CANDIDATE

CLASS

INDEX NUMBER

MATHEMATICS

READ THESE INSTRUCTIONS FIRST

Write your Centre number, index number and name on all the work you hand in. Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 80 .

Compound interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\begin{aligned}
& \text { Curved surface area of a cone }=\pi r l \\
& \text { Surface area of a sphere }=4 \pi r^{2} \\
& \text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
& \text { Volume of a sphere }=\frac{4}{3} \pi r^{3} \\
& \text { Area of triangle } A B C=\frac{1}{2} a b \sin C
\end{aligned}
$$

Arc length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

Answer all the questions.

1 Simplify $\left(\frac{16 b^{2}}{c^{6}}\right)^{-\frac{3}{2}}$.

Answer

2 Two solid cones A and B are geometrically similar.

The heights of the two cones are 15 cm and 10 cm .
Given that the volume of A is $(3 x+1) \mathrm{cm}^{3}$ and the volume of B is $x \mathrm{~cm}^{3}$, calculate the value of x.

3 Solve the inequalities $2 \leq 3 x-1<2 x+8$.

Answer

4 The graph shows the average daily revenue for a shop over a number of years.

State one aspect of the graph that may be misleading and explain how this may lead to a misinterpretation of the graph.

Answer

\qquad
\qquad
$5 n$ is a positive integer.
Show that $(5 n+2)^{2}-25 n^{2}$ is a multiple of 4 for all integer values of n. Answer
$6 m$ is directly proportional to n^{2}.
It is known that $m=12$ for a particular value of n.
Find the value of m when this value of n is decreased by 20%.

7 (a) Sketch the graph of $y=-(x-1)(x+3)$ on the axes below.
Indicate clearly the x-intercepts and y-intercept of the graph.

(b) Write down the equation of the line of symmetry of $y=-(x-1)(x+3)$.

Answer

8 An area of $16 \mathrm{~cm}^{2}$ on a map represents an actual area of $4 \mathrm{~km}^{2}$.
Calculate
(a) the actual area, in km^{2}, that is represented by an area of $30 \mathrm{~cm}^{2}$ on the map,
\qquad km^{2}
(b) the actual distance, in km , that is represented by 12 cm on the map.

It is given that $E B$ is perpendicular to $A C, A E=D C, B C=B E$.

(a) Prove that triangle $A B E$ is congruent to triangle $D B C$.

Answer
(b) Given that the area of triangle $A B E=10 \mathrm{~cm}^{2}$ and D is the midpoint of $B E$, calculate the area of triangle $B E C$.

> Answer cm^{2}

10 The diagram shows a triangle $A B C$.

(a) On the diagram, construct the bisector of angle $C A B$.
(b) By constructing a suitable perpendicular bisector on the same diagram, shade the region inside triangle $A B C$ that is closer to $A C$ than $A B$ and closer to A than to C.

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

State the correct figure for each of the following equations.
(a) $y=3^{x}$

> Answer Figure
(b) $y=\frac{2}{x}$
(c) $y=-x-2$

A piece of elastic 12 cm long, hangs from a nail N, as shown in the figure above.
When a mass of m grams is attached to the lower end, the length of the elastic increases to $L \mathrm{~cm}$. For every 100 grams which is attached, the length of the elastic increases by 3 cm .
(a) Calculate the length of the piece of elastic when a mass of 200 grams is attached to it.

Answer
cm
[1]
(b) If the length of the piece of elastic is 24 cm , calculate the mass that is attached to it.

> Answer .. g
(c) Write down a formula connecting the length of the elastic L, and the mass m, which is attached to it.

A marble is chosen at random and not replaced.
(a) Write down, in terms of n, the probability that the marble is yellow.

Answer

A second marble is chosen at random.
(b) The probability that the second marble chosen is yellow is $\frac{4}{9}$.

Calculate the number of yellow marbles in the bag.

Answer

[2]

14 Rachel invests a certain amount of money in an account.
The balance, $\$ A$, of the account after t years is given by the formula $A=k \times 1.02^{t}$, where k is a constant.

When $t=2, A=52020$.
(a) By finding the value of k, calculate the amount of money Rachel invests in the account at the start.

Answer \$
(b) Calculate the percentage increase in the balance over 5 years.

Answer $\%$

Class A

Marks (x)	Frequency
$0<x \leq 5$	6
$5<x \leq 10$	15
$10<x \leq 15$	22
$15<x \leq 20$	5

Class B

Mean $=10.5$
Standard Deviation $=3.5$

(a) For Class A, calculate an estimate for the
(i) mean marks,
\qquad
marks
[1]
(ii) standard deviation of the marks.

> Answer
marks
(b) Below are two statements comparing the marks obtained by the students in Class A and Class B.

For each one, state whether you agree or disagree, giving a reason for each answer.

Statement	Agree/disagree	Reason
Students in Class A scored better than students in Class B on average.		
The marks obtained by students in Class A are more consistent than the marks obtained by students in Class B.		

16 (a) On the Venn diagram, shade the region which represents $A^{\prime} \cap B$.

(b) $\xi=\{$ integers x : $1 \leq x \leq 10\}$
$P=\{x: x$ is a factor of 8$\}$
$Q=\{x: x$ is divisible by 2$\}$
(i) List the elements contained in the set $P \cup Q^{\prime}$.

Answer
(ii) List the elements contained in the set $P^{\prime} \cap Q^{\prime}$.

Answer

(iii) Is $Q \subset P$?

Explain your answer.

Answer

17 Written as a product of its prime factors, $450=2 \times 3^{2} \times 5^{2}$.
(a) (i) Express 98 as a product of its prime factors.

$$
\begin{equation*}
\text { Answer } \quad 98= \tag{1}
\end{equation*}
$$

(ii) Hence, use prime factors to explain why 98×450 is a perfect square. Answer \qquad
\qquad
\qquad
(b) Given that $\sqrt[3]{450 k}$ is an integer, write down the smallest integer value of k.

$$
\text { Answer } \quad k=
$$

(c) Find the smallest positive integer m, such that $98 m$ is a multiple of 450 .

18 (a) Write as a single fraction in its simplest form $\frac{6}{(2 x-1)^{2}}-\frac{5}{1-2 x}$.

Answer

(b) Given $4^{b}=\frac{1}{8} \times 32^{a}$, express b in terms of a.

Answer $\quad b=$

19 (a) Determine whether it is possible that an interior angle of an n-sided regular polygon is 110°. Explain clearly with working.

Answer
(b) An n-sided polygon has 4 interior angles measuring 100° each.

The remaining interior angles measure q° each.
Find an expression for q in terms of n.

20 In the diagram, angle $A E D=$ angle $A B C, A D=3 \mathrm{~cm}, D E=4 \mathrm{~cm}, B C=12 \mathrm{~cm}$ and $E C=3 \mathrm{~cm}$.

(a) Prove that triangle $A B C$ and triangle $A E D$ are similar.

Answer
(b) Calculate the length of $A E$.

Answer

cm
(c) Write down the value of $\frac{\text { Area of } \triangle A D E}{\text { Area of } D B C E}$.

In the diagram above, A, B, C and Q are points on a circle, and angle $C A Q=25^{\circ}$. $A Q$ and $B C T$ meet at the centre $O . Q T$ is a tangent to the circle at Q.
(a) Calculate
(i) angle $Q B C$,

$$
\text { Answer } \quad \circ \text { [1] }
$$

(ii) angle $Q O C$,

Answer

- [1]
(iii) angle CQT.

Answer
(b) Given that $Q C=5 \mathrm{~cm}$, calculate the radius of the circle.

(a) Find the length of $A B$.
Answer .. units
(b) Given that the line $A B$ cuts the y-axis at the point D, find the coordinates of D.
Answer D (.......................................
(c) $A B C E$ is a trapezium with $B C$ parallel to $A E$.

The area of the trapezium is 45 units 2.
Find the coordinates of the point E.

23 In the diagram, $O A B$ is an equilateral triangle. $A X B$ is an arc of a circle with centre O and radius 10 cm . $A Y B$ is a semicircle with $A B$ as the diameter.

Express the area of the shaded section as a percentage of the unshaded section.

Mathematical Formulae

Compound interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

Curved surface area of a cone $=\pi r l$
Surface area of a sphere $=4 \pi r^{2}$
Volume of a cone $=\frac{1}{3} \pi r^{2} h$

Volume of a sphere $=\frac{4}{3} \pi r^{3}$

$$
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
$$

Arc length $=r \theta$, where θ is in radians

$$
\text { Sector area }=\frac{1}{2} r^{2} \theta \text {, where } \theta \text { is in radians }
$$

Trigonometry

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

Answer all the questions.

1 (a) Rearrange the formula $a=\frac{b\left(c^{2}-d^{2}\right)}{3}$ to make c the subject.

$$
\text { Answer } \quad c=
$$

(b) (i) Factorise completely $50 x^{2}-32$.

Answer
(ii) Hence, simplify $\frac{50 x^{2}-32}{10 x^{2}+3 x-4}$.
(c) The points $(-2,3)$ and $(4,12)$ lie on the curve given by the equation $y=a x^{2}+b x+2$.

Use an algebraic method to find the values of a and b.

$$
\begin{array}{ll}
\text { Answer } & a= \\
b=
\end{array}
$$

(d) (i) Express $-10+8 x+x^{2}$ in the form $(x+a)^{2}+b$.

Answer

(ii) Write down the coordinates of the minimum point of the graph of $y=-10+8 x+x^{2}$.
Answer (,

2 The first five terms in a sequence of numbers are given below.

$$
\begin{aligned}
& T_{1}=2^{2}+1=5 \\
& T_{2}=3^{2}+6=15 \\
& T_{3}=a^{2}+b=c \\
& T_{4}=5^{2}+16=41 \\
& T_{5}=6^{2}+21=57
\end{aligned}
$$

(a) Find the values of a, b and c.

Answer \quad| a | $=\ldots . ~$ |
| ---: | :--- |
| b | $=\ldots . ~$ |

(b) Explain why the value of T_{n} must be odd for all values of n.

Answer \qquad
(c) Show that the nth term of the sequence, T_{n}, is given by $n^{2}+7 n-3$.

Answer
(d) T_{p+1} and T_{p} are consecutive terms in the sequence.

Find and simplify an expression, in terms of p, for $T_{p+1}-T_{p}$.

Answer

(e) Explain why two consecutive terms of the sequence cannot have a difference of 6 .

> Answer
\qquad
\qquad

3 John cycled from his home to the town. He divided his journey into two parts.
(a) He travelled the first 45 km at an average speed of $x \mathrm{~km} / \mathrm{h}$. Write down an expression, in terms of x, for the time taken in hours for the first 45 km .

Answer h
[1]
(b) He travelled the remaining 5 km at an average speed which was $10 \mathrm{~km} / \mathrm{h}$ less than the first 45 km of his journey.
Write down an expression, in terms of x, for the time taken in hours for this part of the journey.

Answer h
h [1]
(c) He took 3 hours for the whole journey.

Write down an equation in x, and show that it reduces to $3 x^{2}-80 x+450=0$.
Answer
(d) Solve the equation $3 x^{2}-80 x+450=0$, giving your solutions correct to 2 decimal places.

$$
\text { Answer } \quad x=\quad \text { or }
$$

(e) Hence, state the average speed for the first part and the second part of the journey, giving your answers correct to 2 decimal places.

$$
\begin{array}{lcll}
\text { Answer } & \text { First part } & ~ & \mathrm{~km} / \mathrm{h} \\
& \text { Second part } & \mathrm{km} / \mathrm{h} \quad[1]
\end{array}
$$

(f) John claims that the average speed of the entire journey can be obtained by taking the mean of the two answers in (e).
Do you agree? Justify your answer with calculations.
Answer \qquad

	Letters	Cards	Parcels
Kim	4	10	2
Mary	5	5	3

(a) The information for the number of letters, cards and parcels sent by Kim and Mary can be presented by a 2×3 matrix \mathbf{N}. Write down the matrix \mathbf{N}.

$$
\text { Answer } \quad \mathbf{N}=(
$$

(b) Postage is charged at $\$ 0.30$ for a letter, $\$ 0.50$ for a card and $\$ 6$ for a parcel. Write down a 3×1 matrix \mathbf{C} to represent each type of postage charge.

$$
\begin{equation*}
\text { Answer } \quad \mathbf{C}=\quad(\quad) \tag{1}
\end{equation*}
$$

(c) (i) Given $\mathbf{P}=\mathbf{N C}$, evaluate \mathbf{P}.

$$
\begin{equation*}
\text { Answer } \quad \mathbf{P}= \tag{2}
\end{equation*}
$$

(ii) State what the elements of \mathbf{P} represent.

Answer \qquad
(d) If the postage charge is increased by 20% for a letter, 10% for a postcard and 5% for a parcel,
(i) formulate and write down a 3×3 matrix \mathbf{R} such that the matrix $\mathbf{R C}$ will give the revised cost for each type of postage charge.

(ii) calculate the total amount that Kim and Mary need to pay to send out the letters, cards and parcels with the revised postage charges.

Answer \$

5 The speed-time graph illustrates the motion of a car during a period of 8 hours.

(a) Given that the distance travelled in the first 5 hours is 320 km , show that $V=80$. Answer
(b) Describe the motion of the car between $t=2$ to $t=5$.

Answer
...
(c) Calculate the deceleration of the car during the last 3 hours.
(d) Calculate the total distance travelled by the car for the 8 hours.

Answer .. km
(e) Sketch the distance-time graph for the 8 hours in the diagram below. Label the values on the distance-axis clearly.

6 The cumulative frequency curve below illustrates the marks obtained by 80 students in School A in an examination.

(a) Use the curve to estimate
(i) the median mark,

> Answer marks [1]
(ii) the interquartile range of the marks.

Answer
marks
[2]
(b) Find the number of students who obtained between 30 and 60 marks.

Answer
[1]
(c) The passing mark for the examination is 40 marks.
(i) A student is chosen at random.

Find the probability that he or she will pass the examination.

Answer

(ii) Two students are chosen at random.

Find the probability that at least one of the students will pass the examination.

Answer

(d) The marks obtained by another 80 students in School B had the same median but a smaller interquartile range as compared to School A. Describe how the cumulative frequency curve for School B may differ from the curve for School A.

Answer \qquad

7 (a) In 2016. Anil, Ben and Cathy decided to start a small business. Anil invested $\$ 50000$, Ben invested $\$ 30000$ and Cathy invested $\$ 20000$.

They agreed that all the profits should be divided in the same ratio as the sum of money they

In 2018, the total profit was $\$ 15500$.
(i) What was the difference between Anil's and Cathy's share of the profit in $2018 ?$

Answer \$
(ii) The total profit in 2019 was 30% greater than that made in 2018. Calculate the total profit made in 2019.

$$
\text { Answer } \quad \$
$$

(iii) The total profit in 2018 was 25% greater than that made in 2017. Calculate the total profit made in 2017.

Answer \$
[2]
(b) Two investment companies pay out the following interest rates as shown below.

Company $\boldsymbol{A}: ~ x \%$ simple interest per annum
Company B: $y \%$ compound interest per annum, compounded annually

Mr Lin invests $\$ 50000$ in Company A.
Mr Tan invests $\$ 50000$ in Company B and receives $\$ 55000$ at the end of 3 years.
Both of them received the same amount of interest at the end of 3 years.
Determine which investment company offers the higher interest rate.
Show your working.
Answer

8 The variables x and y are connected by the equation $y=\frac{x^{2}}{6}+\frac{2}{x}$.
Some corresponding values of x and y are given in the table below.

x	1	2	3	4	5	6	7

(a) On the grid opposite, draw the graph of $y=\frac{x^{2}}{6}+\frac{2}{x}$ for $1 \leq x \leq 7$.
(b) Use your graph to write down an inequality in y to describe the range of values where $x>1$.

> Answer
(c) By drawing a tangent, find the gradient of the curve at $(4,3.2)$.

> Answer
(d) The line $y+2 x=15$ intersects the curve $y=\frac{x^{2}}{6}+\frac{2}{x}$.
(i) On the same grid, draw the graph of the straight line $y+2 x=15$ for $3 \leq x \leq 6$.
(ii) Write down the x-coordinate of the point where this line intersects the curve.

$$
\begin{equation*}
\text { Answer } \quad x= \tag{1}
\end{equation*}
$$

(iii) The value of x above is the solution of the equation $x^{3}+a x^{2}-90 x+b=0$. Find the value of a and the value of b.

$$
\begin{array}{ll}
\text { Answer } & a= \\
b=
\end{array}
$$

9 The diagram shows a triangular field $A B C$ on horizontal ground.
B is due east of A.
$B C=55 \mathrm{~m}, A C=76 \mathrm{~m}$ and angle $A C B=82^{\circ}$.

(a) Calculate the length of $A B$.
(b) Calculate the bearing of C from B.
(c) Calculate the area of the field $A B C$.

$$
\text { Answer } \quad \mathrm{m}^{2}
$$

[2]
(d) Calculate the shortest distance from C to $A B$.

Answer m
[2]
(e) $\quad T$ is the point on top of the tree vertically above C. The angle of elevation of the top of the tree from A is 20°.
Calculate the largest angle of elevation of the top of the tree from a point on $A B$.

10 The diagram shows a trophy which consists of a solid hemispherical glass top that sits on top of a solid cylindrical glass base.
Both the radii of the cylinder and the hemisphere are 5 cm .
The height of the cylindrical base is 15 cm .

(a) Find the total volume of the trophy.
(b) The composition of the glass that is used to manufacture the trophy include sand, limestone and sodium carbonate in the proportion $\mathbf{7 5} \%, \mathbf{1 0} \%$ and $\mathbf{1 5 \%}$ respectively.

Following are some information on sand, limestone and sodium carbonate.

	Density	Mass of one bag	Cost of one bag
Sand	$1.60 \mathrm{~g} / \mathrm{cm}^{3}$	30 kg	$\$ 26$
Limestone	$2.70 \mathrm{~g} / \mathrm{cm}^{3}$	25 kg	$\$ 60$
Sodium Carbonate	$2.50 \mathrm{~g} / \mathrm{cm}^{3}$	20 kg	$\$ 40$

Sand, limestone and sodium carbonate are sold per bag.
A manufacturer claims that in making 100 such trophies, the cost of sodium carbonate involved is higher than the cost of sand.

Do you agree with the manufacturer? Support your answer with calculations.
Answer

CANDIDATE
NAME

CENTRE
NUMBER

CLASS \square

MATHEMATICS

4048/02

Paper 2
15 Sep 2020
2 hours 30 minutes
Candidates answer on the Question Paper

READ THESE INSTRUCTIONS FIRST

Write your Centre number, index number and name on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 100 .

This document consists of $\mathbf{2 1}$ printed pages and $\mathbf{1}$ blank page'
[Turn over

Compound interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

Curved surface area of a cone $=\pi r l$
Surface area of a sphere $=4 \pi r^{2}$

$$
\begin{aligned}
& \text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
& \text { Volume of a sphere }=\frac{4}{3} \pi r^{3}
\end{aligned}
$$

Area of triangle $A B C=\frac{1}{2} a b \sin C$
Arc length $=r \theta$, where θ is in radians
. Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

Answer all the questions.

1 (a) Rearrange the formula $a=\frac{b\left(c^{2}-d^{2}\right)}{3}$ to make c the subject.

$$
\begin{aligned}
3 a & =b\left(c^{2}-d^{2}\right) \\
c^{2}-d^{3} & =\frac{3 a}{b} \quad(M 1) \\
c^{2} & =\frac{3 a}{b}+d^{2} \\
c & = \pm \sqrt{\frac{3 a}{6}+d^{2}} \quad \text { (AI) }
\end{aligned}
$$

$$
\begin{equation*}
\text { Answer } c= \pm \sqrt{\frac{3}{6}+d^{2}} \tag{2}
\end{equation*}
$$

(b) (i) Factorise completely $50 x^{2}-32$.

$$
2(5 x+4)(5 x-4) \text { ((1) }
$$

$$
\begin{equation*}
\text { Answer } \quad \partial(5 x+4)(5 x-4) \tag{1}
\end{equation*}
$$

(ii) Hence, simplify $\frac{50 x^{2}-32}{10 x^{2}+3 x-4}$.

$$
\begin{aligned}
& \frac{2(5 x+4)(5 x-4)}{(5 x+4)(2 x-1)} \quad(m 1) \\
& =\frac{3(5 x-4)}{2 x-1} \text { (AI) }
\end{aligned}
$$

$$
\text { Answer } \quad \frac{2(5 x-4)}{2 x-1}
$$

（c）The points $(-2,3)$ and $(4,12)$ lie on the curve given by the equation $y=a x^{2}+b x+2$ ． Use an algebraic method to find the values of a and b ．

$$
\begin{aligned}
& y=a(-1)^{2}+b(-2)+2 \\
& \left.\begin{array}{l}
3=4 a-2 b \\
4 a-16=1
\end{array}\right\} \text { my } \\
& 12=a(4)^{2}+b(4)+2 \\
& \left.\begin{array}{l}
12=16 a+4 b+2 \\
16 a+4 b=10 \\
8 a+2 b=5-(2)
\end{array}\right\} \begin{array}{l}
\text { Any } 1 \\
\text { (s) }
\end{array} \\
& \text { (1) }+ \text { (2): } \\
& \begin{aligned}
12 a & =6 \\
a & =\frac{1}{2}
\end{aligned} \\
& \text { (B) } \\
& 4\left(\frac{1}{2}\right)-2 b=1 \\
& b=\frac{1}{2} \text {. } \\
& \text { (81) } \\
& \text { Answer } \quad a= \\
& b= \\
& \text {............ } \\
& \text { sword (1) [J 评 } \\
& \text { born are fotlaned } \\
& \text { turaigh camectry. } \\
& \frac{1}{2}
\end{aligned}
$$

（d）（i）Express $-10+8 x+x^{2}$ in the form $(x+a)^{2}+b$ ．

$$
\begin{aligned}
x^{2}+8 x-10 & =x^{2}+8 x+\left(\frac{8}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}-10 \\
& =\underbrace{(x+4)^{2}-26}_{101)} \underbrace{(x)}_{\text {(By) }}
\end{aligned}
$$

$$
\begin{equation*}
\text { Answer } \quad[x+4]^{2}-36 \tag{2}
\end{equation*}
$$

（ii）Write down the coordinates of the minimum point of the graph of $y=-10+8 x+x^{2}$ ．

$$
(-4,-26) \quad 1(81) 5
$$

$$
\begin{equation*}
\text { Answer }(-4,-36) \tag{1}
\end{equation*}
$$

2 The first five terms in a sequence of numbers are given below.

$$
\begin{aligned}
& T_{1}=2^{2}+1=5 \\
& T_{2}=3^{2}+6=15 \\
& T_{3}=a^{2}+b=c \\
& T_{4}=5^{2}+16=41 \\
& T_{5}=6^{2}+21=57
\end{aligned}
$$

(a) Find the values of a, b and c.

(b) Explain why the value of T_{n} must be odd for all values of n.

(c) Show that the nth term of the sequence, T_{n}, is given by $n^{2}+7 n-3$.

$$
\text { Answer } \quad \begin{align*}
T_{n} & =(n+1)^{2}+(5 n-4) ~
\end{aligned} \quad \begin{aligned}
&(M 1) \\
&=n^{2}+2 n+1+5 n-4 \\
&=n^{2}+7 n-3 \text { (A)] }
\end{align*}
$$

(d) T_{p+1} and T_{p} are consecutive terms in the sequence.

Find and simplify an expression, in terms of p, for $T_{p+1}-T_{p}$.

$$
\begin{align*}
T_{p+1}-T_{p} & =\left((p+1)^{2}+7(p+1)-3\right)-\left(p^{2}+7 p-3\right) \\
& =2 p+8 \quad \text { (pp) } \tag{者}
\end{align*}
$$

Answer $\quad 2 p+\gamma$.
(e) Explain why two consecutive terms of the sequence cannot have a difference of 6 .

3 John cycled from his home to the town. He divided his journey into two parts.
(a) He travelled the first 45 km at an average speed of $x \mathrm{~km} / \mathrm{h}$.

Write down an expression, in terms of x, for the time taken in hours for the first 45 km .

$$
\frac{45}{x} \quad \text { (} 30
$$

Answer

h
(b) He travelled the remaining 5 km at an average speed which was $10 \mathrm{~km} / \mathrm{h}$ less than the first 45 km of his journey.
Write down an expression, in terms of x, for the time taken in hours for this part of the journey.

$$
\frac{5}{x-10} \quad(B)
$$

Answer $\quad \frac{5}{x-10} \quad \mathrm{~h}$
(c) He took 3 hours for the whole journey.

Write down an equation in x, and show that it reduces to $3 x^{2}-80 x+450=0$.
Answer

$$
\begin{aligned}
& \frac{45}{x}+\frac{5}{x-10}=3 \\
& \frac{45(x-10)+5 x}{x(x-10)}=3 \\
& 45 x-450+5 x=3 x^{2}-30 x \\
& 3 x^{2}-80 x+450=0 \text { (sham) } \\
& \text { (AI) }
\end{aligned}
$$

(d) Solve the equation $3 x^{2}-80 x+450=0$, giving your solutions correct to 2 decimal places.

$$
\begin{aligned}
& x=\frac{-(-80) \pm \sqrt{(-80)^{2}-4(3)(450)}}{\partial(3)} \\
& =\frac{0 \pm \sqrt{1000}}{6} \\
& \sqrt{(-8)^{2}-4(3)(450)} \quad 781 \\
& \text { no } \pm \sqrt{\text { Theory louis }} \\
& =-8.0639 \operatorname{or} 18.604 \\
& =8.06 \text { or } 18.60 \\
& \text { (B1) tB) }
\end{aligned}
$$

$$
\begin{equation*}
\text { Answer } x=8.06 \text { or } 18.60 \tag{4}
\end{equation*}
$$

(e) Hence, state the average speed for the first part and the second part of the journey, giving your answers correct to 2 decimal places.

(f) John claims that the average speed of the entire journey can be obtained by taking the mean of the two answers in (e).
Do you agree? Justify your answer with calculations.
Answer

$$
18.60+8.60
$$

$$
\text { Mean }=2
$$

$$
=13.60 \mathrm{~km} / \mathrm{h} \quad(\mathrm{Bl}])
$$

No......................................

4 The following table shows the number of letters, cards and parcels sent by Kim and Mary.

	Letters	Cards	Parcels
Kim	4	10	2
Mary	5	5	3

(a) The information for the number of letters, cards and parcels sent by Kim and Mary can be presented by a 2×3 matrix \mathbf{N}. Write down the matrix \mathbf{N}.

$$
\text { Answer } \quad \mathbf{N}=\left(\begin{array}{ccc}
4 & 10 & 2 \tag{1}\\
5 & 5 & 3
\end{array}\right)
$$

(b) Postage is charged at $\$ 0.30$ for a letter, $\$ 0.50$ for a card and $\$ 6$ for a parcel.

Write down a 3×1 matrix \mathbf{C} to represent each type of postage charge.

$$
\text { Answer } \quad \mathbf{C}=\left(\begin{array}{c}
0.30 \\
0.50 \\
6 \tag{1}
\end{array}\right) \text { (Bi) }
$$

(c) (i) Given $\mathbf{P}=\mathbf{N C}$, evaluate \mathbf{P}.

$$
\begin{aligned}
& =\binom{18.10}{21} \quad \text { CAD cowect mongthent }
\end{aligned}
$$

$$
\begin{equation*}
\text { Answer } \quad \mathbf{P}=\binom{1620}{22} \tag{2}
\end{equation*}
$$

(ii) State what the elements of \mathbf{P} represent.

(d) If the postage charge is increased by 20% for a letter, 10% for a postcard and 5% for a parcel,
(i) formulate and write down a 3×3 matrix \mathbf{R} such that the matrix $\mathbf{R C}$ will give the revised cost for each type of postage charge.

$$
\text { Answer } \quad \mathbf{R}=\left(\begin{array}{ccc}
1.20 & 0 & 0 \tag{1}\\
0 & 1.10 & 0 \\
0 & 0 & 1.05
\end{array}\right)
$$

(B)
(ii) calculate the total amount that Kim and Mary need to pay to send out the letters, cards and parcels with the revised postage charges.

$$
\begin{align*}
& \text { Revised posecey chase } \\
& 1.30 \times 0.30=0.36 \\
& \left.\begin{array}{l}
1.60 \times 0.50=0.55 \\
1.05 \times 6=6.30
\end{array}\right\} \text { lB) } \\
& \text { kim: } \quad 4(0.36)+10(0.55)+2(6.30) \\
& =\$ 19.54 \\
& \text { ring: } 5(0.36)+5(0.55)+3(6.30) \\
& =\$ 13.45 \\
& \text { Total }=\$ 19.54+\$ 23.45 \\
& =\$ 48.99 \tag{AD}
\end{align*}
$$

$$
\begin{equation*}
\text { Answer } \quad \$ \quad 41.99 \tag{3}
\end{equation*}
$$

5 The speed-time graph illustrates the motion of a car during a period of 8 hours.

(a) Given that the distance travelled in the first 5 hours is 320 km , show that $V=80$. Answer

$$
\begin{aligned}
\frac{1}{2}(5+3)(v) & =320 \text { (MI) } \\
4 v & =320 \\
v & =80 \text { (shown) (A1) }
\end{aligned}
$$

(b) Describe the motion of the car between $t=2$ to $t=5$.

(c) Calculate the deceleration of the car during the last 3 hours.

$$
\begin{aligned}
& \frac{0-10}{3} \\
& =-26 \frac{2}{3} \\
d & =26 \frac{2}{3} \quad \text { l阿 }
\end{aligned}
$$

Answer $\quad 26 \frac{\frac{1}{3}}{} \mathrm{~km} / \mathrm{h}^{2}$
(d) Calculate the total distance travelled by the car for the 8 hours.

$$
\text { Tuber artance }=\frac{1}{2}(8+3) \times 80
$$

$$
=440 \mathrm{~km} \quad[\mathrm{Bol}
$$

$$
\text { Answer } 440 \quad \mathrm{~km}
$$

(e) Sketch the distance-time graph for the 8 hours in the diagram below. Label the values on the distance-axis clearly.

$$
\begin{gathered}
\text { shape of graph (Br for any pert correct) } \\
\text { (BL for all } 3 \text { piano caveat) } \\
\text { label on dryince-axs. (Al). }
\end{gathered}
$$

6 The cumulative frequency curve below illustrates the marks obtained by 80 students in School A in an examination.

(a) Use the curve to estimate
(i) the median mark,

$$
\begin{equation*}
\text { Answer } 41(\$ 1) \text { marks } \tag{1}
\end{equation*}
$$

(ii) the interquartile range of the marks.

(b) Find the number of students who obtained between 30 and 60 marks.

$$
70-10=50 \quad\left(B_{1}\right)
$$

(c) The passing mark for the examination is 40 marks.
(i) A student is chosen at random.

Find the probability that he or she will pass the examination.

$$
\frac{42}{80}=\frac{21}{40}(50)
$$

Answer $\quad \frac{21}{40}$
(ii) Two students are chosen at random.

Find the probability that at least one of the students will pass the examination.

$$
\begin{align*}
1-P\left(F_{1} F\right) & =1-\left(\frac{38}{50} \times \frac{37}{79}\right) \\
& =\frac{2457}{3160} \tag{A1}
\end{align*}
$$

$$
\begin{align*}
& P(P, F)+P(F, P)+P(P, P) \\
&=\left(\frac{42}{80} \times \frac{28}{79}\right)+\left(\frac{38}{80} \times \frac{42}{34}\right)+\left(\frac{42}{80} \times \frac{\varphi 1}{79}\right) \text { (MU) } \\
&=\quad \frac{2457}{3160} \tag{1}
\end{align*}
$$

$$
\begin{equation*}
\text { Answer } \quad \frac{2457}{3160} \tag{2}
\end{equation*}
$$

(d) The marks obtained by another 80 students in School B had the same median but a smaller interquartile range as compared to School A. Describe how the cumulative frequency curve for School B may differ from the curve for School A.

Answer

7 (a) In 2016. Anil, Ben and Cathy decided to start a small business.
Anil invested $\$ 50000$, Ben invested $\$ 30000$ and Cathy invested $\$ 20000$.
They agreed that all the profits should be divided in the same ratio as the sum of money they invested.

In 2018, the total profit was $\$ 15500$.
(i) What was the difference between Anil's and Cathy's share of the profit in 2018?

$\frac{30000}{100000} \times \$ 15500$	(my or $1 \mathrm{batt}+5(550$
$=\$ 4650$	$(\mathrm{my}$

$$
\begin{equation*}
\text { Answer } \quad \$ \quad 4650 \tag{2}
\end{equation*}
$$

(ii) The total profit in 2019 was 30\% greater than that made in 2018. Calculate the total profit made in 2019.

$$
\begin{array}{ll}
\frac{130}{100} \times 115500 & (701) \\
=\$ 20150 & (\mathrm{Al}) \tag{AD}
\end{array}
$$

Answer \$ 20150
(iii) The total profit in 2018 was 25% greater than that made in 2017 . Calculate the total profit made in 2017.

$$
\begin{array}{ll}
\frac{100}{125} \times \sqrt{15500} & 7 \mathrm{MI} \\
= & 124 \mathrm{co} \\
\hline \mathrm{AI}]
\end{array}
$$

(b) Two investment companies pay out the following interest rates as shown below.

Company $A: x \%$ simple interest per annum
Company B: $y \%$ compound interest per annum, compounded annually

Mr Lin invests $\$ 50000$ in Company A.
Mr Tan invests $\$ 50000$ in Company B and receives $\$ 55000$ at the end of 3 years.
Both of them received the same amount of interest at the end of 3 years. Determine which investment company offers the higher interest rate.
Show your working.
Answer

$$
\begin{align*}
& \text { Company } A \\
& I=55000-50000 \\
& =5000 \\
& 500=\frac{50000(x)(3)}{100} \tag{m1}\\
& x=3 \frac{1}{3} \\
& \text { rompiand } B \\
& 55000=50000\left(1+\frac{4}{100}\right)^{3} \quad(\text { Mf }) \\
& \left(1+\frac{y}{10}\right)^{3}=1.1 \\
& \frac{4}{100}=\sqrt[3]{1.1}-1 \\
& y=100(\sqrt[3]{11}-1) \\
& y=3.23 \\
& \text { company A gates the higher intarent rate. CAIJ }
\end{align*}
$$

8 The variables x and y are connected by the equation $y=\frac{x^{2}}{6}+\frac{2}{x}$.
Some corresponding values of x and y are given in the table below.

x	1	2	3	4	5	6	7
y	2.2	1.7	2.2	3.2	4.6	6.3	8.5

 smolt carve (3) [3]
(b) Use your graph to write down an inequality in y to describe the range of values where $x>1$.

$$
\begin{equation*}
y \geq 1.65(\pm 0.1) \quad(B 1) \tag{1}
\end{equation*}
$$

Answer
$y>1.65(x+8)$
(c) By drawing a tangent, find the gradient of the curve at $(4,3.2)$.

$$
\begin{align*}
& \text { Drawing of tanquat }(T 11) \\
& \text { Gralent }=1.21(\pm 0.2)\left(A_{1}\right)
\end{align*}
$$

$$
1-6<y<8.5
$$

$$
\begin{equation*}
\text { Answer } \quad 1.21(\pm 0.2) \tag{2}
\end{equation*}
$$

(d) The line $y+2 x=15$ intersects the curve $y=\frac{x^{2}}{6}+\frac{2}{x}$.
(i) On the same grid, draw the graph of the straight line $y+2 x=15$ for $3 \leq x \leq 6$.
(ii) Write down the x-coordinate of the point where this line intersects the curve.

$$
\begin{align*}
& x=5.1(\pm 0.1) \quad \text { (} 81) \\
& \quad \text { Answer } \quad x=5.1(\pm 0.1) . \tag{1}
\end{align*}
$$

(iii) The value of x above is the solution of the equation $x^{3}+a x^{2}-90 x+b=0$, Find the value of a and the value of b.

$$
\begin{array}{rlrl}
\frac{x^{2}}{6}+\frac{2}{x} & =-3 x+15 & a=12 \quad \text { (BI) } \\
x^{3}+12 & =-12 x^{2}+90 x & b=12 \quad \text { (BI). } \\
x^{3}+12 x^{2}-90 x+12 & =0 & \\
\text { Answer } \quad a & =12 \\
& b & =
\end{array}
$$

9 The diagram shows a triangular field $A B C$ on horizontal ground.
B is due east of A.
$B C=55 \mathrm{~m}, A C=76 \mathrm{~m}$ and angle $A C B=82^{\circ}$.

(a) Calculate the length of $A B$.

$$
\begin{align*}
A B^{2} & =76^{2}+55^{2}-2(76)(55) \cos 82^{\circ} \quad \text { (MI) } \\
A B^{2} & =7637.5 \\
A B & =\sqrt{763+5} \\
A B & =87.343 \\
& =87.4 \text { (34) } \tag{Ai}
\end{align*}
$$

(b) Calculate the bearing of C from B.

$$
\begin{align*}
\sin \angle A B C & =\frac{\sin 82^{\circ}}{87.393} \\
\angle A B C & =54.45^{\circ} \\
\text { (Beaning } & =370^{\circ}+54.45^{\circ} \\
& =329.5^{\circ} \quad \text { (AI) } \tag{AI}
\end{align*}
$$

(c) Calculate the area of the field $A B C$.

$$
\text { Area of } \begin{aligned}
\triangle A B C & =\frac{1}{2}(76)(55) \sin 82^{\circ} \quad(\mathrm{MI}) \\
& =2069.7 \\
& =2090 \mathrm{~m}^{2}(35 \mathrm{t}) \quad \text { (AI) }
\end{aligned}
$$

$$
\text { Answer } \quad \text { toto } \quad \mathrm{m}^{2}
$$

(d) Calculate the shortest distance from C to $A B$.

$$
\begin{aligned}
& \text { Let the snemest distance be } x . \\
& \qquad \begin{aligned}
\frac{1}{2}(x)(87.393) & =2069.7 \quad \text { (rit) } \\
x & =47.365 \\
x & =47.4(35+) \text { (AI) }
\end{aligned}
\end{aligned}
$$

Answer $\quad 49 \cdot 4 \quad \mathrm{~m}$
(e) T is the point on top of the tree vertically above C.

The angle of elevation of the top of the tree from A is 20°.
Calculate the largest angle of elevation of the top of the tree from a point on $A B$.

$$
\begin{align*}
\tan 20^{\circ} & =\frac{C T}{76} \\
C T & =27.661 \tag{i}
\end{align*}
$$

let the largest angle of election be θ.

$$
\begin{align*}
\tan \theta & =\frac{27.661}{47.365} \quad \text { (PI) } \tag{101}\\
\theta & =\tan ^{-1}\left(\frac{27.661}{41.365}\right) \\
& =30.3^{\circ}
\end{align*}
$$

$$
\text { Answer } \quad 30.3
$$

10 The diagram shows a trophy which consists of a solid hemispherical glass top that sits on top of a solid cylindrical glass base.
Both the radii of the cylinder and the hemisphere are 5 cm .
The height of the cylindrical base is 15 cm .

(a) Find the total volume of the trophy.

$$
\begin{aligned}
\text { Total volume } & \left.=\left(\pi \times 5^{3} \times 15\right)+\frac{1}{2}\left(\frac{4}{3} \times \pi \times 5^{3}\right) \quad \text { (} \mathrm{ml}, \mathrm{Ml}\right] \\
& =1439.9 \\
& =1440 \mathrm{~cm}^{3} \quad(\mathrm{st}) \text { (AD) }
\end{aligned}
$$

(b) The composition of the glass that is used to manufacture the trophy include sand, limestone and sodium carbonate in the proportion $\mathbf{7 5} \%, 10 \%$ and 15% respectively.

Following are some information on sand, limestone and sodium carbonate.

	Density	Mass of one bag	Cost of one bag
Sand	$1.60 \mathrm{~g} / \mathrm{cm}^{3}$	30 kg	$\$ 26$
Limestone	$2.70 \mathrm{~g} / \mathrm{cm}^{3}$	25 kg	$\$ 60$
Sodium Carbonate	$2.50 \mathrm{~g} / \mathrm{cm}^{3}$	20 kg	$\$ 40$

Sand, limestone and sodium carbonate are sold per bag.
A manufacturer claims that in making 100 such trophies, the cost of sodium carbonate involved is higher than the cost of sand.

Do you agree with the manufacturer? Support your answer with calculations.

$$
\begin{aligned}
& \text { Answer } \quad 0.75 \times 100 \times 1439.9 \quad \text { (MI) } \\
& \text { sand } \\
& \begin{array}{rlrl}
\text { nor. of sand } & =0.75 \times 100 \times 1439.9 \quad \text { (MI) } \\
& & 107990 \mathrm{~cm}^{3} \\
& & \\
\text { "lass of lond } & =1.60 \times 104990 \quad \text { (Mi) }
\end{array} \\
& \begin{array}{l}
=172780 \\
=172.38 \mathrm{~kg}
\end{array} \\
& \text { Bag }=172.78 \div 30 . \\
& \approx 6 \\
& \text { cost of } \operatorname{sand}=6 \times 26 \\
& =5156 \\
& \text { col. }=0.15 \times \text { wo } \times 1439.9 \\
& =21594 \mathrm{~cm}^{3} \\
& \text { Man } 2.50 \times 21599 \\
& =539989 \\
& =53.998 \mathrm{~kg} \\
& \begin{aligned}
\text { Bugs } & =53.998 \div 80 \\
& \approx 3
\end{aligned} \\
& \cos t=3 \times 40=\$ 120 \\
& \text { (Al), } \\
& \text { Disagree, the wit of sodium carlarmate is lower } \\
& \text { than sand. LADJ }
\end{aligned}
$$

1 Simplify $\left(\frac{16 b^{2}}{c^{6}}\right)^{\frac{3}{2}}$.

$$
\begin{align*}
& \left(\frac{c^{6}}{16 b^{2}}\right)^{\frac{3}{2}} \text { [MI] OR } \\
& =\frac{c^{9}}{64 b^{3}} \text { [AI] } \begin{aligned}
& =\frac{16^{-\frac{3}{2}}\left(b^{2}\right)^{-\frac{3}{2}}}{\left(c^{6}\right)^{-\frac{3}{2}}} \\
& \frac{b^{-3}}{c^{-9}} \\
& =\frac{c^{9}}{64 b^{3}} \text { M1 if } \frac{c^{9}}{b^{3}}
\end{aligned} \quad \text { seen }
\end{align*}
$$

Answer $\quad \frac{c^{9}}{64 b^{3}}$

2 Two solid cones A and B are geometrically similar.

The heights of the two cones are 15 cm and 10 cm .
Given that the volume of A is $(3 x+1) \mathrm{cm}^{3}$ and the volume of B is $x \mathrm{~cm}^{3}$, calculate the value of x.

$$
\begin{align*}
\frac{3 x+1}{x} & =\left(\frac{15}{10}\right)^{3} \quad \text { (mI) } \\
\frac{3 x+1}{x} & =\frac{27}{8} \\
34 x+8 & =21 x \\
3 x & =8 \\
x & =2 \frac{2}{3} \quad \text { (AI) } \tag{A}
\end{align*}
$$

$$
\begin{equation*}
\text { Answer } x=\quad 2^{\frac{2}{3}} \tag{2}
\end{equation*}
$$

Solve the inequalities $2 \leq 3 x-1<2 x+8$.

$$
\begin{array}{cc}
2 \leq 3 x-1 & 3 x-1<2 x+3 \\
3 x \geq 3 & x<4 \\
x \geq 1 & \\
& \therefore \quad 1 \leqslant x<4 \quad l
\end{array}
$$

(TII) snow $2 \leq 3 x-1$ and

$$
3 x-1<2 x+8
$$

and solve af least I
dowectiy.

$$
\begin{equation*}
\text { Answer } \quad 1 \leq x<4 \tag{2}
\end{equation*}
$$

4 The graph shows the average daily revenue for a shop over a number of years.
"Explanation must be clear and specific"
Huge Drop in Daily Revenue

State one aspect of the graph that may be misleading and explain how this may lead to a misinterpretation of the graph.

Answer

Tine is braked \rightarrow dee nut allows reader to make and judgement.
$5 n$ is a positive integer.
Show that $(5 n+2)^{2}-25 n^{2}$ is a multiple of 4 for all integer values of n.

Answer

$$
\begin{align*}
& 25 n^{3}+20 n+4-25 n^{2} \\
&=20 n+4 \\
&=4(5 n+1) \tag{Al}\\
& \text { Smile } n \text { is a positive integer, } 4(5 n+1) \text { is a multiple } \\
& \text { of } 4 \text { or art integer values of } n
\end{align*}
$$

$6 m$ is directly proportional to n^{2}.
It is known that $m=12$ for a particular value of n.
Find the value of m when this value of n is decreased by 20%.

$$
\begin{aligned}
m & =k n^{2}, K \text { is a constant (MI) } \\
12 & =k n^{2} \\
k & =\frac{12}{n^{2}} \\
m & =\left(\frac{12}{n^{2}}\right)\left(\frac{80}{100}\right)^{2} \\
m & =\left(\frac{12}{n^{2}}\right)\left(\frac{16}{25} n^{2}\right) \\
m & =7 \frac{11}{25}
\end{aligned}
$$

7 (a) Sketch the graph of $y=-(x-1)(x+3)$ on the axes below. Indicate clearly the x-intercepts and y-intercept of the graph.

(b) Write down the equation of the line of symmetry of $y=-(x-1)(x+3)$.

$$
\begin{equation*}
x=-1 \text { [ふ] } \tag{1}
\end{equation*}
$$

Answer $x=-1$

8 An area of $16 \mathrm{~cm}^{2}$ on a map represents an actual area of $4 \mathrm{~km}^{2}$.
Calculate
(a) the actual area, in km^{2}, that is represented by an area of $30 \mathrm{~cm}^{2}$ on the map,

$$
\frac{30}{16} \times 4=7 \frac{1}{2} \text { (BI) }
$$

Answer
$7 \frac{1}{2}$
km^{2}
(b) the actual distance, in km , that is represented by 12 cm on the map,

$$
\begin{aligned}
& \text { Map } \rightarrow \text { Actual } \\
& \sqrt{16 \mathrm{~cm}^{3}}: \sqrt{4 \mathrm{~km}^{2}} \quad \text { (MI) } \\
= & 4 \mathrm{~cm}: 2 \mathrm{~km} \\
= & 12 \mathrm{~cm}: 6 \mathrm{~km} \quad \text { (AI) }
\end{aligned}
$$

$$
\text { Answer } \quad 6 \quad \mathrm{~km}
$$

9 In the diagram shown below, $A B C$ and $B D E$ are straight lines. It is given that $E B$ is perpendicular to $A C, A E=D C, B C=B E$.

still
(a) Prove that triangle $A B E$ is congruent to triangle $D B C$. Answer

$$
\begin{aligned}
& \begin{array}{ll}
B C=B C & \text { (haven) }: i \\
A E=D C & \text { (hive) }:
\end{array}\{[B B \\
& \left.\angle A O B E=\angle 00 C=90^{\circ}\right\} \\
& \therefore \triangle A R E \equiv \angle O A C \text { (AsS) }\} \text { aBl dep.] }
\end{aligned}
$$

(b) Given that the area of triangle $A B E=10 \mathrm{~cm}^{2}$ and D is the midpoint of $B E$, calculate the area of triangle $B E C$.

$$
\begin{aligned}
\text { Area }= & 2 \times 10 \\
= & 20 \mathrm{~cm}^{2} \quad(\mathrm{~B}) \\
& \text { Answer }
\end{aligned}
$$

10 The diagram shows a triangle $A B C$.

(a) On the diagram, construct the bisector of angle $C A B$.
(b) By constructing a suitable perpendicular bisector on the same diagram, shade the region inside triangle $A B C$ that is closer to $A C$ than $A B$ and closer to A than to C.

Figure 1

Figure 2

Figure 3

Figure 4 ．

Figure 5

Figure 6

State the correct figure for each of the following equations．
（a）$y=3^{x}$
（b）$y=\frac{2}{x}$
（c）$y=-x-2$

A piece of elastic 12 cm long, hangs from a nail N, as shown in the figure above.
When a mass of m grams is attached to the lower end, the length of the elastic increases to $L \mathrm{~cm}$. For every 100 grams which is attached, the length of the elastic increases by 3 cm .
(a) Calculate the length of the piece of elastic when a mass of 200 grams is attached to it.

$$
12+2(3)=18 \quad(31)
$$

Answer ...
(b) If the length of the piece of elastic is 24 cm , calculate the mass that is attached to it.

$$
\begin{align*}
& 24-12=12 \\
& 12 \div 3=4 \\
& 4 \times 100=400
\end{align*}
$$

Answer
400
g
(c) Write down a formula connecting the length of the elastic L, and the mass m, which is attached to it.

$$
L=11+\frac{3 m}{100} \text { el st) }
$$

$$
\text { Answer } \begin{aligned}
L & =1+\frac{3 \mathrm{~m}}{100} \text { o.e. } \\
m & =\frac{100(L-2)}{3} \quad L-12 \\
L & =12+0.03 \mathrm{~m}
\end{aligned}
$$

13 A bag contains 19 balls of which n are blue and the rest are yellow.
A marble is chosen at random and not replaced.
(a) Write down, in terms of n, the probability that the marble is yellow.
Answer

A second marble is chosen at random.
(b) The probability that the second marble chosen is yellow is $\frac{4}{9}$. Calculate the number of yellow marbles in the bag.

14 Rachel invests a certain amount of money in an account. The balance, $\$ A$, of the account after t years is given by the formula $A=k \times 1.02^{t}$, where k is a constant.

When $t=2, A=52020$.
(a) By finding the value of k, calculate the amount of money Rachel invests in the account at the start.

$$
\begin{aligned}
& 52020=k \times 1.02^{2} \\
& k=50000 \\
& A=\$ 0000 \times 1.02^{\circ} \\
&=50000 \\
& \text { Answer }
\end{aligned}
$$

$$
\begin{equation*}
50000[\mathrm{Al]} \tag{2}
\end{equation*}
$$

(b) Calculate the percentage increase in the balance over 5 years.

$$
\begin{aligned}
& \text { when } t=5, ~=50000 \times 1.02^{5} \\
&=55304.0402 \\
& \% \text { increvke }= \frac{55004.0402-50000}{5000} \times 100 \% \\
&=5.410 \\
& \text { Answer }
\end{aligned}
$$

$$
\begin{align*}
& {[B 1] \rightarrow \text { correct answer wto working }} \\
& \frac{18-n}{18}=\frac{4}{9} \text { (MI) } \\
& {[B 2]+\frac{4}{9}=\frac{8}{16}} \\
& \therefore \text { no of yellow: } 9 \\
& \begin{aligned}
18-n & =8 & (9-10 & =9 \cdot(A)] \\
n & =10 & \text { Answer } & 9
\end{aligned} \tag{2}
\end{align*}
$$

15 The students of Class A and Class B took a common Mathematics test.
The table below shows the distribution of marks obtained by the students.
Class A

Marks (x)	Frequency
$0<x \leq 5$	6
$5<x \leq 10$	15
$10<x \leq 15$	22
$15<x \leq 20$	5

Class B

Mean $=10.5$
Standard Deviation $=3.5$

(a) For Class A, calculate an estimate for the
(i) mean marks,

$$
\bar{x}=10.2 \quad 181
$$

Answer 10.2 marks
(ii) standard deviation of the marks.
$\sigma x=4.20181$
Answer 4.h..
(b) Below are two statements comparing the marks obtained by the students in Class A and Class B.

For each one, state whether you agree or disagree, giving a reason for each answer.

16 (a) On the Venn diagram, shade the region which represents $A \cap B$.

(ふり
(b) $\xi=\{$ integers $x: 1 \leq x \leq 10\}$
$P=\{x: x$ is a factor of 8$\}$
$Q=\{x: x$ is divisible by 2$\}$
$P=\{1,2,4,8\}$
(i) List the elements contained in the set $P \cup Q^{\prime} . \quad P^{\prime}=\{3,5,6,7,9,10\}$

$$
\begin{aligned}
& Q=\{2,4,6,8,10\} \\
& a^{\prime}=\{y, 5,7,9\}
\end{aligned}
$$

(BI)

$$
\begin{equation*}
\text { Answer } \quad\{1,1,1,4,5,7,8,9\} \tag{1}
\end{equation*}
$$

(ii) List the elements contained in the set $P^{\prime} \cap Q^{\prime}$.

$$
p^{\prime} \cap q^{\prime}=\{3,5,7,9\} \quad \text { (B) }
$$

$$
\begin{equation*}
\text { Answer }\{3,5,7,9\} \tag{1}
\end{equation*}
$$

(iii) Is $Q \subset P$?

Explain your answer.

17 Written as a product of its prime factors, $450=2 \times 3^{2} \times 5^{2}$.
(a) (i) Express 98 as a product of its prime factors.

$$
98=2 \times 727615
$$

Answer $\quad 98=2 \times 7^{2}$
(ii) Hence, use prime factors to explain why 98×450 is a perfect square.

$$
\text { Answer } \operatorname{snce} 98 \times 450=(2 \times 3 \times 5 \times 7)^{2}
$$

4 hey word
(b) Given that $\sqrt[3]{450 k}$ is an integer, write down the smallest integer value of k.

$$
\begin{aligned}
k & =1^{1} \times 3 \times 5 \\
& =60 \quad[81]
\end{aligned}
$$

(c) Find the smallest positive integer m, such that $98 m$ is a multiple of 450 .

$$
\begin{aligned}
m & =12 \times 5^{2} \\
& =125 \quad 181]
\end{aligned}
$$

$$
\begin{equation*}
\text { Answer } \quad m=\quad 225 \tag{1}
\end{equation*}
$$

18 (a) Write as a single fraction in its simplest form $\frac{6}{(2 x-1)^{2}}-\frac{5}{1-2 x}$.

$$
\begin{aligned}
& \frac{6}{(2 x-1)^{2}}+\frac{5}{2 x-1} \text { (mf) on } \frac{6(1-2 x)-5(2 x-1)^{2}}{(2 x-1)^{2}(1-2 x)} \\
& =\frac{6}{(3 x-1)^{1}}+\frac{5(1 x-1)}{(12 x-1)^{3}} \quad=\frac{6-12 x-5\left(4 x^{2}-4 x+1\right)}{(2 x-1)^{2}(1-2 x)} \\
& =\frac{10 x+1}{(2 x-1)^{2}} \text { (A) } \\
& =\frac{6-\frac{12 x-20 x^{3}+20 x-5}{10 x+\left.1\right|^{(2 x-1)^{2}(1+2 \pi)}}}{(2 x-1)^{2}}=\frac{-20 x^{2}+8 x+1}{(2 x-1)^{2}(1-2 x)}
\end{aligned}
$$

(b) Given $4^{b}=\frac{1}{8} \times 32^{a}$, express b in terms of a.

$$
\begin{align*}
2^{2 b} & =2^{-3} \times 2^{5 a} \quad[M 1: \text { change to base } 2] \\
2 b & =\frac{-3+5 a}{2} \quad[A b \\
b & =\frac{-3+5 a}{2} \quad b=\frac{-3+5 a}{\text { Answer }}
\end{align*}
$$

19 (a) Determine whether it is possible that an interior angle of an n-sided regular polygon is 110°. Explain clearly with working.

Donor accept
Because n is decimal....
(b) An n-sided polygon has 4 interior angles measuring 100° each.

The remaining interior angles measure q° each.
Find an expression for q in terms of n.

$$
\begin{align*}
4(100)+q(n-4) & =10(n-2) \quad \text { (my) } \\
400+q(n-4) & =180 n-360 \\
q(n-4) & =180 n-760 \\
q & =\frac{100-760}{n-4} \text { (nc] } \\
\text { Answer } \quad q & =\frac{180 n-760}{n-4} \tag{2}
\end{align*}
$$

20 In the diagram, angle $A E D=$ angle $A B C, A D=3 \mathrm{~cm}, D E=4 \mathrm{~cm}, B C=12 \mathrm{~cm}$ and $E C=3 \mathrm{~cm}$.

(a) Prove that triangle $A B C$ and triangle $A E D$ are similar.

Answer

$$
B 1 \quad\left[\begin{array}{l}
{[\angle A B C=\angle A E O\}(\text { Given L) }} \\
\angle B A C=\angle E A D
\end{array}\right] \text { (omer } \angle f \text { for reasoning }
$$

Show two pair of $\therefore \triangle A B C$ is simitar to $\triangle A E D$. equal angles
(b) Calculate the length of $A E$.

$A C$	$=\frac{12}{4} \times 3$	$O R$	$A C$
	$=9$	$F B O$	$B C$
$E D$			

$$
A E=1-3
$$

$$
\frac{A E+3}{3}=\frac{12}{4} \quad[M 1]
$$

$$
\begin{equation*}
=6 \quad \text { (} 0 \text {) } \tag{B}
\end{equation*}
$$

Answer cm
(c) Write down the value of $\frac{\text { Area of } \triangle A D E}{\text { Area of } D B C E}$.

$$
\begin{aligned}
& \frac{\text { Area of } \triangle A D E}{\text { Non of } \triangle A C B}=\left(\frac{1}{3}\right)^{2}=\frac{1}{9} \\
& \frac{\text { Area of } \angle A O E}{\text { Area of DACE }}=\frac{1}{8} \text { (Bi) }
\end{aligned}
$$

$$
\text { Answer } \quad \frac{1}{8}
$$

In the diagram above, A, B, C and Q are points on a circle, and angle $C A Q=25^{\circ}$. $A Q$ and $B C T$ meet at the centre $O . Q T$ is a tangent to the circle at Q.
(a) Calculate
(i) angle $Q B C$, $\quad \angle Q B C=25^{\circ}$ (BI)

Answer ..
(ii) angle $Q O C$,

$$
\begin{equation*}
\angle O O C=50^{\circ} \quad 70^{\circ} 1 \tag{1}
\end{equation*}
$$

Answer
50
(iii) angle $C Q T$.

$$
\begin{aligned}
\angle C 00= & (110-50) \div 2 \\
= & 65^{\circ} 161 \\
\angle C Q 1= & 40^{\circ}-65^{\circ}=25^{\circ} \quad 181 \\
& \text { Answer }
\end{aligned}
$$

(b) Given that $Q C=5 \mathrm{~cm}$, calculate the radius of the circle.

$$
\text { In } \begin{aligned}
\triangle B Q C, \sin +5 & =\frac{5}{B C} \text { indus } \\
B C & =11.831
\end{aligned}
$$

$$
\text { Radius }=11.831 \div 2
$$

$$
\text { ratios: } \frac{5 \times \sin 65^{\circ}}{\sin 50^{\circ}}
$$

$\Rightarrow 5.92$ CAI]
OR

$$
5^{2}=r^{2}+r^{2}-2(r)(r) \cos 50^{\circ}\left[\mu_{1}\right]
$$

$$
\begin{equation*}
25=2 r^{2}-2 r^{2} \cos 50^{\circ} \quad \text { Answer } \quad 5 \cdot 92 \tag{2}
\end{equation*}
$$

$$
25^{\circ}=2 r^{2}\left[1-\cos 50^{\circ}\right]
$$

22 In the figure, $A(3,-2), B(6,3)$ and $C(-2,3)$ are the vertices of a triangle.

(a) Find the length of $A B$,

$$
\begin{aligned}
A B & =\sqrt{(6-3)^{2}+(1-(-2))^{2}} \quad \text { (mu) } \\
& =5.83 \quad \text { (AU) }
\end{aligned}
$$

Answer
$5 \cdot 8$
units
[2]
(b) Given that the line $A B$ cuts the y-axis at the point D, find the coordinates of D.

$$
\begin{align*}
\text { Gradient AB } & =\frac{5}{3} \\
3 & =\frac{5}{3}(6)+C \\
C & =-7 \\
\text { Eq AB }: y & =\frac{5}{3} x-7 \\
\therefore & 0=10,-7) \\
& \text { Answer } D(81) \tag{2}
\end{align*}
$$

(c) $A B C E$ is a trapezium with $B C$ parallel to $A E$. The area of the trapezium is 45 units 2.
Find the coordinates of the point E.

$$
\begin{align*}
& \text { Let the Length of } A E \text { be } x \\
& \begin{aligned}
& \frac{1}{2}(8+x)(5)=45 \\
& x=10 \\
& E=(-7,-2) \text { (MI) } \\
& \text { Answer } E(A 1)
\end{aligned} \\
& \left.\begin{array}{rl}
E & -7,1
\end{array}\right)
\end{align*}
$$

23 In the diagram, $O A B$ is an equilateral triangle. $A X B$ is an arc of a circle with centre O and radius 10 cm . $A Y B$ is a semicircle with $A B$ as the diameter.

Express the area of the shaded section as a percentage of the unshaded section.
$\angle A O B=60^{\circ}$
Area if $4108=\frac{1}{2}(10)(10)\left(\sin 60^{\circ}\right)$

$$
=43.301
$$

Area a sector OAB $=\frac{60}{160}(\pi)(10)^{2}$ $=52.360$

If statement not whiten clearly.
at most 1 mark eff.
Allen of semiererele $\begin{aligned} A Y & =\frac{1}{2}(\pi)(5)^{2} \\ & =39.270\end{aligned}$
(mb)

$\frac{30.111}{43.301+9.0590} \times 100 \%=57.7 \%$ [AD]

