

SWISS COTTAGE SECONDARY SCHOOL SECONDARY FOUR PRELIMINARY EXAMINATION

Name:) Class:
MATHEMATICS		4048/01
Paper 1		Thursday 27 August 2020
,		2 hours
Candidates answer on the Quest	ion Paper.	

READ THESE INSTRUCTIONS FIRST

Write your class, index number and name on all the work you hand in. Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.

Answer all the questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 80.

This document consists of 18 printed pages.

Setter: Ms Yeo Koon Koon Vetter: Mdm Zoe Pow

Turn over

Mathematical Formulae

Compound Interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Measurement

Curved surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab\sin C$$

Arc length $= r\theta$, where θ is in radians

Sector area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc\cos A$$

Statistic

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

Section A (42 marks) Answer all the questions.

1 Write the following numbers in order of size, starting with the smallest.

$$\frac{2}{3}$$
, $\left(\frac{3}{5}\right)^2$, $\frac{3}{5}$, 0.667

[1]

2 (a) Calculate
$$\frac{12^3 - \sqrt{22.572 - 5.3 \times (-2)}}{3.109}$$

Write down the first five digits on your calculator display.

Answer

[1]

(b) Write down your answer to part (a) correct to 4 significant figures.

Answer

[1]

3 Find the greatest perfect square number that satisfies the inequality 4x+7<180.

Write down the set represented by the shaded region.

Answer

[1]

(b) $\xi = \{\text{integers } x : 1 \le x \le 11\}$ The Venn diagram shows the elements of ξ and three sets A, B and C.

Underline the incorrect statements from the list below.

 $A \subset B$

 $B \cap C = \{\}$ $B \cap A = \{1, 5\}$ $2 \in (A \cap B \cap C)$

ØCC

Show that $2^{x+2} + \left(\frac{1}{2}\right)^{-x-1} - \sqrt{4^x}$ is divisible by 5 for all real positive integer values of x.

Answer

ANYAL DANYAL DANYAL DUCATION

[3]

One solution of the equation $(h-1)x^2 = -hx - 10$ is x = -2.

Find

(a) the value of h,

ANYAL

Answer h=

[1]

(b) the second possible value of x.

7 The diagram shows an isosceles triangle inscribed in a circle. XZ = 7 cm and XY = YZ = 5 cm.

Explain why XZ is not a diameter of the circle.

. [2]

The hire-purchase price of an Orange Macnote is \$1899.

The hire-purchase price is a deposit plus 12 equal monthly payments of \$132.93.

Express the deposit as a percentage of the hire-purchase price.

[3]

9 The table shows the market values of 160 homes at Swiss Cottage estate.

Market values (\$x)	Number of homes
200 000 < x ≤ 300 000	20
$300\ 000 < x \le 400\ 000$	14
$400000 < x \le 500000$	75
$500\ 000 < x \le 600\ 000$	26
$600000 < x \le 3000000$	25

The mean market value of the homes at Swiss Cottage estate is \$643 437.50.

Explain if the mean is a fair representation of the market values of homes at Swiss Cottage estate.

[1]

10

In the diagram, A, B, C and D are points on a circle, centre O. Angle $OBA = 58^{\circ}$, CD = AB and DOB is a straight line.

(a) Find angle ODA.

Leslie runs an online tour agency which only sells air tickets.
 In 2018 he sold 17 560 one-way air tickets and 8 000 return air tickets.
 His aim is that at least 65% of the air tickets sold in 2019 should be return air tickets.

Assuming that he sold the same number of one-way air tickets in 2019, work out the smallest number of additional return air tickets that he would need to sell in order to achieve his aim.

Answer

[3]

The diagram shows a regular octagon, ABCDEFGH and ZGHY, part of a second regular polygon. Angle $BCD = 135^{\circ}$ and angle $AHY = 67.5^{\circ}$.

Find the number of sides in the second regular polygon.

An Olympic size swimming pool can hold 660 253 gallons of water. A model of this swimming pool is built to a scale of 1:11.

Find the volume of water the model can hold and round off your answer to the nearest m³. [1 gallon of water: 3.7854 litres of water]

DANYAL

DANYAL

Answer

 $. m^3 [4]$

14 (a) Factorise completely $2x^2 + x - 6$.

Answer

[2]

(b) Hence factorise completely $2(z-3)^2 + (z+4)-13$. Write your answer as simply as possible.

15 (a) In Swiss Canteen, the fruits stall sells only Fuji apples and Brown pears. The mean mass of all fruits is 160 grams. In the stall, there are 25 more apples than pears.

The mean mass of the apples is 152 grams. The mean mass of the pears is 170 grams.

Calculate the total number of fruits in the fruits stall.

DANYAL

DANYAL

Answer

[4]

(b) Ali intends to buy 2 fruits from the fruits stall.

Find the probability of him buying 1 apple and 1 pear.

Nam	ne:		Class:	
		Section B (38 ma Answer all the ques		
16	(a)	Petrol costs 35s cents per litre. Phoebe buys some petrol and it costs her \$2	u.	
		Find an expression, in terms of s and t , for the	e number of litres that Phoebe buys.	
			Answer	<i>l</i> [2]
	(b)	97 litres of water was collected in the cylind	rical container after 2 hours.	
		Find the time taken to fill a volume of 200 li Give your answer in hours and minutes, com		
			e e e e e e e e e e e e e e e e e e e	
			Answerhmi	n [2]
	(c)	p is inversely proportional to q^3 .		
		If q is decreased by 25%, find the percentage	e increase in p .	

17 The diagram below shows a buoy.

The cross-section of the buoy can be modelled as a segment ATB and an isosceles triangle ADB with sides AD = BD = 0.75r m. Angle AOB is θ radians and OA = r m.

(a) If the arc length of the segment ATB is 7 times that of the length of AD, find the value of θ .

Answer

radians [2]

(b) If r = 2 m and angle ADB = 1.338 radians, calculate the area of Diagram I.

[3]

In the diagram, ACD is an acute triangle. B is the point on AC such that angle $CBD = 60^{\circ}$. AB = CD = 5.5 cm and BD = 6 cm.

Calculate

(a) angle BCD,

DANYAL

(b) the length of AD.

Answer

[2]

19 The diagram, which is not drawn to scale, shows three lines x=10, y=8-x and 2y=5x+2.

(a) Find the coordinates of W.

DANYAL

Answer
$$W = (, ,)$$
 [2]

(b) Calculate the area of triangle AWB.

20 (a) Express 360 as the product of its prime factors.

Answer

[1]

(b) The number $\frac{360}{h}$ is a perfect square.

Find the smallest positive integer value of h.

Answer h=

[1]

(c) k is a number between 200 and 420.

The highest common factor of 360 and k is 40.

Find the smallest possible value of k.

DANYAL

4nswer k =

[2]

21 (a) Sketch the graph of y = -(x-8)(x+3) on the axes below. Indicate clearly the coordinates of the points where the graph crosses the x and y-axes and the maximum point on the curve.

(b) Write down the equation of the line of symmetry.

Answer [1]

[3]

22

ABCD is a trapezium. AC bisects angle BAD. AD = 5 cm, AB = 7 cm and angle $ADT = 77^{\circ}$.

Calculate the area of trapezium ABCD.

DANYAL

DANYAL

DANYAL

In the scale drawing, L is a lighthouse, A is a ship and P is a port. The line AP shows the ship's course.

(a) Measure the bearing of P from A.

Answer

[1]

(b) The light from the lighthouse is visible to all ships within a radius of 40 km.

Using your diagram, estimate the duration with which the light can be seen from the ship while it sails at an average speed of 35 km/h.

Give your answer in hours and minutes, correct to the nearest minute.

Answer .h.. min [4]

(c) The location of a buoy, B, equidistant from A and P, is visible from the lighthouse.

Indicate the possible location of the buoy and label it as B.

[1]

Name:	***************************************	()	Class:
MATHEMATICS	1			4048/02
Paper 2				day 31 August 2020
Candidates answer on the Question Paper.				2 hours 30 minutes

READ THESE INSTRUCTIONS FIRST

Write your class, index number and name on all the work you hand in. Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.

Answer all the questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 100.

This document consists of 26 printed pages and 2 blank pages.

Setter: Ms Leung Yan Ru Vetter: Mdm Zoe Pow

Mathematical Formulae

Compound interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle
$$ABC = \frac{1}{2} ab \sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc\cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

Section A (40 marks)

(a) Simplify $\frac{9b^3c}{d} \div \frac{3bc}{d^2}$. 1

Answer

[1]

(b) Simplify
$$\frac{12x^2-75}{2x^2-3x-20}$$
.

Answer

[3]

- It is given that $s = 2at^2 gt^2 + ag$. (c)
 - Evaluate s when t = 2, a = -3 and g = -5. (i)

(ii) Express t in terms of a, s and g.

DANYAL

Answer
$$t = [2]$$

(d) Solve the equation $\frac{3}{x+2} + \frac{4}{x-3} = 2$.

or.

The diagram shows a circle ABCDE, centre O.

AD and BE are diameters of the circle and BC is parallel to AD.

F is the intersection of OC and BD.

Angle $BDA = 35^{\circ}$.

- (a) Find, giving reasons for each answer,
 - (i) angle BOC,

Answer DANYAL [2]

(ii) angle BEC,

Answer [1]

(iii) angle BDC,

(iv) angle ABC.

Answer

[1]

Given that angle BXC = 15°, determine if X lies inside, on the circumference of or outside the circle ABCDE.
 Justify your answer with clear reasoning.

CATION

Answer

[2]

(c) Show that triangle BCF is similar to triangle DOF.

Answer

DANYAL

A prata shop operates for 7 days a week.

The matrix, M, shows the number of pratas of different types that are sold each day.

	Plain	Egg	Milo	Chocolate		
	(57	38	23	18)	Regular	
M=	=					
*	42	29	13	16)	Upsize	

(a) Evaluate the matrix P = 7M.

Answer [I]

(b) Plain pratas cost \$0.50 each to make.
Egg pratas cost \$0.75 each to make.
Milo pratas cost \$1.20 each to make.
Chocolate pratas cost \$1.20 each to make.

Represent these amounts in a 4×1 column matrix N.

(c) Evaluate the matrix T = PN.

(d) State what each of the elements of T represents.

Answer

[1]

- (e) The prata shop sells each prata for 50% more than it costs to make. One week they sold $\frac{7}{8}$ of each type of the regular pratas and $\frac{17}{20}$ of each type of the upsize pratas made that week. The unsold pratas were thrown away.
 - (i) Using matrix multiplication, calculate the total cost of making the pratas in a week.

ION

1nswer \$

[1]

(ii) Find the total profit the prata shop made that week.

DANYAL

4 The variables x and y are connected by the equation $y = \frac{2x^3}{7} - x + 3$.

Some corresponding values of x and y are given in the table below.

x	-4	-3	-2	-1	0	1	2	3
у	-11.29	-1.71	2.71	р	3	2.29	3.29	7.71

(a) Find the value of p.

Answer
$$p = [1]$$

(b) Using a scale of 2 cm to represent 1 unit, draw a horizontal x-axis for $-4 \le x \le 3$. Using a scale of 1 cm to represent 1 unit, draw a vertical y-axis for $-12 \le y \le 8$. On your axes, plot the points given in the table and join them with a smooth curve.

.. [3]

(c) Use your graph to write down an inequality in x to describe the range of values where y>3.

(d) By drawing a suitable straight line on the graph, estimate the solutions to $\frac{2x^3}{7} - 2x + 1 = 0.$

Answer
$$x = \rho r x = [4]$$

By drawing tangent(s), find the x-coordinate(s) of the point(s) at which the gradient of the curve $y = \frac{2x^3}{7} - x + 3$ is 2.

Name:

Class:

Section B (60 marks)

- 5 Jared went on a journey of 120 km.
 - (a) Jared took x minutes to drive the first 45 km at a constant speed.

Write down an expression in terms of x, for his speed in km/h for the first 45 km.

Answer

km/h

[1]

(b) It took Jared (x + 40) minutes to drive the rest of the distance at a different constant speed.

Write down an expression in terms of x, for his speed in km/h for this part of the journey.

DANYAL

DANYAL

(c) Jared's speed for the first part of the journey was 25 km/h faster than for the second part.

Write down an equation in x to represent this information, and show that it reduces to $x^2 + 112x - 4320 = 0$.

Answer

DANYAL

DANYAL

(d)	Solve the equation	$x^2 + 112x - 4320 = 0,$	giving your	solutions	correct to 2	decimal
	places.					

DANYAL

DANYAL

or-

DANYAL

Answer x =

[4]

(e) Calculate Jared's speed, in km/h, for the first 45 km.

Answer

km/h

[2]

6 (a) Amy decides to deposit \$8200 in a bank account offering compound interest at 5.2% per annum, compounded once every three months.

Calculate the total amount of interest she has earned after 3 years. Give your answer correct to the nearest cent.

DANYAL

DANYAL

Answer \$

[3]

- (b) The exchange rate between Singapore dollars (\$) and euros (€) is SGD\$1 = €\$0.63.
 Amy goes on a trip to Germany and chances upon a leather jacket that costs €143.20 in shop A.
 - (i) Calculate how much the leather jacket costs in Singapore dellars.

Answer \$.

[2]

(ii) Amy leaves shop A without making a purchase. Amy enters Shop B and sees a similar leather jacket. Shop B is offering a 25% discount for all its products. The original price of the leather jacket in Shop B is €189.90.

Which shop's leather jacket is more value for money? Justify your answer with mathematical calculations.

(c) Amy books 3 nights in the hotel in Germany.
 The hotel pricing is €156 per night.
 She pays using her credit card.
 The credit card company converts the prices to Singapore dollars.
 Amy is charged a fee of 2.5% for the currency conversion.

Calculate the total amount Apry pays for the hotel stay, including the credit card fee. Give your answer correct to the nearest dollar.

DANYAL

DANYAL

DANYAL

DANYAL

DANYAL

7 (a) These are the first four terms in a sequence.

11, 7, 3, -1, ...

(i) Find an expression, in terms of n, for the nth term of the sequence.

Anguar

(ii) Explain why it is not possible for a term in the sequence to be a multiple of 4.

Answer

ANYATION

(b) The first four terms in another sequence of numbers, T_1 , T_2 , T_3 , T_4 , T_5 ..., are given below.

$$T_1 = 4^2 + 4 = 20$$

 $T_2 = 4^3 + 16 = 80$
 $T_3 = 4^4 + 36 = 292$
 $T_4 = 4^5 + 64 = 1088$

(i) Find T_5 .

[2]

(ii) Find an expression, in terms of n, for the nth term, T_n , of this sequence. Answer . [3] Evaluate T_{20} . (iii) Leave your answer in standard form. [1] Answer

(iv) Find and simplify an expression, in terms of n, for $T_{n+1} - T_n$.

121

The diagram below shows an open water tank.

Both the base EFGH and the top ABCD are horizontal and rectangular.

Each of the sides ADHE and BCGF is a trapezium. BC = AD = 2.4 m, FG = EH = 1.2 m, AB = DC = EF = HG = 0.9 m, AE = BF = CG = DH and the perpendicular height of ADHE is 0.8 m.

(a) Calculate the total external surface area of the tank.

DANYAL

Answer EDUCATION

m² [3]

(b) Calculate the volume of the tank.

A cylindrical bucket is used to transfer water to the tank.

The cylindrical bucket has radius 16 cm and a height of 42 cm.

(c) Calculate the volume of the bucket.

Answer

cm³ [2]

(d) Find the number of buckets of water required to fill the empty tank to a height of 0.4 m.

9 (a) The cumulative frequency curve below shows the heights of 240 children in a church in March.

(i) Use the curve to estimate the median heights.

Answer cm [1]

(ii) Use the curve to estimate the interquartile range of their heights.

Answer

cm [1]

(iii) 65% of the children have a height of at least x cm.

Find x.

Answer

cm

[2]

(iv) The heights of the same 240 children in April were also recorded. The box-and-whisker plot shows the distribution of their heights.

Make two comments comparing the heights of the 240 children in the month of March and April.

Name:

Class:

ERRATA

Instructions: Answer the 2020 S4E Preliminary Paper 2 Page 24 Section B Question 9b here

(b)

In the diagram, ABOD is a straight line passing through the centre of all 4 circles. The two smallest circles are identical and O is the centre of the largest circle. A point is chosen at random inside the largest circle.

Find, as a fraction in its simplest form, the probability that the point lies in the unshaded region.

DANYAL

- In 2020, the world experienced a global pandemic, COVID-19.
 Vee enterprise decided to start manufacturing adult size disposable surgical masks, one of the highest demanded item due to COVID-19.
 Information that Vee enterprise needs is on page 27.
 - (a) Vee Enterprise is new in this line of work. As a start, it would like to import the adult size disposable face mask welding machine and 1 kg of each raw material required.

Assuming that the machine and raw materials are from the same factory, calculate the cost required to import them. [3]

DANYAL

DANYAL

(b) As part of the government policy, Vee Enterprise can only operate for 2.5 hours per day.

Determine the maximum number of adult size disposable surgical mask Vee Enterprise can produce in a working day using the materials imported in part (a).

Justify your answer with proper working and conclusion.

[7]

DANYAL

DANYAL

DANYAL

DANYAL

Types of shipping	Cost	
By air freight	\$4.80 for the first 0.50 kg \$3 for the subsequent 0.5 kg	
By sea freight	\$3.52 for the first 0.80 kg \$1.90 for the subsequent 0.5 kg	

Parts of an adult size surgical face mask		Quantity	Measurements
1	Blue Nonwoven Fabric	1	17 by 9.5 cm
2	Filtering Material	1	17 by 9.5 cm
3 \	White Nonwoyen Fabric	1	19 by 9.5 cm
4	Plastic Nose Wire	1	15 cm
5	Round Elastic Band	2	15 cm

Item	Description of Item	Cost of item
Adult Size Disposable Face Mask Welding Machine	Weight: 180 kg Speed of production: 15 face masks per min Shipping: By sea freight	\$6 850 per machine
Blue Nonwoven Fabric	Width: 7 m per kg Length: 7 m per kg Shipping: By sea freight	\$3,48 per kg
Filtering Material	Width: 7 m per kg Length: 7 m per kg Shipping: By sea freight	\$4.60 per kg
White Nonwoven Fabric	Width: 7 m per kg Length: 7 m per kg Shipping: By sea freight	\$3.48 per kg
Plastic Nose Wire	580 m per kg Shipping: By sea freight	\$4.17 per kg
Elastic Ear Loop Band	780 m per kg Shipping: By sea freight	\$7.41 per kg

Error Analysis to 2020 PRELIM Elementary Math Paper 1

Qn	Solution	Error Analysis
1	$\left(\frac{3}{5}\right)^2, \frac{3}{5}, \frac{2}{3}, 0.667$	No major concern
2a	$\frac{12^{3} - \sqrt{22.572 - 5.3 \times (-2)}}{3.109} \approx 533.95$	No major concern
2b	554.0	No major concern
3	$4x+7<180$ $4x<173$ $x<43\frac{1}{4}$ Greatest perfect square is 36.	Application. There were students usin trial and error to achieve answer though they just have to solve inequality. Conceptual: Most students understand perfect square does not include rational number as there will be infinitely man sol to this question.
	BUA' or (ADB)' UB or (ADB) UA' or (ADB)'	
	$B \cup A'$ or $(A \cap B)' \cup B$ or $(A \cap B) \cup A'$ or $(A \cap B')'$ $A \subset B$ $B \cap C = \{\}$ $B \cap A = \{1, 5\}$	Careless; Some students underline the
	$2^{x+2} + \left(\frac{1}{2}\right)^{-x-1} - \sqrt{4^x}$ $= 2^{x+2} + 2^{x+1} - \sqrt{2^{2x}}$ $= 2^{x+2} + 2^{x+1} - 2^x$ $= 2^x (2^2) + 2^x (2) - 2^x$ $= 2^x (2^2 + 2 - 1)$ $= 2^x (5)$ Since $2^{x+2} + \left(\frac{1}{2}\right)^{-x-1} - \sqrt{4^x} = 2^x (5)$ which has a factor of 5, hence its divisible by 5.	Application: 1) Many students stopped at 2**2 + 2**1 - 2* stage and could not proceed to factorise the common factor 2* as most students could not associate 2* like a normal algebra term x. 2) Most students missed the conclusion part. They are required to commend on the divisibility of 5, such as can be expressed as the multiples of 5, factors of 5 or coefficient of 2* is 5 etc.
7/17		
-		KV.

Qn	Solution	Error Analysis	
6 a	$(h-1)x^2 = -hx - 10$ is $x = -2$ (h-1)(4) = 2h - 10 4h - 4 = 2h - 10	No major concern	
	2h = -6 $ h = -3$		
6b	$4x^{2}+3x-10=0$ $(4x-5)(x+2)=0$ $x=\frac{5}{4}$	Application: 1) Still a major concern as most students could not perform crossmethod. 2) Some students used quadratic formula to achieve the answer. 3) There are a couple of careless mistakes here and there esp dealine with change of sign.	
7	$(XY)^2 + (YZ)^2 = 5^2 + 5^2 = 50$ $(XZ)^2 = 7^2 = 49 \neq 50$ By the <u>converse of Pythagoras' thm</u> , $\angle XYZ \neq 90^\circ$. Hence by the <u>converse of right-angle of a semicircle</u> , XZ is not the diameter of the circle.	dealing with change of sign. Application: 1) Students were confused of the main concept that link 90° to the diameter of the circle. 2) Most students did not state Pythagoras' Thm, Cosine rule, etc Note that all Explain, show question requires you to state wha you are using to prove the case. No major concern Application: 1) This question is a statistic question, but surprisingly, most students did not use tools like % to explain. 2) Most stated how to derive the mean and not explain why the mean here (which is calculated based on the data) was not relevant. 3) Many students were confused with the definition of Outliner.	
9	Sum of 12 installments = 132.93×12 = \$1595.16 Deposit = 1899-1595.16 = \$303.84 % of deposit = $\frac{303.84}{1899}$ ×100 = 16%		
) .	Given the mean of Swiss Cottage estate is \$643 437.50 from the distribution, only 25 out of 160 homes which is 15.625% <50% of the distribution of homes was represented. Thus the mean is not a fair representation for the values of homes at Swiss Cottage Estate.		
0a	$\angle BAD = 90^{\circ}$ (right angle in a semicircle) $\angle ODA = 180 - 90^{\circ} - 58^{\circ}$ $= 32^{\circ}$	No major concern	
0b	ABCD is a rectangle.	No major concern	
CA	Let the extra number of return tickets by x. $\frac{8000+x}{17560+8000+x} \ge 0.65$ $8000+x \ge 0.65(25560+x)$	No major concern though some confused by themselves of their representation of x. Also some students round off the intermediate answer too early thus results in accuracy issue.	
	$8000+x \ge 16614+0.65x$ $0.35x \ge 8614$ $x \ge 24611.42857$	t start was	

Qn	Solution	Error Analysis
	The smallest additional number of return air ticket is 24612.	
12	Interior angle of 2^{nd} polygon = $360^{\circ}-135^{\circ}-67.5^{\circ}=157.5^{\circ}$ Number of sides = $\frac{360}{180-157.5}$	No major concern
13	= 16 sides 660253 gallon of water: 2499321.706 litres = 2 499 321 706 cm ³ 11 cm: 1 cm 1331 cm ³ : 1 cm ³ 2 499 321 706 cm ³ :1877777.39 cm ³ = $\frac{1877777.39}{1000000}$ cm ³ ≈ 2 m ³	Application: A lot of students do not know how to do conversion question. Such as 1 ml = 1 cm ³ , 1000 ml = 1000 cm ³ = 1 litre. Many students took 1 m ³ = 1 litre.
14	$2x^2 + x - 6$ = $(2x-3)(x+2)$	No major concern
	$2(z-3)^{2} + (z+4) - 13$ $= 2(z-3)^{2} + z - 9$ $= 2(z-3)^{2} + (z-3) - 6$ $= [2(z-3)-3][(z-3)+2]$ $= [2z-9][z-1]$	Application: Again a lot of students of not know how to link this question to the previous part's answer. In fact, its vital to show $2(z-3)^2 + (z-3) - 6:$ $2x^2 + x - 6 \text{ so that you can use the factorise format in this part of the question.}$
	Let the number of pears be x. Fotal mass of apples = $152(x+25)$ Fotal mass of pears = $170x$ Mean mass = 160 $170x+152x+3800$ $x+x+25$ $322x+3800=320x+4000$ $2x=200$ $3x=100$ Fotal fruits = 225	No major concern
b P	$ \begin{array}{l} \text{(2 different fruits)} \\ 2 \times \left[\left(\frac{125}{225} \right) \times \frac{100}{224} \right] \\ \frac{125}{252} / 0.496 \end{array} $	No major concern though some students only have I choice and not 2 choices of choosing 2 different fruits.

Section B

Qn	Solution	Error Analysis
16a	35s cents: 1 litre 1 cent: $\frac{1}{35s}$ litres $24t \times 100: \frac{2400t}{35s}$ litres $\approx \frac{480t}{75s}$ or $68.6 \frac{t}{s}$ litres	1) A lot of students simplify to 0.35s as the denominator instead or did not answer in simplest form – P Error. 2) Wrong Units used => M0A0
16b	97 litres: 2 hours 1 litres: $\frac{2}{97}$ hours 200 litres: $\frac{2}{97} \times 200$ hours $= 4\frac{12}{97}$ $= 4 hours 7 minutes$	Some students $\times \frac{97}{2}$ instead of $\times \frac{2}{97}$
16c	$p = \frac{k}{q^3}$ $k = pq^3$ $P = \frac{pq^3}{\left(\frac{3}{4}q\right)^3}$ $P = \frac{64}{27}p$ Increment = $1\frac{10}{27}$ % increase = 137% or $137\frac{1}{27}$ %	I) A handful of students assumed a specified value for k instead of applying for general value of k. => M0A0 2) A bandful of students apply the cube power to q only and not to the entire denominator 3) Instead of % increase, several students wrote their answer as the new value of P in % (237%) instead
78	$r(2\pi - c) = 7(0.75r)$ $(2\pi - \theta) = 5.25$ $\theta = 2\pi - 5.25 \approx 1.0331853$ $\theta \approx 1.03$ radians	Significant no. of students change to degree and back to radian unnecessarily Some students apply the arc length formula directly and fail to notice that the \(\theta \) in the formula and question is different

1.09465m ²	segment. A lot of students misquote. No major concern in solving. 3) ECF is awarded for Area of triangle/sector	
	: UIMIRIE/SCCIOI	
.71786898		
	No major concern. Students need to show values in order to be awarded M1.	
120°	No major concern.	
MAL	Quite a number of students left this Qu blank. No major concern otherwise.	
Ann ann Air	It is recommended for students using the shoelace method to write the values down in anticlackwise direction	
	No major concern	
)	No major concern	
	120°	No major concern. Students need to show values in order to be awarded M1. No major concern. Quite a number of students left this Qn blank. No major concern otherwise. It is recommended for students using the shoelace method to write the values down in anticlackwise direction No major concern No major concern

Solution to 2020 PRELIM Elementary Math Paper 2

Qn	Solution	Marker Report
la l	$\frac{9b^3c}{d} \div \frac{3bc}{d^2}$ $= \frac{9b^3c}{d} \times \frac{d^2}{3bc}$	Well done
	$=3b^2d$	
16	$ \frac{12x^2 - 75}{2x^3 - 3x - 20} $ $ = \frac{3(4x^2 - 25)}{2x^3 - 3x - 20} $ $ = \frac{3(2x - 5)(2x + 5)}{(2x + 5)(x - 4)} $ $ = \frac{3(2x - 5)}{x - 4} $	Well done
lci	$s = 2at^{2} - gt^{2} + ag$ $s = 2(-3)(2)^{2} - (-5)(2)^{2} + (-3)(-5)$ s = 11	Well done
	$s = 2at^{2} - gt^{2} + ag$ $s - ag = t^{2}(2a - g)$ $\frac{s - ag}{2a - g} = t^{2}$ $t = \sqrt[3]{2a - g}$	Majority forgotten to put +/-, resulting in the loss of A1.

INVAL UCATION DANYAL

Qn	Solution	Marker Report
V A	$\frac{3}{x+2} + \frac{4}{x-3} = 2$ $\frac{3(x-3)+4(x+2)}{(x+2)(x-3)} = 2$ $\frac{3x-9+4x+8}{(x+2)(x-3)} = 2$ $7x-1 = 2(x+2)(x-3)$ $7x-1 = 2(x^2-x-6)$ $7x-1 = 2x^2-2x-12$ $0 = 2x^2-9x-11$ $x = \frac{-(-9)\pm\sqrt{(-9)^2-4(2)(-11)}}{2(2)}$ $x = \frac{9\pm\sqrt{169}}{4}$ $x = -1 \text{ or } x = 5.5$	Majority were able to do this question. Please note that A cannot be given if there is any loss of M. M marks are strictly given for the method seen. Failure to demonstrate means a loss of M marks. Students who copied the wrong question were still able to be awarded M marks, provided they do not simplify the question.
ai	Angle $CBD = 35^{\circ}$ (alt. \angle) Angle $OBD = 35^{\circ}$ (base \angle of isos. triangle) Angle $BCO = \text{Angle } OBC$ $= 35^{\circ} + 35^{\circ}$ (base \angle of isos. triangle) $= 70^{\circ}$ Angle BOC $= 180^{\circ} - 70^{\circ} - 70^{\circ}$ $= 40^{\circ}$ (\angle sum of triangle)	Question is badly done. Students do not demonstrate the necessary working and reasoning. Students would simply say that Angle BCO = 70° without showing the angles for angle CBD or OBD. As long as there are missing steps, marks will not be awarded for the entire question. If students demonstrate the step by step working, but do not write reason, R will be marked and there will be an overall 1 mark deduction to the paper. Marks would also not be awarded if students say angle CBO = angle COD if they do not prove that the 2 triangles, ABO and DCO are congruent first. Many students started

Qn	Solution	Marker Report
		∠COD when right at the start they wrote in the angle sign. Marker will assume they are writing for a triangle, thus their values do not apply and they would not get the marks.
2aii	Angle BCE = 90° (∠ in semicircle)	B ecf is awarded.
	Angle BEC = $180^{\circ}-90^{\circ}-70^{\circ}$ = 20° (\angle sum of triangle)	Question is badly done. Students do not demonstrate the
D	Or	necessary working and
and the second s	Angle $BEC = 20^{\circ}$ (\angle at centre = 2 \angle at circumference)	reasoning. Students would simply say that Angle BEC = 180° - 90° - 70° but de
		=20°
		not show that Angle BCE = 90° in the first place. Marker will not
-		assume that their 90°
	WAL.	refers to BCE, thus
	DAN	marks will not be awarded. If students
	EDUCATIO	demonstrate the step by step working, but do not
		write reason, R will be marked and there will be
		an overall 1 mark
		deduction to the paper.
		Many students started
	eg min Language	writing COD instead of
		ZCOD when right at the start they wrote in the
		angle sign. Marker will
1		assume they are writing for a triangle, thus their
UP	CATION	values do not apply and
$=D_f$	Maria Principalisa Sentencias de la companya de la comp	they would not get the
2aiii	Angle BDC = 20° (∠ in same segment)	marks. B ecf is awarded.
	promise state	Generally well done.

***** *****

Qn	Solution	Marker Report
		If students demonstrate the step by step working, but do not write reason, R will be marked and there will be an overall I mark deduction to the paper.
CAS	ION	Many students started writing COD instead of ∠COD when right at the start they wrote in the angle sign. Marker will assume they are writing for a triangle, thus their values do not apply and they would not get the marks.
2aiv	Angle ODC =35° +20° =55° Angle ABC =180° -55° (opp. \angle of cyclic quadrilateral) =125°	Generally well done. Marks was not awarded for students who do not give step by step working B ecf is awarded.
	= 125°	Many students started writing COD instead of \(\alpha \cop \) COD when right at the start they wrote in the angle sign. Marker will assume they are writing for a triangle, thus their values do not apply and they would not get the marks.
2Ь	For any point Y on the arc, Angle $BYC = 20^{\circ}$ (angle in same segment) or Angle BYC $=180^{\circ}-20^{\circ}=160^{\circ}$ (opp. \angle of cyclic quadrilateral) Angle $BXC = 15^{\circ} < 20^{\circ} < 160^{\circ}$	M can only be awarded if both properties are mentioned. Most students only mention angle in the same segment, thus not
	X has to be outside the circle.	being awarded the marks.
2c	Angle BCF = Angle FOD (alternate angle) Angle CBF = Angle FDO (alternate angle)	Question was badly done. Students need to remember to give the
	Triangle BCF is similar to triangle DOF.	reason beside the angle they have proven, for example, most students

estima estima

Qn	Solution	Marker Report
AN DY	VAV CANO	would give Angle BCF = Angle FOD only, marks will not be awarded in thi case, since they have not stated (alternate angles). I however, students wrote Angle BCF = Angle FOD = 35°, marks will be awarded since the angle is already found earlier. Similarly, students who went ahead to prove 3 angles, but ended up with wrong reasoning along the way would also not get the full marks. Please highlight to students to not use the acronym, AA (marks was not deducted for the use of this). Additionally, if students say Angle BCF = Angle COD, marks will not be awarded since they are proving a different triangle.
	=7 (57 38 23 18) 42 29 13 16) (399 266 161 126)	Well done.
36 N	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Well done. Please highlight to

8.8

Qn	Solution	Marker Report
3c	= 399 266 161 126 0.50 0.75	Well done. B ccf was awarded.
		Please highlight to students to still include 2 decimal places for money Marks was not deducted for not doing so.
3d	743.40 represents the total cost of making regular pratas in 7 days and 542.85 represents the total cost of making upsize pratas in 7 days.	Question was badly done Question asked for "each of the elements", which
		would garner a respective breakdown of the 2 values. Majority of the students gave "the elements of T/T itself".
ei	(1.1)(743.40)	which does not answer the question. Question was badly done.
	$\binom{1}{542.85}$ = (1286.25)	Majority of the students mistook 3c as a selling price and majority do not
And the second section of the second sec	Total cost = \$1286.25	understand the meaning of matrix multiplication. Students who wrote 1286.25 as a result from the matrix multiplication would not be awarded the mark as they do not understand the meaning.
ii	$1.5\left(\frac{7}{8} \frac{17}{20}\right)\left(\frac{743,40}{542.85}\right) - (1286.25)$	B ecf was awarded. Question was badly done. Majority could see that its
	= (381.59625)	1.5, but they do not know how to continue after that. Marks was awarded to
	×	students who either rounded up the pratas in a single matrix or rounded down the pratas in a single matrix but not when they rounded up and down in a single matrix. Students who went to round off 1.125 to 1.13

Qn	Solution	Marker Report
		awarded the full marks. Students who used matrix
		multiplication to attempt this question but
		demonstrated the wrong use of the matrix concept would still be awarded 2
		marks if their final answer
	- XX (is correct. Students who wrote the new value
	MON	without showing how, would be marked P with a circle, as presentation error.
		Second M1 (but now as M
		ecf) will only be awarded if students are able to
		demonstrate that they multiply the new value by
		the pratas sold.
4a	p=3.71	Well done, Fraction
	MYAL	would not be accepted since the question already shows the values to be 2
	DAL MON	d.p.

EDU

DANYAL

Qn	Solution	Marker Report
4b		Axis mark is indicated by a "A". Axis mark was not awarded if students do not write out the values till - 12.
	IAL	Plot mark is indicated by a "P". Plot mark was not awarded if students forgot to draw in the plots or if students drew the wrong plot.
JC		Curve mark is indicated by a "C". Curve mark was not awarded if students have sketchy or shaky curve or if the shape is not correct.
	DANYAL	
lc	-1.85 < x < 0 and x > 1.85	B ecf was awarded when students have lost the Plot mark in 4h and this would greatly affect the answer in 4c. If the plot mark happens to be the last plot, and does not affect the answer for 4c, marker will expect the original answer.
		Values are checked

A .

Qn Solution	Marker Report
	answer this question, therefore, if students do not show a "y=3" line on the graph, marker will not award them the marks. Those who drew "y=3" but do not proceed to draw the intersection was also not awarded the mark.
CATION	Please highlight to students that there are 2 inequalities and because of the nature of the question, mark was
1 22	awarded even if student wrote only one inequality.
$\frac{2x^{3}}{7} - 2x + 1 = 0$ $\frac{2x^{3}}{7} - 2x + x + 1 + 2 = x + 2$ $\frac{2x^{3}}{7} - x + 3 = x + 2$ $y = x + 2$ $\frac{x}{y} - \frac{4}{y} = \frac{0}{2} = \frac{3}{5}$ Draw graph (see attached graph) $x = -2.85 \text{ or } x = 0.50 \text{ or } x = 2.35$	Mark was awarded even if there was no manipulation, as long as students write the line. First M1 will not be awarded when students merely write $\frac{2x^3}{7} - x + 3 = x + 2$ Second M1 will only be awarded when a table of value is written, with 3 coordinates, not 2. Third M1 will only be awarded when the line is drawn with 3 distinct
NYAL UCATION	plots. Al will only be awarded if students obtain all M before this. A is also checked against their graph, if the values are different, marks will not be awarded. If students do not draw the intersection, the A

.

Qn	Solution	Marker Report
		mark will still be awarded, but a P with a circle will be placed there to indicate presentation error.
4e	x = -2 or x = 2	B ecf was awarded when students have lost the Plot mark in 4b and this would greatly affect the answer in 4e. If the plot mark happens to be the last plot, and does not affect the answer for 4e, marker will expect the original answer.
		Tangent needs to be parallel to 2 for marks to be awarded and marker will take the tangent value to be the middle of their tangent drawn. If the value does not tally, marker will not award. s

Section B

Qn	Solution	Marks
5a	Speed $= \frac{45}{x \div 60}$ $= \frac{2700}{x}$	Unsimplified form no B1.
5b	Speed	

	≈ 89.0 km/h	DANYAL DANYAL EDUCATION
5e	Speed = 45 = 30.3481 60 = = 88.967	
	$x = \frac{2}{x = -142.3481 \text{ or } x = 30.3481}$ $x = -142.35 \text{ or } x \approx 30.35$	[4]
	$x = \frac{2(1)}{x}$ $x = \frac{-112 \pm \sqrt{29824}}{2}$	sf answers but only 3sf ans, -2, ie M2 onl
	$r = -112 \pm \sqrt{(112)^2 - 4(1)(-4320)}$	If students corrected to 3sf, -1. But if students didn't write 5/6
5d	$x^2 + 112x - 4320 = 0 \text{ (shown)}$ $x^2 + 112x - 4320 = 0$	
	$0 = 25(x^2 + 112x - 4320)$ $x^2 + 112x - 4320 = 0.5 \text{ (sharm)}$	
	$0 = 25x^2 + 2800x - 108000$	EDUC
	$-1800x + 108000 = 25x^2 + 1000x$	[3] D P (ATIO)
	2700x + 108000 - 4500x = 25x(x+40)	MYAI
	$\frac{2700(x+40)-4500x}{x(x+40)} = 25$	
	$\frac{1}{x} = \frac{1}{x + 40} = \frac{1}{x}$	
5c	x+40 2700 4500	
	= 4500	
	$=$ ${x+40}$	
	75×60	
	<u>x+40</u> 60	

Qn	Solution	Marks
6a	$ \frac{5.2}{A = 8200(1 + \frac{4}{100})^{463}} $ $ A = 9574.744565 $ $ I = 9574.744565 - 8200 $ $ I = 1374.744565 $ $ I \approx $1374.74 $	Quite badly done. Many forgot i/4 and nx4. [3]
6bí	143.20+0.63 = 227.3015 = \$227.30	[2]
6bii 6c	Price of leather jacket in Shop B $= \frac{100-25}{100} \times 189.90$ $= £142.425$ Since £142.425 < £143.20, Shop B's leather jacket is more value for money. Cost for 3 nights of hotel stay $= 156 \times 3$ $= £468$ Total cost in Singapore dollars $= 468 + 0.63$ $= 742.8571 Total amount $= \frac{100 + 2.5}{100} \times (742.8571)$ $= 761.4285	Many left ans as is and did not correct to nearest \$. [3]
	≈ \$761	[10]
7ai	$T_n = -4n + 15$	[2]
7aii	$T_n = 15 - 4n$ $T_n = 12 - 4n + 3$ $T_n = 4(3-n) + 3$ 4(3-n)+3 is not divisible by 4, therefore, a term in the sequence can't be a multiple of 4.	15 is not a multiple of 4 is not sufficient [1]
7bi	$T_5 = 4^6 + 100 = 4196$	[1] POUCA
7bií	4,16,36,64 Sequence: $4n^2$ $\therefore Tn = 4^{n+1} + 4n^2$	[3]

7biii	$T_{20} = 4^{20+1} + 4 \times 20^2$	
	$T_{20} = 4.3980 \times 10^{12}$	[m]
	≈ 4.40×10 ¹²	[1]
7biv	$T_{pol} - T_{p}$	Many tried to over simplify
	$= (4^{n+1} + 4(n+1)^2) - (4^{n+1} + 4n^2)$	
	$=4^{n+2}+4(n+1)^2-4^{n+1}-4n^2$	and made careless mistakes.
.	$=4^{n+2}+4(n^2+2n+1)-4^{n+1}-4n^2$	
	$=4^{n+2}-4^{n+1}+8n+4$	rm.
		[2]
		[10]
8a	DH	If final ans is wrong, M1 given
	$=\sqrt{0.8^2+\left(\frac{2.4-1.2}{2}\right)^2}$	for either DH or any 2 surface
1	$=\sqrt{0.8+(-2)}$	areas correctly evaluated.
	=1 m	[3]
	Total Surface Area	11-2004
1	and the contract of the contra	
1	$= \frac{1}{2} \times (1.2 + 2.4) \times 0.8 \times 2 + 1.2 \times 0.9 + 0.9 \times 1 \times 2$	
-	= 5.76m ² Volume	
8b		Many corrected to 3sf thought and is exact. [2]
1	$=\frac{1}{2}\times(1.2+2.4)\times0.8\times0.9$	in ermon (ar)
	=1.296 m ³ Volume	
8c		
***************************************	$=\pi\times16^2\times42$	
	= 33778,40	[2]
8d	≈33800 cm³	Badly done. Many used similar
- I	0.6	volumes.
	\.	
	¥+	Equipment of the second
	0.4 0.8	
	VI ↓	MAL
	r 04	MAN
30	$\frac{x}{0.6} = \frac{0.4}{0.8}$	I WE CATION
	x = 0.3	EDU
	Volume of water to be filled	
. 1	The state of the s	
- 1		§

*, ...

Š...

;^.

$\frac{1}{2}$ × (1.2+0.3+0.3+1.2) × 0.4 × 0.9	[3]
0.54 m ³	
= 540000cm ³	
lumber of buckets = 540000 + 33778.40	
=15.9865	
:16	[10]
	- 100

Qn	Solution	Marks
9ai	Estimated Median = 94.5 cm	B1 not given for 94.75 or 95. [1]
9aiii	Interquartile Range =102-86.5 =15.5 cm	[1]
9aiii	65% of children = 156 children 240 - 156 = 84 children have a height of less than x cm. x = 90.5	[2]
9aiv	Median for March = 94.5 cm Median for April = 105 cm Since the median of the children's height in March is lower than April, the heights of the children in March is lower than in April. Interquartile Range for March = 102-86.5 = 15.5 cm Interquartile Range for April = 121-98 = 23 cm Since the interquartile range for April is larger than March, therefore the heights of the children in April is more widespread than the heights in March.	Not well done. Many tried to explain without comparing data or had no conclusion[2]
9Ъ	Let the radius of the smallest circle be r cm. Area of the smallest circle $= \pi r^2$	Students that let radius of biggest circle be x, got into trouble working with fractions, squaring incorrectly and subtracting wrongly.[3]
	Area of the medium circle $= \pi (2r)^{2}$ $= 4\pi r^{2}$	JAVAL
	Area of the largest circle $= \pi (4r)^{2}$ $= 16\pi r^{2}$	DANYAL
	Probability	

	$=\frac{16\pi r^{2}-4\pi r^{2}-\pi r^{2}}{16\pi r^{2}}$	
	$=$ $16\pi r^2$	
	= \frac{5}{8}	
	= 7	
		[10]
a	Cost of disposable face mask welding machine and the raw	MI given if total cost of items
	materials	is represented though ans is
	= 6850 + 4.60 + 3.48 + 3.48 + 4.17 + 7.41	wrong. Many did not round
	=\$6873.14	up weight ie (185-0.8)=184.5
	Cost to import the materials by sea freight	instaed of 184,2 for
	$=(\frac{180+5-0.8}{0.5})\times1.90+3.52$	calculation of weight.
	0.5	BI
	184.2	
	$=\frac{184.2}{0.5} \times 1.90 + 3.52$	
	184.5	
	$\approx \frac{184.5}{0.5} \times 1.90 + 3.52$	
	=\$704.62	
	Total minimum cost	
	= 6873.14 + 704.62	
	=\$7577.76	P Sweller
10Ь	Maximum number of the white nonwoven fabric obtained	Many just took total area of
	from width of 1 kg material	raw material divided by area
	$=\frac{7\times100}{}$	of mask
	95	If students did not get 6 of the
	= 73.684	M marks, no final A!. [7]
	≈73	
	Maximum number of the white nonwoven fabric obtained	
	from length of 1 kg material	
	_7×100	Frank Same S
	19	
	=36.842	
	≈36	
	XIAV.	LXI D
		The state of the s
	Maximum white nonwoven fabric that can be obtained from I	DALIM
	kg material = 73×36	DUCA
		EDY
	= 2628	1
	- 2020	
	Maximum number of the blue nonwoven fabric/filtering	

Toku J

