\right) \\ & =4\left(k^{2}+2 k+1\right)-2 k-2+7-4 k^{2}+2 k-7 \\ & =8 k+2 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \hline \end{array}$
4(e)	Since $k \geq 1$, then $8 k+2 \geq 10$ Hence the difference cannot be 6 .	B1

5(a)	$\begin{aligned} P & =8\left(\begin{array}{ll} 68 & 76 \\ 43 & 38 \end{array}\right) \\ & =\left(\begin{array}{ll} 544 & 608 \\ 344 & 304 \end{array}\right) \end{aligned}$	B1
5(b)	$F=\binom{45}{65}$	B1
5(c)	$\begin{aligned} & Q=\left(\begin{array}{ll} 544 & 608 \\ 344 & 304 \end{array}\right)\binom{45}{65} \\ & =\binom{544(45)+608(65)}{344(45)+304(65)} \\ & =\binom{64000}{35240} \end{aligned}$	M1 A1 (or B2)
5(d)	The elements of Q represent the total amount the centre earns for music and dances lessons respectively over 8 weeks.	B1
5(e)	$\begin{aligned} & \left(\begin{array}{ll} 0.875 \times 544 & 0.9375 \times 608 \\ 0.875 \times 344 & 0.9375 \times 304 \end{array}\right)\binom{1.1 \times 45}{1.1 \times 65} \\ & =\binom{476(49.5)+570(71.5)}{301(49.5)+285(71.5)} \\ & =\binom{64317}{35277} \end{aligned}$ By comparing the elements in this matrix with that in matrix Q , the enrichment centre made a profit.	M1 M1 A1
6(a)	$\frac{60}{x}$	B1
6(b)	$\frac{60}{x-6}$	B1
6(c)	$\begin{aligned} 6\left(\frac{60}{x}+\frac{60}{x-6}\right) & =27 \\ 6[60(x-6)+60 x] & =27 x(x-6) \\ 720 x-2160 & =27 x^{2}-162 x \\ 27 x^{2}-882 x+2160 & =0 \\ 3 x^{2}-98 x+240 & =0 \text { (shown) } \end{aligned}$	M1 - forming correct relationship M1 - multiplying through with denominator A1
6(d)	$\begin{aligned} x & =\frac{-(-98) \pm \sqrt{(-98)^{2}-4(3)(240)}}{2(3)} \\ & =\frac{98 \pm \sqrt{6724}}{6} \\ & =30 \text { or } 2 \frac{2}{3} \end{aligned}$	M1 (or factorisation method) A2 ($2 \frac{2}{3}$ must be exact)
6(e)(i)	Since Zac takes $(x-6)$ minutes to paint one ornament, $x>6$. Thus, $x \neq 2 \frac{2}{3}$.	B1
6(e)(ii)	Number of ornaments $=\frac{60}{30-6}=2.5(\text { exact })$	M1A1

7(a)	$\begin{aligned} & \angle A D C=\angle C D B \text { (common angle) } \\ & \angle A C D=90^{\circ} \text { (Radius } \perp \text { to tangent) } \\ & \text { Since } \angle A B C=90^{\circ}(\angle \text { in a semicircle }) \\ & \text { thus } \angle C B D=90^{\circ}(\angle \mathrm{s} \text { on a str. line }) \\ & \therefore \angle A C D=\angle C B D=90^{\circ} \\ & \therefore \triangle A C D \text { and } \triangle C B D \text { are similar. (AA property) } \end{aligned}$	M1 M1 A1
7(b)	$\begin{aligned} & \begin{aligned} \frac{\text { Area of } \triangle C B D}{\text { Area of } \triangle A C D} & =\frac{1}{4} \\ \frac{C B}{A C} & =\sqrt{\frac{1}{4}} \\ & =\frac{1}{2} \\ \sin \angle C A B & =\frac{1}{2} \\ \angle C A D & =\angle C A B \\ & =\sin ^{-1} \frac{1}{2} \\ = & 30^{\circ} \end{aligned} \end{aligned}$	B1 B1
7(c)	$\begin{aligned} \angle C O B & =2 \angle C A B(\angle \text { at centre }=2 \angle \mathrm{~s} \text { at circumference }) \\ & =60^{\circ} \\ \tan \angle C A D & =\frac{C D}{A C} \\ C D & =10 \tan 30^{\circ} \end{aligned}$ Shaded area $\begin{aligned} & =\frac{1}{2}(10)\left(10 \tan 30^{\circ}\right)-\frac{60^{\circ}}{360^{\circ}} \times \pi(5)^{2}-\frac{1}{2}(5)^{2} \sin \left(180^{\circ}-60^{\circ}\right) \\ & =4.95 \mathrm{~cm}^{2}(3 \text { s.f. }) \end{aligned}$	M1 M2 A1
8(a)	$\begin{aligned} D V & =\frac{1}{2} \sqrt{6^{2}+8^{2}} \\ & =5 \mathrm{~cm} \\ E V & =\sqrt{15^{2}+5^{2}} \\ & =\sqrt{250} \\ & =15.811 \\ & =15.8 \mathrm{~cm}(3 \text { s.f. }) \end{aligned}$	M1 A1
8(b)	$\begin{aligned} E C & =\sqrt{15^{2}+8^{2}} \\ & =17 \\ \cos \angle A C E & =\cos \angle V C E \\ & =\frac{17^{2}+5^{2}-250}{2(17)(5)} \\ \angle A C E & =\cos ^{-1} \frac{32}{85} \\ & =67.885 \\ & =67.9(1 \text { d.p. }) \end{aligned}$	M1 M1 M1 A1 (Accept 67.8 if $E V=$ 15.8 is used)

10(d) Plot $V=2 \pi x^{2}(10-x)$, for $0<x<10$.

When $V=600 \mathrm{~cm}^{3}, x=4$ or 8.7 .
To obtain the maximum number of gift boxes, area to be painted should be as small as possible.

Curved surface area $=2 \pi\left(20 x-2 x^{2}\right)$
Sub $x=8.7$, curved surface area $=142.13 \mathrm{~cm}^{2}$
Number of gift boxes
$=\frac{0.6 \times 100 \times 100}{142.13}$
$=42.215$
Hence, the maximum number she can paint is 42 .

M1 (2 solutions for x)

