Name:	Index Number:	Class:

HUA YI SECONDARY SCHOOL

4E5N

Preliminary Examination

4E5N

MATHEMATICS

4048/1

Paper 1

2 September 2020

2 hours

Candidates to answer on the Question Paper.

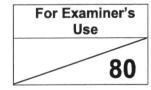
READ THESE INSTRUCTIONS FIRST

Write your Name, Class and Index Number in the spaces provided at the top of this page.

Write your answers on the answer paper provided.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.


Answer all questions. If working is needed for any question, it must be shown in the space below the question. Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give your answers in degrees to one decimal place. For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question.

The total marks for this paper is 80.

This document consists of **19** printed pages including the cover page. © HYSS 2020

No part of this document may be reproduced in any form or transmitted in any form or by any means without the prior permission of Hua Yi Secondary School.

[Turn Over

Mathematical Formulae

Compound Interest

Total amount =
$$P(1 + \frac{r}{100})^n$$

Mensuration

Curved surface area of a cone = $\pi r l$

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab\sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

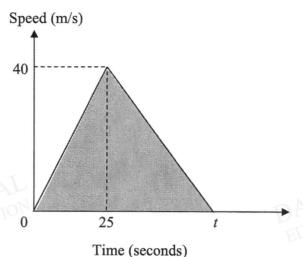
Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics


$$Mean = \frac{\sum fx}{\sum f}$$

Standard Deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

1	(a)	Express 4 index notat		e product	of its	prime	factors,	giving	your	answer	in
											F13
						A	Answer				[1]
	(b)	The number	r 480k is	a perfect sq	uare. Fi	nd the sn	nallest po	sitive in	teger v	alue of k	τ.
	(6)	EDUCA		- F			I				
						2	Answer				[1]
	(c)	x is a numb The highes Find the sn	t common	factor of x	and 480) is 15.					

The diagram shows the speed-time graph for a car's journey.

The shaded area represents the distance travelled. The distance travelled to its destination is 1140 m.

Time (second

(a)	Calculate	the	value	of t
()	Caroarace	CIIC	, arac	OI

Answer	s [1]
--------	-------

(b) Calculate the acceleration of the car for the second part of the journey (i.e. after the first 25 seconds).

Answer _____m/s² [1]

(c) A second car starts off from the same point as the first car and travels at a constant speed of 60 km/h. Express 60 km/h in metres per second.

Answer _____ m/s [1]

(ii) Ben claims that the second car will arrive at the destination earlier. Explain whether you agree with him.

.....

			1							
3	(a)	Simplify	$\left(\frac{x^9}{v^6}\right)^{-3}$, leaving	your	answer	in	positive	index	form

DANYAL

Answer [2]

(b) $5^b = 5^{15} + 5^{15} + 5^{15} + 5^{15} + 5^{15}$ Find the value of b.

Answer $b = $	1		
---------------	---	--	--

- The volume of a newly-designed rocket fuel tank is 405 m³. A smaller model of this rocket fuel tank is built to a scale of 1 : 30.
 - (a) Find the volume, in m³, of the model. Give your answer in standard form.

Answer [3]

(b) The older version of the rocket fuel tank is geometrically similar to this newly-designed fuel tank. The surface area of the newly-designed rocket fuel tank is 54 m².
The height of the older version of the fuel tank is 3.2 m.

The height of the newly-designed fuel tank is 2.4 m.

Calculate the surface area of the older version of the rocket fuel tank.

DANYAL

Answer	m^2	[2]
--------	-------	-----

5 A company sells the same brand and type of paint in tins of three sizes.

Volume of Paint in One Can (V)	250 ml	600 ml	11
Cost of One Can of Paint (C)	\$3.50	\$8.40	\$13.50

Show that the cost of the paint is **not** directly proportional to the volume of paint.

- Factorise each of the following completely. (a) $8a^3b^2 50ab^4$ 6

Answer		[2	1
AIWWEI	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		J

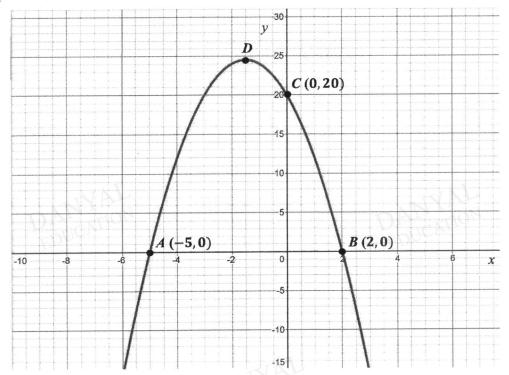
(b) $6c^2d - 3cd + 1 - 2c$

Answer		[2]	
--------	--	-----	--

Write as a single fraction in its simplest form $\frac{5}{2-3y} - \frac{3}{y-1}$. 7

Rearrange the formula $s = \sqrt[3]{pq - r^2p}$ to make q the subject.

DANYAL



Answer	q	=	[3	,
--------	---	---	----	---

9 The graph of $y = -2(x^2 + 3x - 10)$ is drawn below. It cuts the axes at points A, B and C.

(a) Find the coordinates of the maximum point D.

1	Г17
Answer	111

(b) Write down the equation of the line of symmetry of the graph.

(c) Use the graph to solve the equation $x^2 + 3x - 10 = 4$.

Answer
$$x =$$
 or [2]

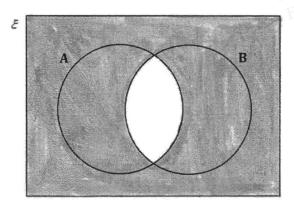
(d) Explain why the equation $-2(x^2 + 3x - 10) = k$ does not have solutions for some values of k.

.....

....[1]

10 (a) Solve the inequalities $5 \le 3y + 7 < 17$.

DANYAL


Answer [2]

(b) Hence, find the smallest integer that satisfies the above inequalities.

Answer [1]

11 (a) Write down the set represented by the shaded region.

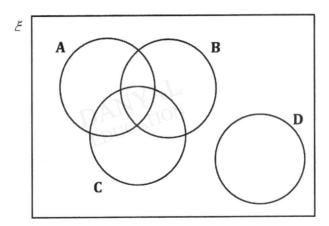
Answer [1

(b) Quadrilaterals can be classified into various categories depending on their properties.

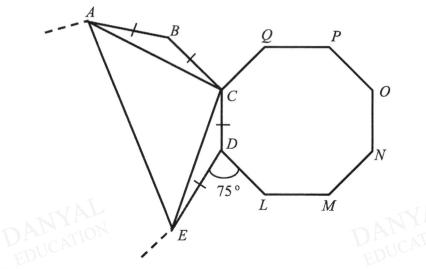
Some sets have been listed below.

 $\xi = \{\text{all quadrilaterals}\}\$

 $A = \{$ quadrilaterals with four equal lengths $\}$


 $B = \{\text{quadrilaterals with four } 90^{\circ} \text{ interior angles} \}$

 $C = \{$ quadrilaterals with two pairs of parallel sides $\}$


 $D = \{$ quadrilaterals with only one pair of parallel sides $\}$

On the Venn diagram below, state where these six quadrilaterals should be placed: Parallelogram (P), Rectangle (R), Rhombus (H), Square (S), Trapezium (T), Kite (K).

Answer

12 The diagram shows regular octagon *CDLMNOPQ* and part of a regular n-sided polygon, *ABCDE*....

- (a) Find
 - (i) angle CDL,

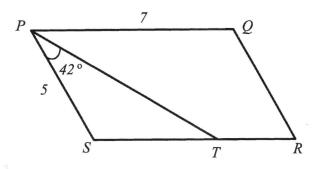
4	_	
Answer	U	

(ii) the number of sides in the regular polygon ABCDE,

DANYAL

Answer sides [2]

(iii) angle BAC,


Answer o [1

(iv) angle CA	E.
---------------	----

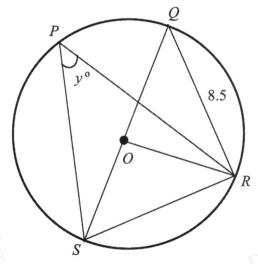
	Answer° [2]
(b)	Explain why triangles ABC and CDE are congruent.
	DANYAL DANYAL DANYAL EDUCATION
	[2]
	DAN JANION [2]
(c)	Is it possible to have a circle with diameter AE and point C on its circumference?
. ,	Explain.
	[1]

PQRS is a parallelogram. 13 PT bisects angle SPQ.

PQ = 7 cm, PS = 5 cm and angle SPT = 42°.

(a) Prove that ST = 5 cm. Answer

- 1	$\Gamma \cap$	
	,	
	-	
		П


(b) Calculate the area of triangle *PST*.

Answer

(c) Calculate the area of trapezium PQRT.

____cm² [3] Answer

14

In the diagram, P, Q, R, S are points on a circle, centre O and radius 7.2 cm.

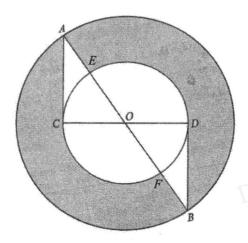
QR = 8.5 cm and angle $SPR = y^{\circ}$.

Find, giving reasons for each answer,

(a) y,

DANYAL

Answer	y	=	 [3]


(b) angle SOR,

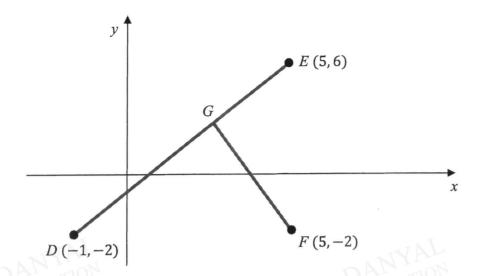
Answer	° [1]

(c) major arc length SR.

Answer cm [2]

AB is a diameter of the large circle, centre O and radius 10 cm. Angle OAC = 55°.
CD is a diameter of the small circle, centre O.
Triangle OCA is congruent to triangle ODB.
AC and BD are tangents to the small circle.

(a) Calculate the area of triangle OCA.



m^2	[3]
]	m^2

(b) Calculate the shaded area.

DANYAL

16

The diagram shows the points D(-1, -2), E(5, 6) and F(5, -2). G is a point on DE so that FG is perpendicular to DE.

The product of (gradient of FG) × (gradient of DE) = -1.

(a) (i) Find the gradient of DE.

[1]

(ii) Use this information to find the equation of the line FG.

DANYAL

Answer [2]

(b) (i) Find the area of triangle *DEF*.

Answer

units² [2]

4		WW	C 1 11	perpendicular	1.	C	774	DI
ŧ	ii	1 Hence	a find the	nernendicilla	r distance	trom	H TO	IIH
۹			A THING HIS	perpendicula	distance	HOIII.	i w	LL.

Answer units ²	[2]
---------------------------	-----

17 (a) The 4 x 10m shuttle run timings, in seconds, of the 24 girls and 15 boys from Class 3G of Hua Yi Secondary School were recorded in the stem-and-leaf diagram below.

		Girls									Boys			
					8	7	9	4	5					
		9 7 6	8	6	5	4	10	0	2	6	6	8		
8	8	7	4	3	3	2	11	0	1	3	3	4	5	8
9	8	6	5	5	2	0	12	y						
							13							
							ı	1						

Key: 7 9 4 means a timing of 9.7s for girls and a timing of 9.4s for boys

(i)	Find	the	median	timing	for	girls
(-)						0

Answer	S	[1]
		L

(ii) The range of the timings for the boys is 2.8 s. Find y.

Answer	s [1

	(iii)	The PE teacher selects a girl from Class 3G to be the PE class representative. Find, as a fraction in its simplest form, the probability that the PE class representative runs slower than 11.7 s.		
×		Answer[1]		
	(iv)	Two students from Class 3G volunteer to participate in the school's Sports Day. Find, as a fraction in its simplest form, the probability that these two students have an individual shuttle run timing of $10.5 s$ or below.		
		DANYAL Answer[1]		
(b)		Shuttle Run Timings of Boys from Class 3B		
		Median 10.7 s Range 2.4 s		
		her commented that the boys from Class 3G generally performed better at the lan the boys from Class 3B. Do you agree? Explain your answer.		
	EDO	EDO":		
		[2]		

Name:	Index Number:	Class:	

HUA YI SECONDARY SCHOOL

4E5N

Preliminary Examination

4E5N

MATHEMATICS

4048/02

Paper 2

27 August 2020

2 hours 30 minutes

Candidates to answer on the Question Paper.

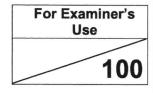
READ THESE INSTRUCTIONS FIRST

Write your Name, Class and Index Number in the spaces provided at the top of this page.

Write your answers on the answer paper provided.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.


Answer **all** questions. If working is needed for any question, it must be shown in the space below the question. Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give your answers in degrees to one decimal place. For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question.

The total marks for this paper is 100.

This document consists of **26** printed pages including the cover page.

© HYSS 2020

No part of this document may be reproduced in any form or transmitted in any form or by any means without the prior permission of Hua Yi Secondary School.

[Turn Over

Mathematical Formulae

Compound Interest

Total amount =
$$P(1 + \frac{r}{100})^n$$

Mensuration

Curved surface area of a cone = $\pi r l$

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab\sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$a^2 = b^2 + c^2 - 2bc\cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard Deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

				2 2			
1	(a)	Simplify	$24a^{2}b^{3}$	$\div 15a^{3}b^{-2}$, leaving your	answer in	positive index form.

A		FO7	
Answer	*****************************	[2]	

(b)	Simplify	$8w^2 - 2$
(0)	Simplify	$6w^2 - 7w - 5$

Answer		[3
--------	--	----

(c) The total surface area of a Rubik's cube is given by $294x^4$ cm². Find an expression for the volume of the Rubik's cube in the form px^n , where p and n are integers.

(d) In a recent study, it was reported that usually about 8% of the world's emperor penguin population breeds at Halley Bay.

The estimated number of emperor penguin pairs that bred in that area increased from 11 000 pairs in 2015 to 14 610 pairs in 2018.

The number of breeding pairs are expected to increase by r % every year. Find the value of r.

DANYAL

DANYAL

DANYAL

DANYAL

DANYAL

Answer r = [3]

2 (a) Elvin's car has the following specif	ifications
--	------------

- Fuel capacity: 45 litres
- Estimated fuel consumption: 31.6 miles per gallon (mpg)

It is given that 1 mpg = 0.354 km per litre.

He drove the car for 280 kilometres with a full tank of fuel and was left with 15 litres of petrol.

Showing your working clearly, determine if the actual fuel consumption of the car is more or less than the estimated fuel consumption.

DANYAL

DANYAL

Answer	
	[3]

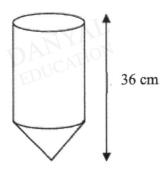
(b) The force, F, between two particles is inversely proportional to the square of the distance, D, between them.

The distance between two particles is increased by 40%.

Calculate the percentage reduction in the force between the particles, leaving your answer correct to 1 decimal place.

Answer ______% [3]

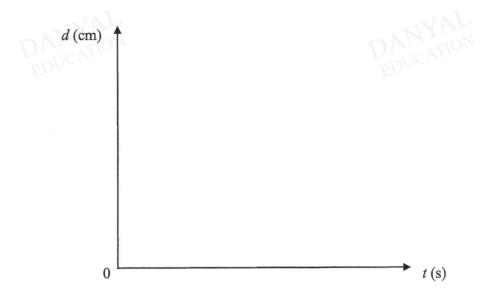
(c) The diagram shows a vessel made up of a conical base and an open cylindrical top.


The vessel has a depth of 36 cm.

The depth of the conical base is $\frac{1}{4}$ of the entire depth of the vessel.

It took 10 seconds to fill up the vessel fully.

After t seconds, the depth of the liquid is d cm.


(i) Find the depth of the conical base.

(ii) On the axes provided below, sketch a graph to show the change in the depth of liquid in the vessel within 10 seconds.

Answer

3 A fitness centre offers daily zumba classes for morning and afternoon classes.

On every weekday morning, 15 males and 10 females will attend the zumba class, while 20 males and 15 females attend the afternoon zumba class.

This information may be represented by the matrix **D** below.

males females

$$\mathbf{D} = \begin{pmatrix} 15 & 10 \\ 20 & 15 \end{pmatrix}$$
morning afternoon

On each weekend, 30 males and 20 females will attend the morning class, while 25 males and 25 females will attend the afternoon class.

(a) Represent the number of people attending the fitness class on each weekend by a 2×2 matrix **E**.

Answer
$$\mathbf{E} =$$
 [1]

(b) Evaluate the matrix S = 5D + 2E.

$$DANYAL$$

$$DANYAL$$

$$Answer S = BDUCATION$$

(c) The fitness centre charges each person \$10 for a morning session and \$15 for an afternoon session. Represent the charges by a row matrix **P**.

Answer
$$\mathbf{P} =$$
 [1]

(b)	Evaluate	the	matrix	T	= PS

(4)	DANYAL EDUCATION State what the elements of T represent	Answer	T = NYAL DATE EDUCATION	[1]
(e)	State what the elements of T represent.			
Answer				:
				[1]
	DANYA	ION		

DANYAL

DANYAL

4 Hazelle recorded the mass of her newborn nephew, Kinston, every 7 days.

The table below shows some of the values she recorded.

Age of Kinston	0	7	14	21	28	35	42	49	56
(t days)									
Mass (m kg)	3.50	3.25	3.15	3.15	3.40	3.70	4.10		4.90

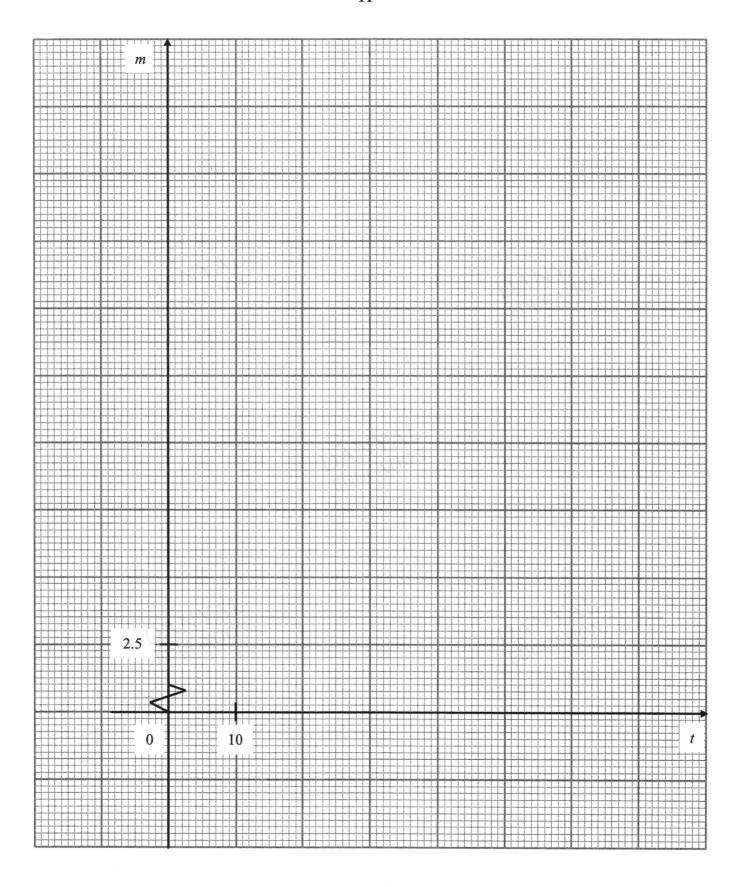
11a55 (m	kg)	3.30	3.23	3.13	3.13	3.40	3.70	4.10		4.90
(a)	Answ	ver this pa	ırt of the	question	on the gi	rid on pag	ge 11.			
	On th	ne axes pr	ovided,	draw a ho	orizontal	t-axis for	$0 \le t \le 6$	0 and a	vertical 1	n-axis for
	$2 \le n$	$n \leq 5$.								
	Plot 1	the points	given in	the table a	and join t	hem with	a smooth	curve.		[3]
(b)	Use	your graph	n to estim	ate						
	(i)	the mass	of Kinsto	n after 49	days,					
	(ii)	when Kir	nston's m	ass was le	east,		Ans	wer		kg [1]
		when Kir		nined his	birth mas	s.	Ans	wer a	fter	days [1]
							Ans	wer a	fter	_ days [1]
(c)	(i)	By drawi	ng a tang	ent, find	the gradie	ent of the	curve at ((7, 3.25).		

Answer [2]

(ii) What does this gradient represent?

Answer ______

(d)	Hazelle wishes to estimate what the mass of Kinston will be after 260 days from the
	day he was born.


She proposes to extend the graph line up to t = 260.

Justify why it is not possible to estimate the mass of Kinston in this way.

DANYAL

DANYAL

DANYAL

		12	
5	The	e first four terms in a sequence of numbers are given below.	
		$T_1 = 1^2 + 2 \times 1 = 3$	
		$T_2 = 2^2 + 3 \times 3 = 13$	
		$T_3 = 3^2 + 4 \times 5 = 29$	
		$T_4 = 4^2 + 5 \times 7 = 51$	
	(a)	Write down the 5 th line of the sequence.	
		Answer	[1]
	(b)	Prove that the n^{th} term of the sequence, T_n , is given by $3n^2 + n - 1$.	
		Prove that the n^{th} term of the sequence, T_n , is given by $3n^2 + n - 1$. Answer	
			[3]
	(c)	T_{m-1} and T_m are consecutive terms in the above sequence.	
	Fino	and and simplify an expression, in terms of m ,	
		(i) for $T_m - T_{m-1}$ and	
		DANYAL DANYAL DANYAL DANYAL Answer	
		Answer	[3]
		(ii) explain with suitable working why the difference between two consecut	tive terms
		of the sequence will always be even.	

As above [2] Answer

			100				2
6	A room	has an	enclosed	space	of	120	m3

(a) An air-conditioning (AC) unit releases cool air at a rate of x m³ per hour.

Write down an expression, in terms of x, for the number of hours which the AC unit will take to cool the room to a particular temperature.

Answer	hours [1]

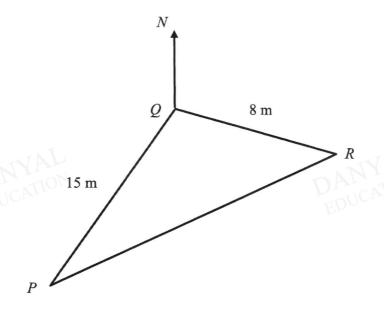
(b) When the AC unit is faulty, it will release cool air at a rate of (x - 450) m³ per hour. Write down an expression, in terms of x, for the number of hours which the faulty AC unit will take to cool the room to the same temperature.

Answer ____hours [1]

(c) It takes 30 minutes longer to cool the room when the AC unit is faulty. Write down an equation in x to represent this information and show that it reduces to $x^2 - 450x - 108000 = 0$.

DANYAL

DANYAL


Answer As above [3]

(d)	Solve the equation $x^2 - 450x - 108000 = 0$, lear places.	aving your answers correct to 2 decimal
	DANYAL EDUCATION	
		Answer $x = $ [3]
(e)	Hence, find the time it takes to cool the room unit is faulty. Give your answer correct to the nearest minute.	to the same temperature when the AC
	Give your answer correct to the nearest minute	

Answer minutes [2]

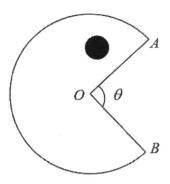
In the diagram P, Q and R represent three points on level ground. P is 15 m from Q on a bearing of 220°.

R is 8 m from Q on a bearing of 103° .

(a) Calculate the distance of P from R.

Answer	m	[3

(b) Show that $\angle PRQ = 42.1^{\circ}$, correct to 1 decimal place.


Answer ° [2]

(c) Calculate the bearing of P from R.

,		
(d)	A tower of height 10 m was built at Q . Joyce leaves R and walks towards P .	Answer ° [2]
	(i) Calculate the distance from R , where sl	he is equidistant from points Q and R .
		Answer m [2
	(ii) Calculate the greatest angle of elevation walks from R to P .	on of Joyce to the top of the tower as she

Answer

8 The diagram below shows the logo of Pac-Man. It was a popular electronic game in the 1980s.

In the diagram, OA and OB are radii to the arc and OA = OB = 5 cm. The eye of Pac-Man, as represented by the shaded circle, has a diameter of 1 cm.

During the game, the angle θ varies between 0 radians and $\frac{\pi}{2}$ radians.

- (a) Leaving your answer in terms of π and θ ,
 - (i) write down the reflex angle AOB,

	Answer		radians	[1]	
--	--------	--	---------	-----	--

(ii) find the area of major sector AOB.

Answer	cm^2	[1]	1
	 	1 -	

(b) If the length of major arc AB is 24 cm, calculate angle AOB.

Answer radians [2]

(c) Is it possible for the **maximum** length of the major arc *AB* to be 34 cm?

Justify your answer with suitable workings and/or mathematical reasons.

Answer ______

(d) The developer of Pac-Man intends to create a limited edition token of the game logo to mark the 40th anniversary of the game.

To enhance the attractiveness of the token, the designer proposed for the eye on the Pac-Man logo to be hollow and the material for the token to be acrylic.

The token will also have a thickness of 4 mm.

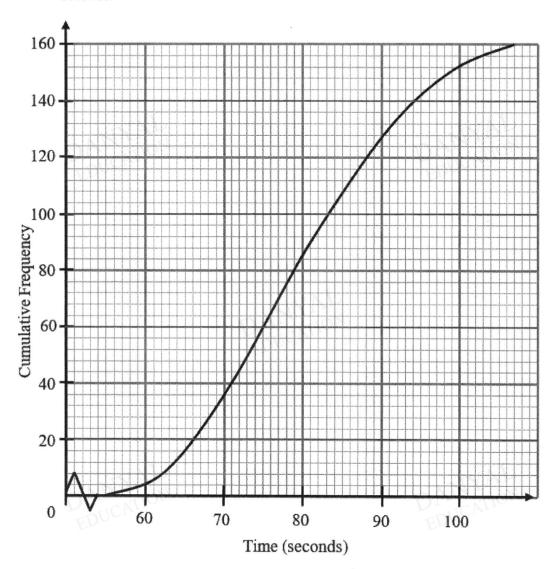
Taking $\theta = \frac{\pi}{2}$ and considering that the manufacturer charges \$0.46 per cubic centimetre of acrylic, calculate the **greatest** number of tokens that can be made with a budget of \$500.

DANYAL

DANYAL

DANYAL

DANYAL


DANYAL

Answer tokens [5]

9 (a) The Marina Costal Expressway (MCE) is Singapore's first undersea road.

The timings of 160 vehicles passing through a certain stretch of MCE on a Sunday morning were recorded.

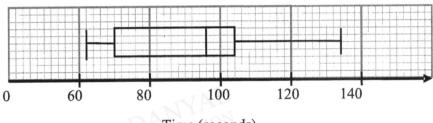
The cumulative frequency curve below shows the distribution of the timings in seconds.

- (i) Use the graph to estimate
 - (a) the median time,

Answer seconds [1]

(b) the interquartile range of the timings.

Answer _____seconds [2]


(c)	the value of x , if 30% of the vehicles took more than x seconds to pass through
	a certain stretch of MCE.

Answer
$$x =$$
 [2]

[2]

(ii) The timings of another 160 vehicles passing through the same stretch of MCE on a Monday morning were also recorded.

The box-and-whisker plot shows the distribution of the timings in seconds.

Time (seconds)

Make **two** comments to compare the timings of the vehicles on the Sunday morning and the Monday morning.

Answer	PANYAL EDUCATION E	
1.		
		••••••

		•••••
2		
۷.	••	

9	(b)	A jar c The fir To star The g withou	rst pe rt the game	game conti	o take , Emi inued	a yelle	ow bal	l wins	and th	ne gar Theo	me e	ends. ok the	se	cond	the	jar
		(i)	Find	l the p	robab	oility th	nat The	eo wins	on hi	is firs	t dra	aw.				
		(ii)	Find	I the p	robab	ility th	nat no :	fourth	draw i	is req		swer			 	[2]
												DA				[2]
		(iii)	If th	e gam	e end	s at the	e k th dr	aw, sta	te the	large		swer			 	[2]

Answer

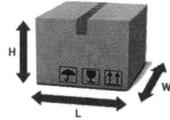
10 Veron owns a local vintage shop.

She imports vintage furniture from overseas and sells them locally.

A week ago, she came across a vintage armchair from an overseas shop and intends to import it from USA.

Below are some information that Veron has gathered.

Product information for vintage armchair


Retail Price	US\$ 380
Item Weight	34 pounds
NOTE:	
The product and parcel of	dimensions stated below are approximated.
Product Dimensions	32 x 30 x 25 inches
Parcel Length	36 inches
Parcel Width	36 inches
Parcel Height	30 inches
Parcel Weight	40 pounds

Other useful information:

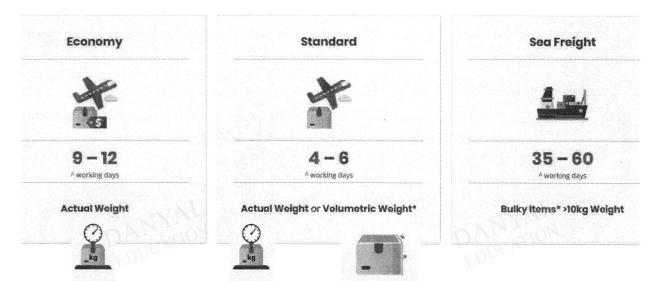
- 1 inch = 2.54 centimetres
- 1 pound = 0.454 kg
- USD 1 = SGD 1.38

What is Volumetric Weight & Actual Weight?

Volumetric Weight (kg) =
$$\frac{L \times W \times H}{5000}$$

L = Length of parcel in centimetres

W = Width of parcel in centimetres


H = Height of parcel in centimetres

Actual Weight (kg) = Parcel Weight (kg)

Source: www.vpost.com.sg

USA to Singapore Shipping Modes

[^]Working days do not include weekends, both in Singapore or product source country's and public holidays.

USA Shipping Rates

Country	Shipping Method	Base Charge	Weight Charge (Per 0.1 kg)
	Economy Air Freight	S\$13.40	S\$0.91
USA	Standard * Air Freight	S\$13.40	S\$0.91
	Sea Freight *	5\$39.90	S\$0.39

NOTE:

Air Freight and Sea Freight shipping modes are available when the chargeable weight is at least 0.5 kg and 10 kg respectively. Varied charges apply with an incremental weight break of 0.1 kg thereafter.

4E5N Preliminary Examination 2020 Mathematics Paner 2

^{*}For Standard Air Freight and Sea Freight, the chargeable weight of a package is calculated based on Actual Weight or Volumetric Weight, whichever is higher.

(a)	Usir	ng the relevant information on page 22, calculate		
	(i)	the Actual Weight in kilograms and,		
			Answer	kg [1]
	(ii)	the Volumetric Weight, in kilograms, of a vintage	e armchair.	
			e armchair.	
			Answer	kg [2]

1	Veron needs to	decide on	the shipping	method to it	mport the	vintage armo	hair from US	A

(b) Justify with calculations, a most suitable shipping method for the imported vintage armchair.

DANYAL

DANYAL

DANYAL

DANYAL

DANYAL

Answer

[6]

(c)	Suggest a sensible selling pri	ce in SGD for the importe	d vintage arm	nchair.
	Explain your answer.			
		*		
			Answer	SGD
	Answer			
		<u> </u>		
			*******************************	Г21
				[2]

~ END OF PAPER ~

DANYAL

DANYAL

	2020	HYSS 4E Preliminary Examination P1 - Mark Scheme
1.	(a)	$480 = 2^5 \times 3 \times 5 - B1$
	(b)	$k = 2 \times 3 \times 5 = 30 - B1$
	(c)	$HCF = 15 = 3 \times 5 M1$
		Smallest possible value of $x = 3^3 \times 5 = 135 A1$
2.	(a)	t = 57s - B1
2.	(b)	Acceleration = $-1.25 \text{ m/s}^2 \text{B1}$
	(ci)	$16\frac{2}{3}$ m/s B1
	(cii)	Time taken = $1140 \div 16\frac{2}{3} = 68.4s$ [M1]
		I disagree with Ben, because the second car took a longer time [A1] of 68.4s,
		compared to the 57s that the first car took for the 1140 m travelled.
3.	(a)	$\left(\frac{x^9}{y^6}\right)^{-\frac{1}{3}}$
	G)	$\left(\frac{x^9}{y^6}\right)^{-\frac{1}{3}}$
	ED	$= (\frac{y^6}{x^9})^{\frac{1}{3}} - M1$
		$= \left(\frac{y^2}{x^3}\right) A1$
	(b)	b = 16 B1
		(0.04)2 2 (0.0)2 2
4.	(a)	$(0.01)^3 m^3 = (0.3)^3 m^3$
		$(1 \times 10^{-6}) m^3 = 0.027 m^3$ M1 for scale (volume)
		$\frac{(1\times10^{-6})}{0.027}m^3=1m^3$
		$405 m^3 = 405 \times \frac{(1 \times 10^{-6})}{0.027} m^3 M1$
		$405 m^2 = 405 \times \frac{1}{0.027} m^2 = -1011$
		$= 15000 \times 10^{-6} \ m^3$
		$= 1.5 \times 10^{-2} \ m^3 A1$
	(b)	$\left(\frac{4}{3}\right)^2 = \left(\frac{SA1}{54}\right) - M1$
	DAS	$(\frac{4}{2})^2 = (\frac{10}{0}) = (\frac{3A1}{5A})$
	EDU	10/54 S4
		$(\frac{4}{3})^2 = (\frac{16}{9}) = (\frac{SA1}{54})$ $SA1 = \frac{16 \times 54}{9} = 96 m^3 - A1$
5.		Mathod 1:
5.		Method 1: For the cost to be directly proportional to the volume of paint, $C = kV$, where
		k is a constant.
		$VV_{1} = C - 62.50 \text{ and } V = 250 \text{ ml. } k = \frac{3.50}{1.50} = 0.014$
		• When C = \$3.50 and V = 250 ml, $k = \frac{3.50}{250} = 0.014$.
		• When C = \$8.40 and V = 600 ml, $k = \frac{8.40}{600} = 0.014$.
		• When C = \$13.50 and V = 1000 ml, $k = \frac{13.50}{1000} = 0.0135$ M1
		Since the values of k are not the same $(k = 0.014 \neq 0.0135)$, the cost
		(C) of the paint is not directly proportional to the volume (V) of paint
		A1

		Mathod 2.
		$\frac{\text{Method 2:}}{4 \times 250 \ ml} = 1l$
		But $\$3.50 \times 4 = \$14 \neq \$13.50 B2$
6.	(a)	$8a^3b^2 - 50ab^4$
		$=2ab^2(4a^2-25b^2)$ M1
		$=2ah^{2}(2a-5h)(2a+5h)$ $\Delta 1$
	(b)	$= 2ab^{2}(2a - 5b)(2a + 5b) A1$ $6c^{2}d - 3cd + 1 - 2c$
		= 3cd (2c - 1) + (1 - 2c) M1 or
		= 3cd (2c - 1) - (2c - 1) - M1
		= (3cd - 1)(2c - 1) - A1
7.		5 3
/•	DE	$\frac{5}{2-3y} - \frac{3}{y-1}$ $\frac{5}{2-3y} - \frac{3}{y-1}$
	ED	5(y-1)-3(2-3y)
		$= \frac{5(y-1)-3(2-3y)}{(2-3y)(y-1)} M1 \text{ or}$
		$=\frac{5y-5-6+9y}{(2-3y)(y-1)}$ M1
		$= \frac{14y - 11}{(2 - 3y)(y - 1)} - A1$
8.		$s = \sqrt[3]{pq - r^2p}$
		$s^3 = pq - r^2p$ M1 for cube-ing both sides
		$s^3 = p(q - r^2)$ M1 for extracting common factor or
		$\frac{s^3}{p} = q - r^2 - M1$
		·
		$\frac{s^3}{p} + r^2 = q - A1$
9.	(a)	D(-1.5, 24.5) B1
	(b)	x = -1.5 - B1
	(c)	$x^2 + 3x - 10 = 4$
		Draw the horizontal line $y = -8$ on the graph M1
		$x = -5.5 \text{ or } x = 2.5 \text{ A1 / B2 (Accepted range: } x \pm 0.25)$
		(Actual answers: $x = -5.24$ or $x = 2.24$)
	(d)	For $-2(x^2 + 3x - 10)$ to have no solutions, the horizontal line $y = k$ does not
		have any intersection points with the curve, and lies entirely above the
		curve B1
10.	(a)	$y \ge -\frac{2}{3}$ and $y < 3\frac{1}{3}$ M1
		$-\frac{2}{3} \le y < 3\frac{1}{3} A1$
	(b)	Smallest integer = 0 B1

11.	(a)	$A' \cup B'$ or $(A \cap B)'$ B1
	(b)	B R B2 for 6 correct answers, B1 for 3 correct answers
12.	(ai)	Angle $CDL = \frac{(8-2) \times 180^{\circ}}{8} = 135^{\circ} - B1$
	(aii)	Angle CDE (1 interior angle of regular polygon)
	DP	$= 360^{\circ} - 135^{\circ} - 75^{\circ} = 150^{\circ} - M1 \text{ or}$ $\frac{(n-2) \times 180^{\circ}}{n} = 150^{\circ}$ $180^{\circ} n - 360^{\circ} = 150^{\circ} n - M1$ $180^{\circ} n - 150^{\circ} n = 360^{\circ}$ $30^{\circ} n = 360^{\circ}$ $n = \frac{360^{\circ}}{30^{\circ}} = 12 - A1$
	(aiii)	Angle $ABC = 150^{\circ}$
		Angle $BAC = \frac{180^{\circ} - 150^{\circ}}{2} = 15^{\circ}$ (base angles of isos. triangle) B1
	(aiv)	Angle ACE = 150° - 15° - 15° = 120° M1 Angle CAE = $\frac{180^{\circ}-120^{\circ}}{2}$ = 30° (base angles of isos. triangle) A1
	(b)	Angle ABC = Angle CDE (interior angles of the regular polygon $ABCDE$) B1 $AB = CD$ (sides of the regular polygon) $BC = DE$ (sides of the regular polygon) B1 Therefore, triangles ABC and CDE are congruent (SAS).
	(c)	No, because Angle $ACE = 120^{\circ}$. For AE to be the diameter of the circle touching point C, Angle ACE must equal 90° (angles in semi-circle) B1
13.	(a)	Angle $SPQ = 42^{\circ} \times 2 = 84^{\circ}$ (PT bisected angle SPQ) Angle $PST = 180^{\circ} - 84^{\circ} = 96^{\circ}$ (interior angles) M1 or Angle $STP = 180^{\circ} - 42^{\circ} - 96^{\circ} = 42^{\circ}$ (sum of angles in a triangle) M1 Since Angle $SPT = Angle STP = 42^{\circ}$, triangle SPT is an isosceles triangle,
		and $PS = ST = 5$ cm A1

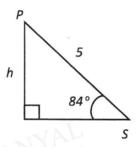
(b)	Area of triangle <i>PST</i>
	$=\frac{1}{2} \times 5 \times 5 \times \sin 96$

$$= 12.432$$

$$=12.4 \text{ cm}^2 (3 \text{ sf}) --- B1$$

(c) Method 1:

Let h be the perpendicular distance from P to RS produced.


$$\sin 84^\circ = \frac{h}{5}$$

 $h = 5 \sin 84^\circ = 4.9726 \text{ cm} --- \text{M1}$

Area of parallelogram PQRS

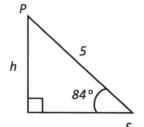
$$= PQ \times h$$

$$= 7 \times 4.9726$$

$$= 34.8082 \text{ cm}^2 --- \text{M1}$$

Area of trapezium PORT

$$=34.8082-12.432$$


$$=22.3762$$

$$= 22.4 \text{ cm}^2 - \text{A}1$$

Method 2:

Since triangle SPT is an isosceles triangle, and PS = ST = 5 cm.

$$\Rightarrow$$
 Therefore, TR = 7 - 5 = 2 cm

Let h be the perpendicular distance from P to RS produced.

$$\sin 84^{\circ} = \frac{h}{5}$$

$$h = 5 \sin 84^{\circ} = 4.9726 \text{ cm} --- \text{M1}$$

Area of trapezium PQRT

$$=\frac{1}{2}\times (sum\ of\ parallel\ sides)\times height$$

$$=\frac{1}{2} \times (7+2) \times 4.9726 --- M1$$

$$=$$
 $\frac{1}{2}$ 2.3767

$$= 22.4 \text{ cm}^2 --- \text{A1}$$

Method 3:

Area of triangle PRS

$$= \frac{1}{2} \times 5 \times 7 \times \sin 96^{\circ}$$

$$= 17.404 = 17.4 \text{ cm}^2 (3 \text{ sf}) --- \text{M1}$$

= Area of triangle
$$\overrightarrow{PQR}$$

Area of triangle PRT

$$= 17.404 - 12.432$$

$$= 4.972 = 4.97 \text{ cm}^2 (3 \text{ sf}) --- \text{M1}$$

		Area of trapezium <i>PQRT</i>
		= Area of triangle PQR + Area of Triangle PRT
		= 17.404 + 4.972
		= 22.376
		$= 22.4 \text{ cm}^2 (3 \text{ sf}) \text{A1}$
14.	(a)	Angle QRS = 90° (Angle in semi-circle) M1
14.	(a)	Aligie QNS - 90 (Angle in Semi-Circle) Wi
		$\cos SQR = \frac{8.5}{7.2 \times 2} = \frac{85}{144}$
		/,2 A 2 111
		Angle $SQR = cos^{-1} \left(\frac{85}{144} \right) = 53.82^{\circ} = 53.8^{\circ} (1 \text{ dp}) \text{M1}$
		$y^{\circ} = 53.8^{\circ} (1 \text{ dp}) (angles in the same segment) A1$
	(b)	Angle $SOR = 2 \times Angle SQR = 2 \times Angle SPR = 2 \times Angle y^{\circ}$
	` '	$=2 \times 53.82^{\circ}$
		= $107.64^{\circ} = 107.6^{\circ}$ (1 dp)(Angle at centre = 2 Angles at
		circumference) B1
	(c)	Major arc length SR
	(c)	
		$= \frac{360^{\circ}-107.64^{\circ}}{360^{\circ}} \times 2\pi (7.2) M1 \ or$
		$=\frac{252.36^{\circ}}{360^{\circ}} \times 14.4\pi - M1$
		= 31.712
		=31.7 cm (to 3 sf) A1
		EDUC
15.	(a)	Method 1:
		$\cos 55^\circ = \frac{AC}{10}$
		$AC = 10 \cos 55^{\circ} = 5.7358 \text{ cm} = 5.74 \text{ cm} \text{M1}$
		Area of triangle OCA
		$=\frac{1}{2} \times 5.7358 \times 10 \times \sin 55^{\circ} M1$
	71	= 23.492
	DIV	$= \frac{1}{2} \times 5.7358 \times 10 \times \sin 55^{\circ} M1$ = 23.492 = 23.5 cm ² (3 sf) A1
	ED	
		Method 2:
		$\sin 55^{\circ} = \frac{oc}{10}$
		$OC = 10 \sin 55^\circ = 8.1915 \text{ cm} = 8.19 \text{ cm} \text{M1 } or$
		$\cos 55^{\circ} = \frac{AC}{10}$
		$AC = 10 \cos 55^{\circ} = 5.7358 \text{ cm} = 5.74 \text{ cm} \text{M1}$
		Area of triangle OCA
		$=\frac{1}{2} \times 8.1915 \times 5.7358 M1$
		= 23.492
		5097/4 (No. 1891 - 1848-1850 - 1850 -
		$= 23.5 \text{ cm}^2 (3 \text{ sf}) \text{A1}$

15.	(b)	Method 1:
		Area of outer ring $= \pi (10)^2 - \pi (8.1915)^2$ $= 103.36 \text{ cm}^2 \text{ M1}$ Angle $OCA = 90^\circ$ (radius perpendicular to tangent) Angle $AOC = 180^\circ - 90^\circ - 55^\circ = 35^\circ$ (sum of angles in a triangle)
		Area of sector OCE = $\frac{35^{\circ}}{360^{\circ}} \times \pi (8.1915)^2$ = 20.495 cm ² M1
	DA	Area of ACE = 23.492 - 20.495 = 2.997 cm ² M1 or Therefore, shaded area = 103.36 - 2(2.997) M1 = 103.36 - 5.994
		= 97.366 = 97.4 cm ² (3sf) A1 Method 2: Area of unshaded parts = 2(Area of triangle AOC) + (Area of sectors ODE and OCF) = 2(23.492) + $\frac{360^{\circ}-35^{\circ}-35^{\circ}}{360^{\circ}} \times \pi(8.1915)^{2}$ M1 for area of sectors = 46.984 + 169.81 = 216.794 cm ² M1
	DA	Area of large circle $= \pi (10)^{2}$ Therefore, shaded area $= \pi (10)^{2} - 216.794 M1$
	ED	= 97.365 = 97.4 cm ² (3sf) A1
16.	(ai)	$DE = \frac{6 - (-2)}{5 - (-1)} = \frac{8}{6} = \frac{4}{3} = 1\frac{1}{3} B1$
	(aii)	$\frac{4}{3} \times Gradient \ of \ FG = -1$ $Gradient \ of \ FG = -1 \div \frac{4}{3} = -\frac{3}{4} M1$
		At $F(5, -2)$, $y = -\frac{3}{4}x + c$ $(-2) = -\frac{3}{4}(5) + c \implies c = 1\frac{3}{4}$
		Therefore, the equation of the line FG is $y = -\frac{3}{4}x + 1\frac{3}{4}$ A1

	(bi)	Area of triangle DEF						
		$=\frac{1}{2} \times 8 \times 6 - M1$						
		$= 24 \text{ units}^2 A1$						
	(bii)	$DE = \sqrt{(6 - (-2))^2 + (5 - (-1))^2} = \sqrt{(8)^2 + (6)^2} = \sqrt{100} = 10 \text{ units}$						
		M1						
		Area of triangle <i>DEF</i>						
		$=\frac{1}{2} \times DE \times FG = \frac{1}{2} \times 10 \times FG = 24 \text{ units}^2$						
		$FG = \frac{24}{5}$						
		= 4.8 units A1						
		110 (411/6)						
17.	(ai)	Median timing for girls = 11.75 s B1 (Median: 12.5^{th} position)						
	(aii)	9.4 + 2.8 = 12.2 s						
	DAI	y = 2 - B1						
	(aiii)	Probability (girl runs slower than 11.7 s) = $\frac{12}{24} = \frac{1}{2}$ B1						
	(aiv)	Probability (two students have a timing of 10.5 s and under)						
		$=\frac{8}{39}\times\frac{7}{38}=\frac{28}{741}$ B1						
	(b)	No, I do not agree.						
	(6)	The 3G boys had a higher median [B1] of 11.0 s (Median: 8 th position),						
		compared to the median of the 3B boys of 10.7 s, which means that the 3G						
		boys had slower shuttle run timings and hence, worse performance B2						
		DISCATION						

DANYAL

Name:	Index Number:	Class:

HUA YI SECONDARY SCHOOL

4E5N

Preliminary Examination

4E5N

MATHEMATICS

4048/02

Paper 2

27 August 2020

2 hours 30 minutes

Candidates to answer on the Question Paper.

MARKING SCHEME

The number of marks is given in brackets [] at the end of each question or part question.

The total marks for this paper is 100.

For Examiner's Use

This document consists of **27** printed pages including the cover page. © HYSS 2020

No part of this document may be reproduced in any form or transmitted in any form or by any means without the prior permission of Hua Yi Secondary School.

[Turn Over

Mathematical Formulae

Compound Interest

Total amount =
$$P(1 + \frac{r}{100})^n$$

Mensuration

Curved surface area of a cone = $\pi r l$

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab\sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc\cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard Deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

1	(a)	Simplify	$24a^{2}b^{3}$	$\div 15a^3b^{-2}$	leaving your	answer in	positive	index :	form.
---	-----	----------	----------------	--------------------	--------------	-----------	----------	---------	-------

$$24a^{2}b^{3} \div 15a^{3}b^{-2}$$

$$= \frac{8}{5}a^{2-3}b^{3+2} - -M1 \text{ (Apply BOTH indices laws correctly)}$$

$$= \frac{8b^{5}}{5a} - -A1$$

Answer [2]

(b) Simplify
$$\frac{8w^2-2}{6w^2-7w-5}$$
.

$$\frac{8w^{2}-2}{6w^{2}-7w-5} = \frac{2(4w^{2}-1)}{6w^{2}-7w-5} -M1 \text{ (Numerator: cross-factorise OR by HCF)}$$

$$= \frac{2(2w+1)(2w-1)}{(3w-5)(2w+1)} -M1 \text{ (Base: cross-factorise)}$$

$$= \frac{2(2w-1)}{3w-5} OR \frac{4w-2}{3w-5} -A1$$

Answer [3]

(c) The total surface area of a Rubik's cube is given by $294x^4$ cm².

Find an expression for the volume of the Rubik's cube in the form px^n , where p and n are integers.

Area of 1 square face =
$$\frac{294x^4}{6}$$
$$= 49x^4 \text{ cm}^2 - -M1$$

Length of cube =
$$\sqrt{49x^4}$$

= $7x^2$ cm $-M1$ (express length in terms of x)

Volume of cube =
$$y^3$$

= $(7x^2)^3$
= $343x^6$ cm³ --A1

Answer cm³ [3]

(d) In a recent study, it was reported that usually about 8% of the world's emperor penguin population breeds at Halley Bay.

The estimated number of emperor penguin pairs that bred in that area increased from 11 000 pairs in 2015 to 14 610 pairs in 2018.

The number of breeding pairs are expected to increase by r % every year. Find the value of r.

By Compound Interest formula:

Total amount =
$$P(1 + \frac{r}{100})^n$$

 $14610 = 11000 \left(1 + \frac{r}{100}\right)^3 --M1$
 $\sqrt[3]{\frac{14610}{11000}} = 1 + \frac{r}{100} --M1$ (takes cube root)
 $r = 9.92$ (3 s.f.) $--A1$

DANYAL

DANYAL

- 2 (a) Elvin's car has the following specifications:
 - Fuel capacity: 45 litres
 - Estimated fuel consumption: 31.6 miles per gallon (mpg)

It is given that 1 mpg = 0.354 km per litre.

He drove the car for 280 kilometres with a full tank of fuel and was left with 15 litres of petrol.

Showing your working clearly, determine if the actual fuel consumption of the car is more or less than the estimated fuel consumption.

➤ Fuel Capacity = Full Tank = 45 litres

Actual Consumption

Amount of fuel used = 30 litres

$$30l \rightarrow 280km$$

$$1l \rightarrow 280 \div 30$$

$$= 9.33333km - -M1 \text{ (convert to } km/l)$$

$$0.354 \, km / l \rightarrow 1 \, mpg$$

 $9.33333 \, km / l \rightarrow 9.33333 \div 0.354$
 $= 26.36534 \, mpg - -M1 \text{ (convert to } mpg\text{)}$

From above, we see that the <u>actual fuel consumption</u> is **more than** the <u>estimated</u>, since it covers a shorter distance for each gallon of fuel. --- A1

Alternative possible methods:

- Calculations and comparisons done based on amount of petrol used.
- Calculations and comparisons done based on amount of petrol left.

Answer

(b) The force, F, between two particles is inversely proportional to the square of the distance, D, between them.

The distance between two particles is increased by 40%.

Calculate the percentage reduction in the force between the particles, leaving your answer correct to 1 decimal place.

$$F = \frac{k}{D^2}$$
, where k is a constant

When distance increased BY 40%, new distance, $d_2 = 140\%$ $\Rightarrow d_2 = 1.4D$

$$\therefore F_2 = \frac{k}{\left(1.4D\right)^2} \quad --M1$$

Decrease in force = $F - F_2$

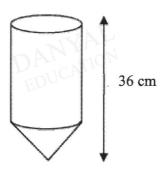
$$= \frac{k}{D^2} - \frac{k}{\frac{49}{25}D^2} - M1$$
$$= \frac{24}{49} \left(\frac{k}{D^2}\right)$$

Percetange reduction in force =
$$\frac{\frac{24}{49} \left(\frac{k}{D^2}\right)}{\left(\frac{k}{D^2}\right)} \times 100\%$$
$$= 48 \frac{48}{49} \%$$

49
$$\approx 49.0\%$$
 (to 1 d.p.) $--A1$

Answer [3]

(c) The diagram shows a vessel made up of a conical base and an open cylindrical top.

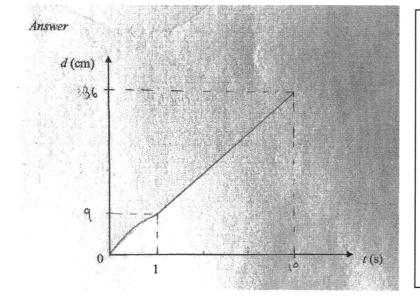

The vessel has a depth of 36 cm.

The depth of the conical base is $\frac{1}{4}$ of the entire depth of the vessel.

It took 10 seconds to fill up the vessel fully.

After t seconds, the depth of the liquid is d cm.

(i) Find the depth of the conical base.



$$\frac{36}{4} = 9cm \quad --B1$$

Answer ...

cm [1]

(ii) On the axes provided below, sketch a graph to show the change in the depth of liquid in the vessel within 10 seconds.

➤ Graph for cone:
Increasing curve with
decreasing gradient **OR** draws
str. line for the 2nd section
--- B1

To obtain full 2 marks:

- Must draw correct curve and str. line
- ➤ Indicates correct values of (10, 36), (1, 9) [optional] & has correct proportion on axes --- B1

3 A fitness centre offers daily zumba classes for morning and afternoon classes.

On every weekday morning, 15 males and 10 females will attend the zumba class, while 20 males and 15 females attend the afternoon zumba class.

This information may be represented by the matrix **D** below.

males females

$$\mathbf{D} = \begin{pmatrix} 15 & 10 \\ 20 & 15 \end{pmatrix}$$
 morning afternoon

On each weekend, there will be 30 males and 20 females attend the morning class, while 25 males and 25 females will attend the afternoon class.

(a) Represent the number of people attending the fitness class on each weekend by a 2×2 matrix **E**.

$$E = \begin{pmatrix} 30 & 20 \\ 25 & 25 \end{pmatrix} \quad -B1$$

$$Answer \quad \mathbf{E} =$$
[1]

(b) Evaluate the matrix S = 5D + 2E.

$$S = 5 \begin{pmatrix} 15 & 10 \\ 20 & 15 \end{pmatrix} + 2 \begin{pmatrix} 30 & 20 \\ 25 & 25 \end{pmatrix}$$
$$= \begin{pmatrix} 135 & 90 \\ 150 & 125 \end{pmatrix} \quad --B1$$

Answer
$$S =$$
 [1]

(c) The fitness centre charges each person \$10 for a morning session and \$15 for an afternoon session. Represent the charges by a row matrix **P**.

$$P = \begin{pmatrix} 10 & 15 \end{pmatrix} \quad --B1$$

Answer P = [1]

(d) Evaluate the matrix T = PS.

$$T = (10 \quad 15) \begin{pmatrix} 135 & 90 \\ 150 & 125 \end{pmatrix}$$
$$= (1350 + 2250 \quad 900 + 1875)$$
$$= (3600 \quad 2775) \quad --B1$$

Answer T = [1]

(e) State what the elements of T represent.

Answer The elements of T represent the total charges of Zumba classes for all male and female participants respectively, over a 1-week period. ---- B1 [1]

4 Hazelle recorded the mass of her newborn nephew, Kinston, every 7 days.

The table below shows some of the values she recorded.

Age of Kinston	0	7	14	21	28	35	42	49	56
(t days)									
Mass (m kg)	3.50	3.25	3.15	3.15	3.40	3.70	4.10		4.90

(a)	Answer this	part of the	question on	the grid	on page	12
-----	-------------	-------------	-------------	----------	---------	----

On the axes provided, draw a horizontal t-axis for $0 \le t \le 60$ and a vertical m-axis for $2 \le m \le 5$.

Plot the points given in the table and join them with a smooth curve.

- **(b)** Use your graph to estimate
 - (i) the mass of Kinston after 49 days,

From graph, at 49th day, the mass is 4.5 kg. --- A1Acceptable range: 4.45 to 4.55 kg (allowance of $\pm 0.05 \text{ kg}$)

Answer kg [1]

(ii) when Kinston's mass was least,

At minimum point, it was after 17 days that Kinston's mass was least. --- A1

Acceptable range: 16 to 18 days (allowance of ± 1 day)

Answer after days [1]

[3]

(iii) when Kinston regained his birth mass.

From graph, it was after 31 days that Kinston regained his initial mass. --- A1

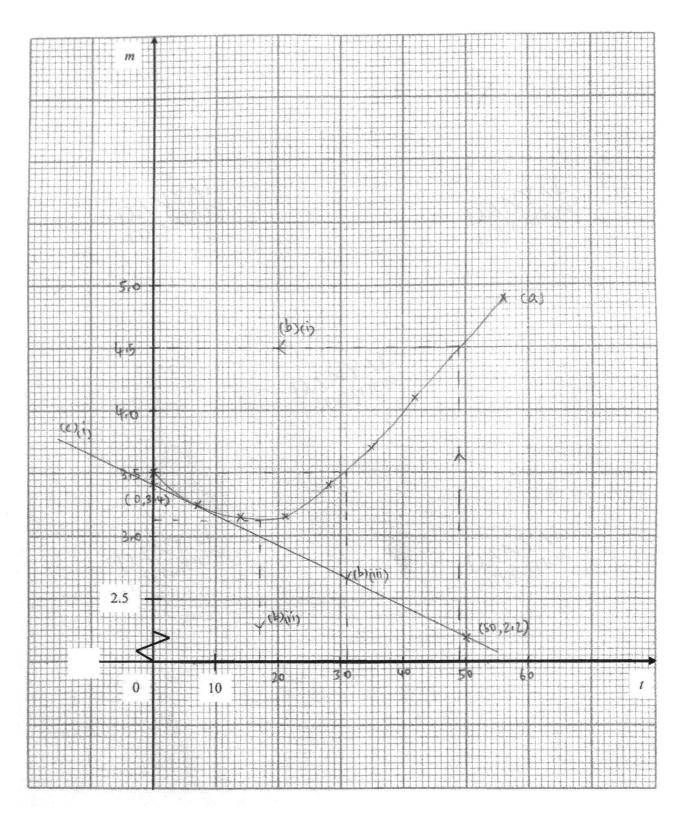
Acceptable range: 30 to 32 days (allowance of ± 1 day)

Answer after days [1]

- (c) (i) By drawing a tangent, find the gradient of the curve at (7, 3.25).
 - > Draw acceptable tangent at (7, 3.25) --- A1
 - Points used: (0, 3.4) & (50, 2.2), Gradient = -0.024 --A1
 - Acceptable range: $\underline{-0.0204}$ to $\underline{-0.0276}$ (15% allowance from above gradient)

Answer		[2]
--------	--	-----

(ii) What does this gradient represent?


	>	It represents the <u>rate of change</u> in Kinston's <u>mass</u> after 7 days. OR
	>	It represents the rate of loss of mass in Kinston after 7 days. OR
	>	It represents how fast Kinston decreased in mass after 7 days B1
Anşw	er	<u>-</u>
		[1]
(d)	Н	azelle wishes to estimate what the mass of Kinston will be after 260 days from the
	da	ay he was born.
	SI	by he was born. The proposes to extend the graph line up to $t = 260$.
	Ju	sstify why it is not possible to estimate the mass of Kinston in this way.
	>	The mass of Kinston may not always increase or decrease by the same amount.
		OR
		The mass of Kinston may not change at a constant rate. OR
		Day 365 is too far from Day 70 for extrapolation B1
Answ	er	

4(a) Graph as plotted below:

Mark allocation: Scale --- B1, Smooth curve --- B1, Accurate plot of points --- B1

5 The first four terms in a sequence of numbers are given below.

$$T_1 = 1^2 + 2 \times 1 = 3$$

 $T_2 = 2^2 + 3 \times 3 = 13$
 $T_3 = 3^2 + 4 \times 5 = 29$
 $T_4 = 4^2 + 5 \times 7 = 51$

(a) Write down the 5th line of the sequence.

$$T_5 = 5^2 + 6 \times 9 = 79 - -B1$$

Answer [1]

(b) Prove that the n^{th} term of the sequence, T_n , is given by $3n^2 + n - 1$.

$$T_n = n^2 + (n+1)(2n-1)$$
 --M1 (1st 2 parts), --M1 (linear seq)
= $n^2 + 2n^2 - n + 2n - 1$
= $3n^2 + n - 1$ (proven) --A1

Answer As above [3]

(c) T_{m-1} and T_m are consecutive terms in the above sequence.

Find and simplify an expression, in terms of m,

(i) for
$$T_m - T_{m-1}$$
 and

$$T_{m} - T_{m-1} = 3m^{2} + m - 1 - \left[3(m-1)^{2} + (m-1) - 1\right] - -M1 \text{ (Able to write } T_{m-1})$$

$$= 3m^{2} + m - 1 - \left[3(m^{2} - 2m + 1) + m - 2\right] - -M1 \text{ (expand special product)}$$

$$= 3m^{2} + m - 1 - 3m^{2} + 6m - 3 - m + 2$$

$$= 6m - 2 - -A1$$

Answer [3]

(ii) explain with suitable working why the difference between two consecutive terms of the sequence will always be even.

From (c)(i), we observe that the difference of 2 consecutive terms is

$$6m-2=2(3m-1)$$
 --M1 (Factorise HCF 2)

Since the expression has a factor of 2, it means that the expression will result will be divisible by 2, hence resulting in an even sequence. --- A1

Answer As above [2]

- 6 A room has an enclosed space of 120 m³.
 - (a) An air-conditioning (AC) unit releases cool air at a rate of x m³ per hour.

 Write down an expression, in terms of x, for the number of hours which the AC unit will take to cool the room to a particular temperature.

No. of hours needed for AC unit to cool the room = $\frac{120}{x}$ hours ----- B1

Answer hours [1]

(b) When the AC unit is faulty, it will release cool air at a rate of (x - 450) m³ per hour. Write down an expression, in terms of x, for the number of hours which the faulty AC unit will take to cool the room to the same temperature.

No. of hours needed for faulty AC unit to cool the room = $\frac{120}{x-450}$ hours ---- B1

Answer hours [1]

(c) It takes 30 minutes longer to cool the room when the AC unit is faulty. Write down an equation in x to represent this information and show that it reduces to $x^2 - 450x - 108000 = 0$.

Faulty AC timing = Normal AC timing + 0.5 hours

$$\frac{120}{x-450} = \frac{120}{x} + \frac{1}{2} - --M1 \quad \text{(forms equation)}$$

$$\frac{120}{x-450} = \frac{240+x}{2x}$$

$$240x = (240+x)(x-450) - --M1 \quad \text{(removes denominator)}$$

$$240x = 240x - 108000 + x^2 - 450x$$

$$x^2 - 450x - 108000 = 0 \quad \text{(shown)} \quad ---A1$$

(d) Solve the equation $x^2 - 450x - 108000 = 0$, leaving your answers correct to 2 decimal places.

$$x^{2} - 450x - 108000 = 0$$

$$x = \frac{450 \pm \sqrt{(-450)^{2} - 4(1)(108000)}}{2(1)} - -M1$$

$$x = -173.28 \quad or \quad x = 623.27754 \approx 623.28 \quad (2 \text{ d.p.}) - -- A2$$

Answer
$$x =$$
 [3]

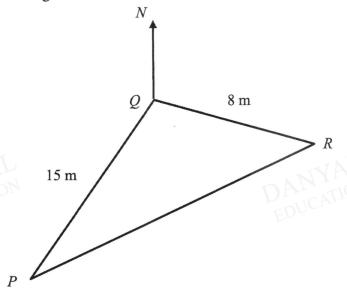
(e) Hence, find the time it takes to cool the room to the same temperature when the AC unit is faulty.

Give your answer correct to the nearest minute.

Since x is a volume quantity, it cannot be negative and so x = -173.28 is rejected.

Time taken to cool the room when to the same temperature when the AC unit is faulty

$$= \frac{120}{623.27754 - 450} --- M1$$
$$= 0.69253 \text{ hours}$$


= 42 min (to nearest min)
$$---A1$$

Answer minutes [2

7 In the diagram P, Q and R represent three points on level ground.

P is 15 m from Q on a bearing of 220° .

R is 8 m from Q on a bearing of 103° .

(a) Calculate the distance of P from R.

By Cosine Rule:

$$PR^2 = 15^2 + 8^2 - 2(15)(8)\cos(220^\circ - 103^\circ)$$
 -- M2 (angle, correct substitution)
 $PR = 19.948878$
 $\approx 19.9 \text{m}$ -- A1

Answer m [3]

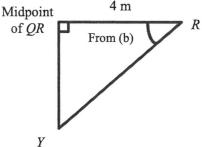
(b) Show that $\angle PRQ = 42.1^{\circ}$, correct to 1 decimal place.

By Sine Rule:

$$\frac{\sin \angle PRQ}{15} = \frac{\sin 117^{\circ}}{19.948878} --M1$$

$$\angle PRQ = 42.06455^{\circ}$$

$$\approx 42.1^{\circ} --A1 \text{ (shown)}$$


(c) Calculate the bearing of P from R.

Bearing of P from R

=
$$360^{\circ} - 042.1^{\circ} - (180^{\circ} - 103^{\circ})$$
 (can use $\angle PRQ$ from part b) M1
= $240.9^{\circ} - B1$

- *Answer* ° [2]
- (d) A tower of height 10 m was built at Q. Joyce leaves R and walks towards P.
 - (i) Calculate the distance from R, where she is equidistant from points Q and R.
- Let the point where Joyce stops on RP be Y.
- To be equidistant from line QR, Y is the <u>intersection</u> of the perpendicular bisector of line QR with RP.

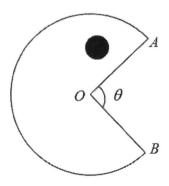
$$\cos 42.1^{\circ} = \frac{4}{YR} \quad -M1$$
$$YR \approx 5.39 \text{m} \quad --A1$$

*NOTE: Final answer is still 5.39 m if student uses more d.p. for angle PRQ.

Answer m [2]

(ii) Calculate the **greatest** angle of elevation of Joyce to the top of the tower as she walks from R to P.

Let <u>perpendicular distance</u> from Q to RP be QA and the <u>top</u> of the tower be T.


In triangle QAR,
$$\sin 42.1^{\circ} = \frac{QA}{8} - M1$$

 $QA \approx 5.36341m$

In triangle
$$TQA$$
,
$$\tan \angle TAQ = \frac{10}{5.36341} --M1$$
Greatest angle of elevation, $\angle TAQ = 61.8^{\circ} --A1$

*NOTE: Final answer is still 61.8° if student uses more d.p. for angle PRQ.

Answer ° [3]

8 The diagram below shows the logo of Pac-Man. It was a popular electronic game in the 1980s.

In the diagram, OA and OB are radii to the arc and OA = OB = 5 cm. The eye of Pac-Man, as represented by the shaded circle, has a diameter of 1 cm.

During the game, the angle θ varies between 0 radians and $\frac{\pi}{2}$ radians.

- Leaving your answer in terms of π and θ , (a)
 - write down the reflex angle AOB, (i)

$$(2\pi - \theta)$$
 radians ---- B1

radians [1] Answer

find the area of major sector AOB. (ii)

Area of major sector
$$AOB = \frac{1}{2}(5)^2(2\pi - \theta)$$

= $12.5(2\pi - \theta)$ radians $--B1$

Answer

If the length of major arc AB is 24 cm, calculate angle AOB. EDUCATION **(b)**

Major arc
$$AB = 24$$

$$24 = 5\left(2\pi - \theta\right) - -M1$$

$$\theta = 2\pi - 4.8$$

$$=1.48319 \approx 1.48 \text{ radians } --A1$$

radians [2] Answer

(c)	Is it possible for the maximum length of the major arc AB to be 34 cm?
	Justify your answer with suitable workings and/or mathematical reasons.

For maximum length of major arc AB, it means that $\theta = 0$ radians thus, major arc AB becomes a circle of radius 5 cm.

Circumference of circle = $2\pi(5)$ --M1

$$=31.4159 \approx 31$$
 cm (nearest whole number)

From above, it the largest possible value for major arc AB when rounded to nearest whole number can only 31 cm and not 34 cm. Thus, it will not be possible. ---- A1

Answer

(d) The developer of Pac-Man intends to create a limited edition token of the game logo to mark the 40th anniversary of the game.

To enhance the attractiveness of the token, the designer proposed for the eye on the Pac-Man logo to be hollow and the material for the token to be acrylic.

The token will also have a thickness of 4 mm.

Taking $\theta = \frac{\pi}{2}$ and considering that the manufacturer charges \$0.46 per cubic centimetre of acrylic, calculate the **greatest** number of tokens that can be made with a budget of \$500.

When $\frac{\pi}{2}$ radians = 90°, the major sector AOB is $\frac{3}{4}$ of a circle.

*Award M2 for Area of major sector AOB and Area of eye:

Area of major sector
$$AOB = \frac{3}{4}\pi(5)^2 = \frac{75}{4}\pi \approx 58.904\,862 \text{ cm}^2$$

OR

Area of eye =
$$\pi (0.5)^2 = \frac{\pi}{4} = 0.785398 \text{ cm}^2$$

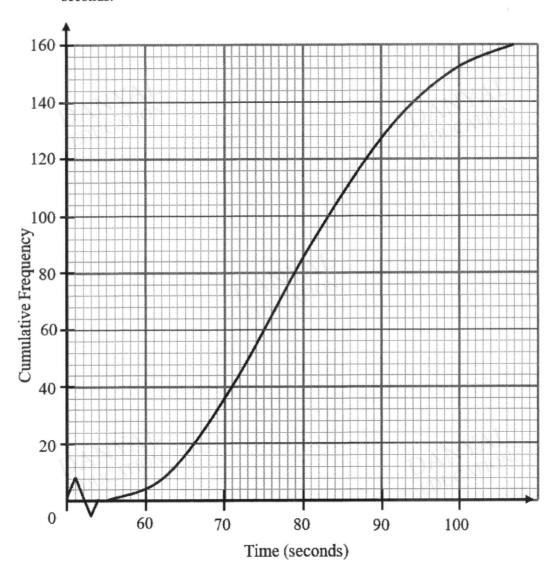
Cross-sectional area of manufactured token = $\frac{75}{4}\pi - \frac{\pi}{4}$

$$=18.5\pi \approx 58.119464 \text{ cm}^2$$

Volume of 1 token =
$$18.5\pi \times 0.4$$

$$= 7.4\pi cm^3 \approx 23.247786 --M1(ECF)$$

No. of tokens made with budget =
$$500 \div (7.4\pi \times 0.46)$$
 $--M1(ECF)$


=
$$46.755 \approx 46$$
 (nearest whole number) $--A1$

Answer tokens [5]

9 (a) The Marina Costal Expressway (MCE) is Singapore's first undersea road.

The timings of 160 vehicles passing through a certain stretch of MCE on a Sunday morning were recorded.

The cumulative frequency curve below shows the distribution of the timings in seconds.

- (i) Use the graph to estimate
 - (a) the median time,

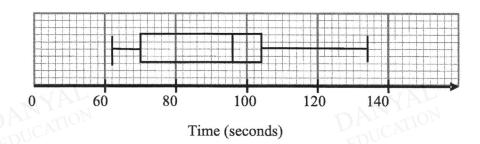
Median = 79 s --- B1

Answer see	conds	[1]
------------	-------	-----

(b) the interquartile range of the timings.

$$Q_3 = 120$$
th term, $Q_1 = 40$ th term
 $IQR = 88 - 71 - -M1$
 $= 17s - -A1 OR B2$

(c) the value of x, if 30% of the vehicles took more than x seconds to pass through a certain stretch of MCE.


$$P_{70} = 112$$
th term $--M1$
 $x = 86 --A1$ OR $B2$

Alternative solution:

Answer
$$x =$$
 [2]

(ii) The timings of another 160 vehicles passing through the same stretch of MCE on a Monday morning were also recorded.

The box-and-whisker plot shows the distribution of the timings in seconds.

Make **two** comments to compare the timings of the vehicles on the Sunday morning and the Monday morning.

	Sunday Morning	Monday Morning
Median	79 seconds	96 seconds
IQR	17 seconds	34 seconds

Answer

1.	Median of Sunday	morning is	of a lower	value	compared	to that	of Monday.
----	------------------	------------	------------	-------	----------	---------	------------

This means that the vehicles generally take a shorter time to pass through that certain stretch of MCE. ---- B1

The interquartile range of Sunday morning is of a lower value compared to that of Monday. This means that the vehicles are generally more consistent in their timings. ---- B1

[2]

A jar contains 10 identical balls of which 4 are pink and 6 are yellow. 9 (b)

The first person to take a yellow ball wins and the game ends.

To start the game, Emily took the first draw and Theo took the second draw.

The game continued with them taking turns, to draw a ball from the jar without replacement.

Find the probability that Theo wins on his first draw. (i)

P (Theo wins on his 1^{st} draw) = P (pink, yellow)

$$= \frac{4}{10} \times \frac{6}{9} \quad -M1$$

$$= \frac{4}{15} \quad -A1 \quad OR \quad B2$$

$$Answer \qquad [2]$$

Find the probability that no fourth draw is required. (ii)

P (no 4th draw needed)

= P (yellow) + P (pink, yellow) + P (pink, pink, yellow)

$$= \frac{6}{10} + \left(\frac{4}{10} \times \frac{6}{9}\right) + \left(\frac{4}{10} \times \frac{3}{9} \times \frac{6}{8}\right) \quad --M1$$

$$=\frac{29}{30}$$
 --A1

(iii) If the game ends at the k^{th} draw, state the largest value of k.

There are only 4 pink balls, so the 1st chance to pick a yellow ball, if all previous draws fail is on the 5th draw. So, k = 5. ---- B1

Answer [1]

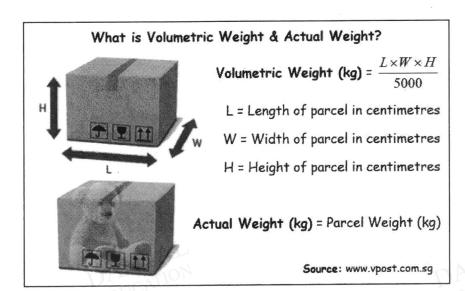
Veron owns a local vintage shop. She imports vintage furniture from overseas and sells them locally.

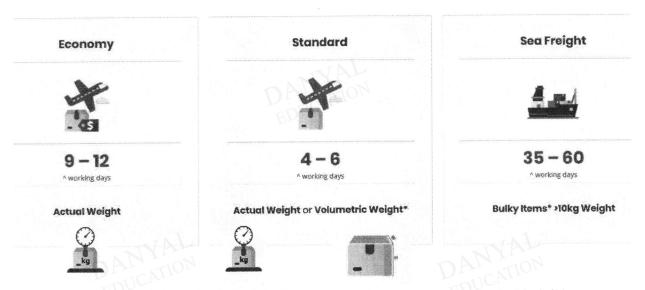
A week ago, she came across a vintage armchair from an overseas shop and intends to import it from USA.

Below are some information that Veron has gathered.

Product information for vintage armchair

Retail Frice	034 380		
Item Weight	34 pounds		
NOTE:	2054		
The product and parcel d	imensions stated below are approximated.		
Product Dimensions	32 x 30 x 25 inches		
Parcel Length	36 inches		
Parcel Width	36 inches		
Parcel Height	30 inches		
Parcel Weight	40 pounds		


US\$ 380


Other useful information:

Retail Price

- 1 inch = 2.54 centimetres
- 1 pound = 0.454 kg
- USD 1 = SGD 1.38

USA to Singapore Shipping Modes

^Working days do not include weekends, both in Singapore or product source country's and public holidays.

*For Standard Air Freight and Sea Freight, the chargeable weight of a package is calculated based on

Actual Weight or Volumetric Weight, whichever is higher.

USA Shipping Rates

Country	Shipping Method	Base Charge	Weight Charge (Per 0.1 kg)
USA	Economy Air Freight	5\$13.40	S\$0.91

		-
Standard * Air Freight	S\$13.40	S\$0.91
Sea Freight *	5\$39.90	5\$0.39

NOTE:

Air Freight and Sea Freight shipping modes are available when the chargeable weight is at least 0.5 kg and 10 kg respectively. Varied charges apply with an incremental weight break of 0.1 kg thereafter.

- (a) Using the relevant information on page 23, calculate
 - (i) the Actual Weight in kilograms and,

Actual weight =
$$40 \times 0.454$$

= 18.16 kg $--B1$

Answer kg [1]

(ii) the Volumetric Weight, in kilograms, of a vintage armchair.

Volumetric weight =
$$\frac{(36 \times 2.54) \times (36 \times 2.54) \times (30 \times 2.54)}{5000} --M1$$
= 127.42581 kg
= 127 kg --A1

Answer kg [2]

Veron needs to decide on the shipping method to import the vintage armchair from USA.

(b) Justify with calculations, a most suitable shipping method for the imported vintage armchair.

NOTE:

- Weight charge of 0.1 kg \rightarrow <u>Use 1 d.p</u> for the actual/volumetric weights
- All marks in this part of the qn can apply ECF.

Shipping Mode: Economy (uses Actual Weight)

Amount to pay = Base Charge + Incremental Weight Charge

=
$$13.40 + \left(\frac{18.2}{0.1} \times 0.91\right) - E1$$

 $\approx $179.02 (2 d.p.) - EA1$

Shipping Mode: Standard (uses Volumetric Weight since it's higher than actual weight)

Amount to pay = Base Charge + Incremental Weight Charge

=13.40 +
$$\left(\frac{127.4}{0.1} \times 0.91\right)$$
 --S1
 $\approx 1172.74 (2 d.p.)

Shipping Mode: Sea Freight (uses Volumetric Weight since it's higher than actual weight)

Amount to pay = Base Charge + Incremental Weight Charge

= 39.90 +
$$\left(\frac{127.4}{0.1} \times 0.39\right)$$
 --M1 (uses volumetric weight)
 $\approx $536.76 \ (2 \text{ d.p.})$ --MA1

Answer Veron should import the armchair by the Economy class of air freight because

it is the cheapest among all 3 shipping modes. --- A1 (ecf)

(c) Suggest a sensible selling price in SGD for the imported vintage armchair. Explain your answer.

NOTE:

• All marks in this part of the qn can apply ECF.

Total cost of importing armchair = Shipping Fees + Cost price of armchair

$$=179.02 + (380 \times 1.38)$$
$$= $703.42 --M1(ecf)$$

- To ensure that she makes a profit, Veron can sell at any price **above \$703** (rounded to nearest dollar), depending on how much profit she wants to make.
- Suggested selling price: \$900 ---- A1 (ecf)

		Answer	SGD
Answer			
	NOT TAKE	***************************************	[2]

~ END OF PAPER ~

DANYAL