Name:	Class: Sec	c Index No.:				
4E/5NA MERIDIAN SECONDARY SCHOOL PRELIMINARY EXAMINATION 2020						
MATHEMATICS		Paper 1				
4048/01		31 August 2020				
SECONDARY 4 EXPRESS / 5 NORMAL	(ACADEMIC)	2 hours				
Candidates answer on the Question Pape	r.					
DAIRATION		DAN TION				
READ THESE INSTRUCTIONS FIRST		EDUCA				
Answer all questions. If working is needed for any question it must be Omission of essential working will result in loss The use of an approved scientific calculator is If the degree of accuracy is not specified in the to three significant figures. Give answers in de For π , use either your calculator value or 3.142 The number of marks is given in brackets [] a The total number of marks for this paper is 80 .	graphs. ion fluid. e shown with the answer. of marks. expected, where appropr question, and if the answ grees to one decimal pla c, unless the question req at the end of each question	iate. ver is not exact, give the answer ice. uires the answer in terms of π . on or part question.				
DANYAL		DANYAL				
Marks deducted for		For Examiner's Use				
3 s.f. / 1 d.p.						
Inaccuracy						
Missing Geometrical Reason	Sc	ore				
Total Deducted (Maximum 2)						

This question paper consists of 22 printed pages, including this page.

Setter: Mr Geoffrey Cheang

[Turn over

Mathematical Formulae

Compound Interest

Total amount =
$$P(1 + \frac{r}{100})^n$$

Mensuration

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere $=\frac{4}{3}\pi r^3$

Area of triangle $ABC = \frac{1}{2}ab\sin C$

Arc length = $r\theta$, where θ is in radians

Sector area = $\frac{1}{2}r^2\theta$, where θ is in radians

$$a^2 = b^2 + c^2 - 2bc\cos A$$

Statistics

Trigonometry

$$Mean = \frac{\sum fx}{\sum f}$$

Standard Deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

DANYAL

Answer all the questions.

1 Calculate $\frac{11.27^{\frac{1}{4}}}{30.67 - (5.23)^2}$

Write your answer correct to 4 significant figures.

Answer[1]

State one aspect of the graph that may be misleading and explain how this may lead to a misinterpretation of the graph.

Given that $7^{2x+1} \times \frac{1}{49} = 1$, find x. 3 Answer $x = \dots$[2] Express 3024 as a product of its prime factors. (a) 4 Hence, find the smallest positive integer m such that $\frac{3024}{m}$ is a cube number. **(b)**

5 Employees of a company are offered a salary increase based on one of the schemes:

Scheme A: An increase of 12% of their present salary.

Scheme B: An increase of \$90 plus 10% of their present salary.

Gwendolyn finds that both schemes will give her the same salary increase. Given that Gwendolyn's present salary is x, form an equation in terms of x and hence find her present salary.

Express $\frac{x}{2x-1} - \frac{3}{x+1}$ as a single fraction in its simplest form.

The diagram shows two circles with radii x and 4x. A point is chosen, at random, inside the larger circle.

Find, in its simplest fractional form, the probability that this point is in the shaded area.

DANYAL

8 x is directly proportional to y^2 . y is decreased by 40%. Find the percentage decrease in x.

9 Solve the equation $2x^2 - 11x = 21$.

Answer $x = \dots$ or \dots [3]

11 The diagram shows a triangle *ABC*.

12 The diagram shows a regular pentagon *ABCIH*, a regular hexagon *DEFGHI* and a triangle *CDI*.

Find *x*. Give a reason for each statement you make.

Answer $x = \dots$ [3]

MSS 4E/5NA Preliminary Examination 2020 Mathematics (4048/01)

10

The diagram shows a pond in the shape of a pentagon. The measurements given are in metres and the diagram is not drawn to scale.

Lamp posts are to be constructed around the perimeter of the pond with the following requirements:

- The lamp posts are to be equally spaced from each other.
- One lamp post must be constructed at each vertex of the pentagon.
- Minimum number of lamp posts are to be constructed to save cost.

Find

(a) the distance between any two lamp posts.

Answerm [1] cted.

(b) the number of lamp posts to be constructed.

Answer lamp posts [2]

14 The ratio of the breadth to the length of a rectangle is 1 : 2. If the breadth is reduced by 50% and the length is increased by 25%, calculate the new area as a percentage of the original area of the rectangle.

Answer% [3]

15 (a) Sketch the graph of y = (x-3)(x+2) on the axis below. Indicate clearly the coordinates of the points where the graph crosses the axes and the minimum point on the curve.

(b) Write down the equation of the line of symmetry of the graph.

16 The matrices below show the results of 14 games played by two floorball teams and the points awarded.

- **18** A map is drawn to a scale of 1 : 2 500 000.
 - (a) The length of the longest highway on the map is 16.8 cm.Find the actual distance, in kilometres, of this highway.

Answer km [1]

(b) A country has an actual area of 102 020 km².
 Find the area, in square centimetres, of that country on the map.

Answercm² [2]

MSS 4E/5NA Preliminary Examination 2020 Mathematics (4048/01)

14

In the diagram, ABCD is a rectangle, DFE is a straight line and E lies on AB. FC is perpendicular to DE at F. DE = DC = 13 cm and FC = AD = 8 cm.

(a) Show that triangle *DAE* and triangle *CFD* are congruent. Give a reason for each statement you make.

Answer

Find the area of BCFE. (b)

[2]

20 (a) On the Venn Diagram shown in the answer space, shade the set $(A \cap B')'$. Answer

(c) $\xi = \{x : x \text{ is an integer and } 12 < x \le 21\}$ $P = \{x : x \text{ is a prime number}\}$ $Q = \{x : x \text{ is divisible by } 7\}$

Find

(i) $P \cup Q$,

DANYAL

Answer[1]

(ii) *P*'.

21 Point A has coordinates (0, -2). Point B has coordinates (3, 2).

(a) Find the equation of the line AB.

(b) Calculate the length of the line segment *AB*.

Answerunits [2]

The speed-time graph shows the journey of a car.

(a) How long was the car travelling at zero acceleration?

Answer s [1]

(b) Find the speed of the car at 4 seconds.

Answer m/s [2]

(c) The speed limit of the road at which the car was travelling was 70 km/h. Show, with working, whether the car exceeded the speed limit.

Answer

23 The cumulative frequency graph shows the distribution of the speed of 200 cars on a particular morning.

This box-and-whisker plot represents the distribution of the speed of another 200 cars on the same day in the evening.

MSS 4E/5NA Preliminary Examination 2020 Mathematics (4048/01) (a) Use the two diagrams to complete this table for the speed of cars in the morning and evening.

Time	Lower	Modian	Upper	Interquartile
TIME	Quartile	Iviedian	Quartile	Range
Morning	70.5			
Evening		65	82	21

[2]

(b) The speed limit on this road is 80 km/h.

Below are two statements comparing the speeds in the morning and evening. For each one, write whether you agree or disagree, giving a reason for your answer.

Statement 1: The cars are traveling at a more consistent speed in the evening than in the morning.

Agree/Disagree:

Reason:

Statement 2: There is a higher chance that a car can be issued with a fine for

speeding in the morning than in the evening.

Agree/Disagree:

Reason:

24 *ABD* is a triangle where AB = 80 cm, AD = 140 cm, and BD = 180 cm. *AB* is produced to *C* and BC = 165 cm.

(a) Show that triangle ACD is similar to triangle ADB. Answer

(b) Calculate the length *CD*.

[2]

(c) Calculate angle BAD.

Answer[3]

25

(a) ABC is a triangle and B, C and D forms a straight line. AB = 5 cm, BC = 12 cm and AC = 13 cm.

Find $\sin \angle ACD$. **(ii)**

MSS 4E/5NA Preliminary Examination 2020 Mathematics (4048/01)

22

The diagram shows a parallelogram.

(i) Form two different equations involving x and y.

.....[1]

(ii) Find the values of x and y by solving the equations in (b)(i) simultaneously.

DANYAL

Answer x =.....[1]

y =.....[1]

END OF PAPER 1

+0+0/0Z							
NORMAL (ACADEMI	C)	2 hours 30 minutes					
estion Paper.							
	DP	ATION					
IRST							
number on all the work yo both sides of the paper. diagrams or graphs. lue or correction fluid.	ou hand in.						
Answer all questions. f working is needed for any question it must be shown with the answer. Dmission of essential working will result in loss of marks. The use of an approved scientific calculator is expected, where appropriate. f the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer o three significant figures. Give answers in degrees to one decimal place. For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π . The number of marks is given in brackets [1] at the end of each question or part question. The total number of marks for this paper is 100 .							
	DA	NYAL					
	For E	xaminer's Use					
	Score						
	NORMAL (ACADEMIC estion Paper. IRST number on all the work yo both sides of the paper. diagrams or graphs. ue or correction fluid. ion it must be shown with result in loss of marks. calculator is expected, wh ecified in the question, and answers in degrees to one alue or 3.142, unless the of paper is 100.	Image: Normal (ACADEMIC) estion Paper. ister and the work you hand in. both sides of the paper. diagrams or graphs. ue or correction fluid. ion it must be shown with the answer. result in loss of marks. calculator is expected, where appropriate. ecified in the question, and if the answer is not answers in degrees to one decimal place. alue or 3.142, unless the question requires the paper is 100. For Expected Image: paper is 100.					

MATHEMATICS 4048/02

F

E/5NA

This question paper consists of 23 printed pages, including this page.

Paper 2 1 September 2020

MERIDIAN SECONDARY SCHOOL **PRELIMINARY EXAMINATION 2020**

[Turn over

1

Name:

Mathematical Formulae

Compound Interest

Total amount =
$$P(1 + \frac{r}{100})^n$$

Mensuration

Curved surface area of a cone =
$$\pi r l$$

Surface area of a sphere = $4\pi r^2$

Volume of a cone = $\frac{1}{3}\pi r^2 h$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle $ABC = \frac{1}{2}ab\sin C$

Arc length = $r\theta$, where θ is in radians

Sector area = $\frac{1}{2}r^2\theta$, where θ is in radians

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc\cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard Deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

3

Express $x^2 - 4x - 1$ in the form $(x+a)^2 + b$. **(a)**

(b)
$$m = \sqrt[3]{\frac{y}{a} - b^2}$$

(i) Evaluate *m* when $a = 2, b = -3$ and $y = 7$.

Answer
$$m = \dots [1]$$

(ii)

Express y in terms of a, b and m.

(d) It is given that
$$\frac{5x}{2y+x} = \frac{4}{7}$$
.
Find the value of $\frac{x}{y}$.

(a) Genevieve invests \$58 000 in a 5-year savings plan with an interest rate of 3% per annum compounded every 6 months.
 Calculate the total interest she will receive at the end of 5 years.

2

Answer[3]

- (b) In January 2020, Singapore's estimated total retail sales were valued at \$4.1 billion. (1 billion = 1×10^9)
 - (i) Calculate the estimated total retail sales for January 2019 given that there was a decrease of 2.4% in January 2020.

(ii) Online retail sales in January 2020 was valued at \$0.24 billion.

(a) Write \$0.24 billion in standard form.

Answer \$......[1]

(b) Calculate the online retail sales as a percentage of total retail sales in January 2020.

MSS 4E / 5NA Preliminary Examination 2020 Mathematics (4048/02) Answer % [1]

(c) Liyana went to Europe for a holiday and bought a bag for 945 Euros. She then sold the bag to her friend at a profit of 12%. The rate of exchange between Singapore dollars (SGD) and Euro (€) was SGD 1 = 0.63€.

Calculate the price she sold the bag to her friend in Singapore dollars (SGD).

Answer SGD......[3]

3

The diagram shows an airport control tower AP of vertical height 102 m. A, B and C are points on level ground where the bearing of B from C is 267.8°, the bearing of A from C is 293°, AB = 248 m and AC = 374 m.

(a) Show that angle $ACB = 25.2^{\circ}$.

Answer

(b) Calculate angle *ABC*.

(c) Find the area of triangle *ABC*.

[1]

5

Answer m² [3]

- (d) A ground handling staff, M, walks in a straight line from B to C.
 - (i) Show that the shortest distance of M from A is 159.24 m correct to 5 significant figures.

Answer

[2]

(ii) Hence, find the greatest angle of elevation of P from M.

- 4
- The first four terms in a sequence of numbers are given below.

$$T_{1} = 6 + (1-2)^{2} - 2 = 5$$

$$T_{2} = 6 + (2-2)^{2} - 4 = 2$$

$$T_{3} = 6 + (3-2)^{2} - 6 = 1$$

$$T_{4} = 6 + (4-2)^{2} - 8 = 2$$

(a) Find T_6 .

DANYAL

Answer[1]

(b) Show that the n^{th} term of the sequence, T_n , is given by $n^2 - 6n + 10$.

Answer

(c) T_k and T_{3k} are terms in the sequence. It is given that $\frac{T_{3k}}{T_k} = 17$.

Show that this equation simplifies to

$$2k^2 - 21k + 40 = 0.$$

Answer

[2]

(d) Solve $2k^2 - 21k + 40 = 0$.

(e) Explain why one of the solutions in part (d) must be rejected as the position of T_k in the sequence.

0

C

U

A

68°

Т

A, B, C, D and E are points on the circle, centre O. AD is the diameter of the circle. TCS and TAU are tangents to the circle. Angle $ATC = 68^{\circ}$.

E

D

(a) Find, giving reasons for each answer,

angle AOC,

(i) angle CAT,

(ii)

DANYAL

S

DA EDI

(iii) angle AEC,

Answer[1]

(iv) angle ABC,

(v) angle DCS,

(vi) the radius of the circle given that AT = 10 cm.

Answer cm [2]

(b) Can A, O, C and T be points lying on another circle? Justify your answer.

ABC is a right-angled triangle. ABD is a sector of a circle of radius 6 cm with centre A. CBE is a sector of another circle with centre C. Angle BAC = 1.2 radians.

Find

(a) the length of arc BD,

(b) the length of BC,

Answer cm [1]

Answer cm [1]

(c) the perimeter of the shaded region Y,

(d) the area of the shaded region X,

Answer cm² [3]

(e) the area of the shaded region Y.

Answer cm² [3]

The variables x and y are connected by the equation $y = 2x - 7 + \frac{8}{x}$.

Some corresponding values of x and y are given in the table below.

x	1	1.5	2	2.5	3	3.5	4	5	6
у	3	1.3	1	р	1.7	2.3	3	4.6	6.3

(a) Find the value of p.

7

(b) On the grid given, draw the graph of
$$y = 2x - 7 + \frac{8}{x}$$
 for $1 \le x \le 6$. [2]

(c) Use your graph to find the solution of $2x - 7 + \frac{8}{x} = 5$.

DANYAL

(d) By drawing a tangent, find the gradient of the curve at the point (3, 1.7). [2]

(e) By drawing a suitable line, find the solution(s) of the equation $\frac{8}{x} = 12 - 3x$.

MSS 4E / 5NA Preliminary Examination 2020 Mathematics (4048/02) Answer $x = \dots$ [3]

17

A solid is made up of a cone of base diameter 20 cm and height 23 cm, with a solid hemisphere of diameter 10 cm removed from it.

The diagram shows the cross-section of the solid.

(a) Calculate the volume of the solid.

Answer cm³ [2]

(b) Calculate the length of VA.

(c) Calculate the total surface area of the solid.

8

(d) The solid is melt down to form small solid cylinders of radius 1.2 cm and height 2.5 cm.
 Calculate the maximum number of small solid cylinders that can be made.

MSS 4E / 5NA Preliminary Examination 2020

The waiting times, in minutes, of 50 clients from two bank branches are given as (a) follows:

Branch A

Time (t mins)	$10 < t \le 12$	$12 < t \le 14$	$14 < t \le 16$	$16 < t \le 18$	$18 < t \le 20$
Number of clients	5	23	8	10	4

Mean = 10.2 mins	Standard deviation $= 1.48$ mins
------------------	----------------------------------

ı,

(i)

(b) the standard deviation. EDUCA

	Answer
(ii)	Explain why the mean calculated in (i)(a) is an estimated value.
	Answer
	[1]

(iii) Based on the information above, which branch will you choose? Justify your decision with reasons.

> Answer

A box of cupcakes contains 5 chocolate, 4 vanilla and 3 raspberry cupcakes. **(b)** Anthony takes a cupcake, at random, from the box. Brenda then takes another cupcake, at random, from the box.

> Draw a tree diagram to show the probabilities of the possible outcomes. **(i)**

Answer

[2]

Find, as a fraction in its simplest form, the probability that **(ii)**

> Anthony and Brenda both choose a vanilla cupcake, (a)

(b) Brenda chooses a raspberry cupcake.

- 10 Megan would like to buy an air conditioner for her home.
 - (a) She recorded how long she would use the air conditioner in the following table.

Monday and Friday	6 hours each day
Tuesday to Thursday	7 hours 15 minutes each day
Saturday and Sunday	9 hours each day

Find the mean length of time that she would use the air conditioner each day.

Answer hours [1]

Megan is deciding between two models of air conditioner.

The table below shows information that she needs, including the annual electricity consumption of the two models.

At	Model S (Standard)	Model E (Energy efficient)	
Price of air conditioner	\$962	\$1 294 D	NYATION
Electricity consumption in one year	1 390 kWh	847 kWh	

- Prices include GST
- Electricity consumption is computed based on 8 hours of use each day

(b) Based on her usage, Megan estimates that the electricity consumptions in 1 year will be 1284.5 kWh for Model S and 782.7 kWh for Model E.

Explain how she found these estimates.

Answer

[2]

	Frequency	Price per service before 7% GST
	1 service every 2 months	\$25
AL	1 service every 3 months	\$30
IION _	1 service every 4 months	\$35

(c) The total cost of an air conditioner includes its price, the cost of the electricity it consumes and the cost of servicing it.

Electricity costs 20.97 cents per kWh, including GST. Megan would like the air conditioner to be serviced once every 3 months.

Based on her usage, which model will have a lower total cost after 5 years of use? Justify your decision with calculations.

(You should assume that the costs of electricity and servicing remain the same.)

Answer

[7]

END OF PAPER 2

Qn. No.	Answer	Marking Point	Marks	Remarks
1	0.5524	B1	1	
2	The vertical axis did not start from zero giving an impression that the cost of water in June was twice of that in May but the actual data for June is 1.3 times of May.	B1	1	B0 if no explanation is seen in the answer.
3	$7^{2x+1} \times \frac{1}{49} = 1$ $7^{2x+1} \times \frac{1}{7^2} = 7^0$ $7^{2x-1} = 7^0$ $\Rightarrow 2x - 1 = 0$	M1	2	M1 awarded if 7° and 7^{2} is seen. Accept $x = 0.5$.
	$x = \frac{1}{2}$	AI		
4(a)	$2^4 \times 3^3 \times 7$	B1	2	
(b)	m = 14	B1	2	
5	1.12x = 1.1x + 90 x = \$4500	B1 A1	2	Accept alternative equation: 0.12x = 0.1x + 90
6	$= \frac{x(x+1)-3(2x-1)}{(2x-1)(x+1)}$ $= \frac{x^2+x-6x+3}{(2x-1)(x+1)}$ $= \frac{x^2-5x+3}{(2x-1)(x+1)}$	M1 A1	2	M1 awarded for combining into a single fraction
7	P(shaded area) = $\frac{\pi (4x)^2 - \pi x^2}{\pi (4x)^2}$ = $\frac{15\pi x^2}{16\pi x^2} = \frac{15}{16}$	M1 A1	2	DANYAD
8	$x = ky^{2}$ $x_{N} = k(0.6y)^{2}$ $= 0.36ky^{2}$ % decr = $\frac{ky^{2} - 0.36ky^{2}}{ky^{2}} \times 100\%$ $= 64\%$	M1 A1	2	Accept alternative methods. Eg. Assume $k = 1$ Original 1 1 New 0.6 0.36 % decr. = $\frac{1-0.36}{1} \times 100\%$ = 64%

Qn. No.	Answer	Marking Point	Marks	Remarks
9	$2x^{2} - 11x - 21 = 0$ (2x+3)(x-7) = 0 $x = -1\frac{1}{2} \text{ or } x = 7$	M1 B1, B1	3	M1 for correct factorisation. Award M0 if $(x+1.5)(x-7) = 0$ is seen.
10(a)	$-3 < \frac{1}{2}x - 5 \text{ or } \frac{1}{2}x - 5 \le \frac{2}{3}$ x > 4 or x \le 11\frac{1}{3} 4 < x \le 11\frac{1}{3}	M1 A1	3	Alternative method: $2 < \frac{1}{2} \le 5\frac{2}{3}$ M1 $4 < x \le 11\frac{1}{3}$ A1
(b)	5, 7, 11	B1		
11		CATION	3	For construction of angle bisector and perpendicular bisector, construction lines must be seen. B1: bisector of angle <i>ABC</i> B1: perpendicular bisector of <i>AB</i> B1: marking point X in the correct region.
12	$\angle CIH = \frac{(5-2) \times 180^{\circ}}{5}$ $= 108^{\circ}$ $\angle DIH = \frac{(6-2) \times 180^{\circ}}{6}$ $= 120^{\circ}$ $\angle CID = 360^{\circ} - 108^{\circ} - 120^{\circ}$ (Angles at a pt.) $= 132^{\circ}$ $x = \frac{180 - 132}{2} \text{ (base } \angle, \text{ isos } \Delta)$ $= 24$	M1 M1 A1	3	M1 awarded for finding either $\angle CIH$ or $\angle DIH$ correctly. M1 awarded for finding $\angle CID$. Penalise 1 mark for absence of geometric reason.

Qn. No.	Answer	Marking Point	Marks	Remarks
13(a)	$120 = 2^{3} \times 3 \times 5$ $180 = 2^{2} \times 3^{2} \times 5$ $210 = 2 \times 3 \times 5 \times 7$			
	$HCF = 2 \times 3 \times 5$ $= 30$	A1	3	
(b)	No. of lamp post = $2 \times \frac{180}{22} + 2 \times \frac{120}{22} + \frac{210}{22}$	M1, 0		WAL
	= 27 30 30 30	A1		DANATION
14	Let x be the breadth. Then the length will be 2x. Original Area = $2x^2$ New Area = $(0.5x)(1.25(2x))$ = $1.25x^2$ $\% = \frac{1.25x^2}{2x^2} \times 100\%$	M1 M1	3	
15(a)	y = (x-3)(x+2)	AI	3	B1: correct <i>x</i>-intercepts, <i>y</i>-interceptB1: correct turning point and shape.
(b)	$x = \frac{1}{2}$	B1		
16(a)	$\begin{pmatrix} 25\\23 \end{pmatrix}$	M1, A1		
(b)	The elements in the matrix represents the total points obtained by the teams respectively. Courage obtained 25 points while Diligence obtained 23 points.	B1	3	

Qn. No.	Answer	Marking Point	Marks	Remarks
	$=5\left(x^2-4y^2\right)$	B1		
17(a)	=5(x+2y)(x-2y)	B1	4	
	=3a(2p+3q)-2b(3q+2p)	M1		
(b)	= (3a-2b)(2p+3q)	A1		
18(a)	1 cm rep. 25 km 16.8 cm \rightarrow 16.8×25 = 420 km	A1		
	$1 \text{ cm}^2 \rightarrow 625 \text{ km}^2$	M1		VAL
(b)	Area on map $=\frac{102020}{625}$ = 163.232 cm ²	A1	3	Award A0 if answer given is rounded to 163 cm^2 . The answer is an exact value.
19(a)	$\angle DAE = \angle CFD = 90^{\circ} \text{ (given)}$ $DE = CD = 13 \text{ cm (given)}$ $AD = FC = 8 \text{ cm (given)}$ $\therefore \Delta DAE \equiv \Delta CFD \text{ (RHS)}$	B2, 1, 0		
	$AE^2 = 13^2 - 8^2 = 105$	AV	4	
	$AE = \sqrt{105}$	CATION		
(b)	Area of BCFE			M1 for area of triangle.
(0)	$=8\times13-2\left(\frac{1}{2}\times\sqrt{105}\times8\right)$	M1		
	= 22.0243 \Box 22.0 cm ² (3 s.f.)	A1		
20(a)	E B	B1	4	
(h)	$A \cap B' \cap C$	B1	-	
(c)(i)	{13, 14, 17, 19, 21}	A1	-	
(c)(ii)	{14, 15, 16, 18, 20, 21}	B1, 0		
	$m = \frac{2 - (-2)}{2}$	M1		
21(a)	$=\frac{4}{3}$		4	

_.

Qn. No.	Answer	Marking Point	Marks	Remarks
	y = -2 is the y-intercept.			
	$y = \frac{4}{3}x - 2$	A1		
(b)	$AB = \sqrt{(3-0)^{2} + (2-(-2))^{2}}$	M1		
	= 5 units	A1		
22(a)	14	B1		
(b)	$\frac{v}{20} = \frac{4}{5}$ $v = 16$	M1 A1		DANYAL
(c)	$20 \text{ m/s} = \frac{\frac{20}{1000} \text{ km}}{\frac{1}{3600} \text{ h}}$ $= 72 \text{ km/h}$	M1	5	$\frac{Alternative \ solution:}{70 \ \text{km/h}} = \frac{70000}{3600} \text{m/s}$ $= 19\frac{4}{9} \text{m/s}$
	Hence, the car exceeded the speed limit between 5 and 19 s when travelling at maximum speed.	B1		∴ exceeded between 5 and 19 s since the car's maximum speed is 20 m/s.
23(a)	Morning: 73; 77.5; 7 Evening: 61	B2, 1, 0		
(b)	Statement 1 Disagree. IQR in the morning was smaller than the IQR in the evening suggesting that the speed of the cars were more consistent in the morning. <u>Statement 2</u> Disagree. <u>The Upper Quartile for the morning</u>	B1 B1	5	<u>Alternative solution:</u> 200–164 1000(
	was 77.5 km/h suggesting that less than 25% of cars were over the speed limit. In the evening it was 82 km/h, suggesting that more than 25% of cars were over the speed limit.	B1		$\frac{100\%}{200} \times 100\%$ $= 18\%$ $\therefore 18\% \text{ exceeded the speed}$ limit. Award B2.
24(a)	$\frac{AC}{AD} = \frac{245}{140} = \frac{7}{4}$	B2, 1, 0	6	Deduct 1 mark if no reason is seen.

Qn. No.	Answer	Marking Point	Marks	Remarks
	$\frac{AD}{AB} = \frac{140}{80} = \frac{7}{4}$			
	$\angle CAD = \angle DAB \pmod{\angle}$			
	$\therefore \Delta ACD \text{ is similar to } \Delta ADB.$ (SAS Similarity)			
(b)	$\frac{CD}{180} = \frac{140}{80}$ $CD = 315$	A1		NAL
(c)	$\cos \angle BAD = \frac{80^2 + 140^2 - 180^2}{2(80)(140)} = -\frac{2}{7}$	M2		DANATION
	∠ <i>BAD</i> □ 106.6° (1 d.p.)	A1		
	$AB^{2} + BC^{2} = 5^{2} + 12^{2}$ $= 169 = 13^{2}$	M1		
25(a)(i)	$=AC^{2}$			Award M0 B0 if students start with using Pythagoras'
	By the converse of Pythagoras' Theorem, triangle <i>ABC</i> is a right- angled triangle with $\angle ABC = 90^{\circ}$.	B1		Theorem.
(a)(ii)	$\frac{5}{13}$	B1	7	
	5y = 6x + 2	B1		
(b)(i)	4y + 1 = 7x - y	B1		B1 awarded for unsimplified expression.
	5y = 7x - 1			- Al-
(b)(ii)	7x-1=6x+2 $x=3$	A1		DANITION
	5y = 7(3) - 1 = 20 y = 4	A1		
			80	

Qn. No.	Answer	Marking Point	Marks	Remarks
	$x^2 - 4x - 1$			
1(a)	$=(x-2)^{2}-(-2)^{2}-1$	M1		
	$=(x-2)^2-5$	A1		
	m = -1.7651			
(0)(1)	□ −1.77 (3 s.f.)	A1		
	$m^3 = \frac{y}{a} - b^2$	M1		M1 awarded for cubing both sides of the equation.
(0)(11)	$m^2 + b^2 = \frac{1}{a}$			
	$\therefore y = a\left(m^3 + b^2\right)$	A1		Also accept $y = am^3 + ab^2$.
	$\frac{5(x-2)-2(x+3)}{(x+3)(x-2)} = 4$	M1	11	
	$3x - 16 = 4x^2 + 4x - 24$		**	
	$\Rightarrow 4x^2 + x - 8 = 0$	M1		
(c)	$-1\pm\sqrt{1^2-4(4)(-8)}$			9
	$x = \frac{1}{2(4)}$	MI		
	$=\frac{-1\pm\sqrt{129}}{8}$			
	x = -1.5447 or $x = 1.29472$	A 1		
	\Box -1.54 (3 s.f.) or \Box 1.29 (3 s.f.)	AI		
	35x = 8y + 4x	M1		
(d)	31x = 8y			
	$\frac{x}{1} = \frac{8}{21}$	A1		. Т.
	y 31		1 AN	
	$A = 58000 \left(1 + \frac{1.5}{100} \right)^{10}$	M1	DUCI	TION
	$-58000(1.015)^{10}$			
2(a)	= 58000(1.015)			
-(4)	$I = 58000(1.015)^{10} - 58000$	M1		
	=9311.367		10	
	□ \$9311.37 (2 d.p.)	A1	10	
	$97.6\% \rightarrow 4.1$ billion			Accept 4.20×10^9
	$100\% \rightarrow \frac{100}{100} \times 4.1$ hillion			1200pt 7.20110 .
(b)(i)	97.6 × 4.1 0mion	M1		
	= 4.2008 billion			
	\Box 4.20 billion (3 s.f.)	A1		

Qn. No.	Answer	Marking Point	Marks	Remarks
$(\mathbf{b})(\mathbf{i}\mathbf{i})(\mathbf{a})$	2.4×10 ⁸	B1		
(b)(ii)(b)	$\frac{0.24}{4.1} \times 100\% = 5.8536$ $\Box 5.85\% (3 \text{ s.f.})$	M1 A1		
(c)	Selling price = $112\% \times 945 \in$ = $1058.4 \in$ = $\frac{1058.4}{0.63}$ = SGD1680	M1 M1 A1	at V	AL
3(a)	$\angle ACB = 293^{\circ} - 267.8^{\circ}$ = 25.2° (shown)	A1	DUCA	LION
(b)	$\frac{\sin \angle ABC}{374} = \frac{\sin 25.2^{\circ}}{248}$ $\sin \angle ABC = \frac{374 \sin 25.2^{\circ}}{248}$ $\angle ABC = 39.948^{\circ}$ $= 39.9^{\circ} (1 \text{ d.p.})$	M1 A1		
(c)	$\angle BAC = 180^{\circ} - 39.9^{\circ} - 25.2^{\circ} (\angle \text{ sum of } \Delta)$ = 114.9° Area of $\Delta ABC = \frac{1}{2} (248) (374) \sin 114.9^{\circ}$ = 42065.073 \Box 42100 m ² (3 s.f.)	M1 M1 A1	10	
(d)(i)	$sin 25.2^{\circ} = \frac{d}{374}$ ⇒ $d = 374 sin 25.2^{\circ}$ = 159.2414 159.24 m (5 s.f.)	M1 A1	ANY	If students use $\angle ABC$, they will have to use 39.948° and they will obtain 159.2388 \Box 159.24 (5 s.f.)
(d)(ii)	Let θ be the greatest angle of elevation. $\tan \theta = \frac{102}{159.2414}$ $\theta = 32.6410$ $32.6^{\circ} (1 \text{ d.p.})$	M1 A1		
4(a)	$T_6 = 6 + (6 - 2)^2 - 12 = 10$	B1		
(b)	$T_n = 6 + (n-2)^2 - 2n$ = 6 + n ² - 4n + 4 - 2n = n ² - 6n + 10 (shown)	M1 A1	10	

Qn. No.	Answer	Marking Point	Marks	Remarks
	$\frac{(3k)^2 - 6(3k) + 10}{k^2 - 6k + 10} = 17$	M2		M1 for numerator M1 for denominator
(c)	$9k^2 - 18k + 10 = 17k^2 - 102k + 170$			
	$\Rightarrow 8k^2 - 84k + 160 = 0$			
	$2k^2 - 21k + 40 = 0$ (shown)	A1	-	
(d)	(2k-5)(k-8) = 0 k = 2.5 or k = 8	M1 A1, A1		
(e)	k has to be a whole number. Since $k = 2.5$ is not a whole number, it will have to be rejected.	B1		AL
5(a)(i)	$\angle CAT = \frac{180^\circ - 68^\circ}{2}$ (tangents from ext. pt.) = 56°	A1	EDUC	TION
	$\angle OAT = \angle OCT = 90^{\circ} (\tan \perp \operatorname{rad})$			
(a)(ii)	$\angle AOC = 180^{\circ} - 2 \times 90^{\circ} - 68^{\circ} \ (\angle \text{ sum of quad})$ $= 112^{\circ}$	A1		
(a)(iii)	$\angle AEC = \frac{112^{\circ}}{2} (\angle \text{ at ctr.} = 2\angle \text{ at circumference})$ = 56°	A1		
(a)(iv)	$\angle ABC = 180^{\circ} - 56^{\circ} (\angle s \text{ in opp. segment})$ = 124°	A1		Allow ft. 180° – their $\angle AEC$
	$\angle DCA = 90^{\circ} (\angle \text{ in semicircle})$	M1		~
(a)(v)	$\angle ACT = \angle CAT \text{ (isos. } \Delta\text{)}$ $\angle DCS = 180^\circ - 90^\circ - 56^\circ \text{ (adj. } \angle \text{s on str. line)}$ $= 34^\circ$	A1	9	Allow ft. $180^{\circ} - 90^{\circ} - \text{their } \angle AEC$
	$\angle OAT = 90^{\circ} \text{ (tangent } \perp \text{ radius)}$ $\angle ATO = 34^{\circ}$	Ţ	EDUC	TION
(a)(vi)	$\tan 34^\circ = \frac{31}{10}$	M1		
	$\Rightarrow OA = 10 \tan 34^{\circ}$ = 6.74508 $\Box 6.75 \text{ cm}$	Δ1		
	$\angle AOC + \angle ATC = 112^\circ + 68^\circ$			Alternative Solution:
(b)	=180° (\angle s in opp. segment) \therefore the points A, O, C and T are points lying on another circle.	B1		$\angle OAT = \angle OCT = 90^{\circ}$ rt. angle in semicircle
6(a)	$\operatorname{arc} BD = 6(1.2)$ = 7.2 cm	A 1		
(b)	$\tan 1.2 = \frac{BC}{6}$	AI	10	

Qn. No.	Answer	Marking Point	Marks	Remarks
	$\Rightarrow BC = 6 \tan 1.2$			
	= 15.4329	A 1		
	<u> </u>	AI		
	$\cos 1.2 = \frac{0}{4C}$			
	6			
	$\Rightarrow AC = \frac{1}{\cos 1.2} = 16.5582$	M 1		
(c)				
	$P = 7.2 + 15.4329 + \left(\frac{6}{-6} - 6\right)$			
	$(\cos 1.2)$			AL
	= 33.1911	A 1	AN	NON
	\Box 55.2 cm (5 8.1.)	AI	DUCA	M1 for area of sector
	$\frac{1}{1} ((\pi_1, (\pi_2))^2 (\pi_1, (\pi_2))^2 + (\pi_1, (\pi_2))^2$			CBE.
(d)	$=\frac{1}{2}(15.4329)\left(\frac{1}{2}-1.2\right)-\frac{1}{2}(15.4329)\sin\left(\frac{1}{2}-1.2\right)$	M2		
	= 1.0049	Δ1		MI for area of triangle
	$\Box 1.00 \mathrm{cm}^2 (3 \mathrm{s.f.})$			
	area of Y			ARC
(e)	$=\frac{1}{2}(6)(15.4329)-\frac{1}{2}(6)^{2}(1.2)$	M2		ni c.
	= 24.6987			M1 for area of sector
	$\Box 24.7 \mathrm{cm}^2 (3 \mathrm{s.f.})$	A1		ABD.
7(a)	<i>p</i> =1.2	Al		
	(see attached)			P1 for correct plotting of
(h)				points.
(0)				C1 for smoothness of
	A VAL			curve.
(c)	Draw the line $y = 5$.	B1	AN	ION
	4.4 - 0.6	DI	DUCA	Actual gradient
	$m = \frac{1}{5.5 - 2}$	M1	9	= 1.11
(a)	=1.0857	۸1		Accept: $0.967 < m < 1.26$
	1.09 (3 s.f.)		-	0.907 S m S 1.20
	$\frac{8}{-}=12-3x$			
	<i>x</i> 8			
(e)	$2x-7+\frac{3}{x}=(12-3x)+2x-7$	M1		a
	Draw $y = -x + 5$.	MI		B1 awarded if line passes
	$x = 3.15 (\pm 0.05)$	B1		thru (1,4) and (5,0).
	$W = \frac{1}{2}\pi(10)^2(23) = \frac{1}{2}\times\frac{4}{2}\pi(5)^3$			Award M1 for either for
8(a)	$r = \frac{1}{3} \pi (10) (23) = \frac{1}{2} \times \frac{1}{3} \pi (3)$	M1	10	volume of cone or hemisphere
				Tomobuoro.

Marking Qn. No. Marks Remarks Answer Point $=\frac{2300}{3}\pi-83\frac{1}{3}\pi$ $=683\frac{1}{3}\pi$ A1 = 2146.7549... \Box 2150 cm³ (3 s.f.) $VA^2 = 23^2 + 10^2$ = 629 $VA = \sqrt{629}$ (b) = 25.0798... A1 \Box 25.1 cm (3 s.f.) $TSA = \pi (10)\sqrt{629} + \pi (10^2 - 5^2) + \frac{1}{2} \times 4\pi (5)^2$ M1 each awarded for M3 CSA of cone, area of annulus and CSA of $=10\sqrt{629\pi}+75\pi+50\pi$ (c) hemisphere. =1180.6065... \Box 1180 cm² (3 s.f.) A1 M1 each awarded for No. of cylinders $=\frac{683\frac{1}{3}\pi}{\pi(1.2)^2(2.5)}$ M2 volume of material and volume of cylinder. (d) =189.8148... \approx 189 (rounded down) A1 $\frac{5(11)+23(13)+8(15)+10(17)+4(19)}{50}$ Mean = $=\frac{720}{100}$ 9(a)(i)(a) =14.4 min**B1** $\Sigma ft^{2} = 5(11)^{2} + 23(13)^{2} + 8(15)^{2} + 10(17)^{2} + 4(19)^{2}$ =10626(i)(b) SD = $\sqrt{\frac{10626}{50} - (14.4)^2}$ M1 11 $=\sqrt{5.16}$ = 2.2715... $\Box 2.27 \min(3 \text{ s.f.})$ A1 The data is grouped into intervals. Thus it is not Alternative solution: possible to know the exact waiting time of people in We do not know the a class interval. The mid-value is used, thus the actual waiting times and (ii) mean calculated will be an estimate. **B1** have estimated them using the mid-values in the calculation of the mean.

Qn. No.	Answer	Marking Point	Marks	Remarks
(iii)	mean _B < mean _A . On average, the waiting time in Branch be is less than that of Branch A. $SD_B < SD_A$. This suggest that the waiting times in Branch B is more consistent. Thus, I will choose Branch B.	B1 B1		
(b)(i)	Anthony Brenda $\begin{pmatrix} 4\\11 \end{pmatrix} & C \\ \begin{pmatrix} 4\\11 \end{pmatrix} & V \\ \begin{pmatrix} 5\\12 \end{pmatrix} & C & \begin{pmatrix} 4\\11 \end{pmatrix} & V \\ \begin{pmatrix} 5\\12 \end{pmatrix} & V & \begin{pmatrix} 5\\11 \end{pmatrix} & V \\ \begin{pmatrix} 1\\12 \end{pmatrix} & V & \begin{pmatrix} 5\\11 \end{pmatrix} & V \\ \begin{pmatrix} 3\\11 \end{pmatrix} & V \\ \begin{pmatrix} 1\\12 \end{pmatrix} & V & \begin{pmatrix} 2\\11 \end{pmatrix} & V \\ \begin{pmatrix} 2\\11 \end{pmatrix} & V \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & $	B2, 1, 0	ANY	AL
(ii)(a)	$P(V,V) = \frac{4}{12} \times \frac{3}{11}$ $= \frac{1}{11}$	A1		
(ii)(b)	$P(\text{Brenda choose } \mathbb{R}) = P(C, \mathbb{R}) + P(V, \mathbb{R}) + P(\mathbb{R}, \mathbb{R})$ $= \left(\frac{5}{12} \times \frac{3}{11}\right) + \left(\frac{4}{12} \times \frac{3}{11}\right) + \left(\frac{3}{12} \times \frac{2}{11}\right)$ $= \frac{1}{4}$	M1, 0		
10(a)	mean = $\frac{6 \times 2 + 7\frac{1}{4} \times 3 + 9 \times 2}{7}$ = $7\frac{11}{28}$ = 7.39285 7.39 h (3 s.f.)	A1	ANY	AL TON
(b)	$\frac{\text{Model S:}}{8 \text{ h} \to 1390 \text{ kWh}} \\ 7 \frac{11}{28} \text{ h} \to \frac{7 \frac{11}{28}}{8} \times 1390 = 1284.5098 \\ 1284.5 \text{ kWh (1 d.p.) (shown)} \\ \frac{\text{Model E:}}{8} \end{bmatrix}$	A1	10	

Qn. No.	Answer	Marking Point	Marks	Remarks
	8 h → 847 kWh $7\frac{11}{28}$ h → $\frac{7\frac{11}{28}}{8} \times 847 = 782.7187$ □ 782.7 kWh (1 d.p.) (shown)	A1		
(c)	Model S. Total Cost = 962 + 5[1284.5 × 0.2097 + 0.7 × 4 × 30 × 1.07] = 2758.19825 \square \$2758.20 (2 d.p.) Model E: Total Cost = 1294 + 5[782.7 × 0.2097 + 4 × 30 × 1.07] = 2756.66095 \square \$2756.66 (2 d.p.) Based on her usage, Model E will have a lower cost of \$1.54 after 5 years of use.	M2, 1, 0 M1 M2, 1, 0 M1 B1	EDUCA	AL
	JATA		100	
	DANTION			

.

*