\qquad
\qquad

BUKIT PANJANG GOVERNMENT HIGH SCHOOL

PRELIMINARY EXAMINATION 2020
SECONDARY FOUR EXPRESS
SECONDARY FIVE NORMAL ACADEMIC

MATHEMATICS

Paper 1

Candidates answer on the question paper.
No additional materials are required.

4048/1

Date: 28 Aug 2020
Time: $0800-1000$ hours
Duration: 2h

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in.
Write in dark blue or black pen on both sides of the paper.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

At the end of the examination, fasten all your work securely together The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 80 .

This paper has a total of 23 pages.

Mathematical Formulae

Compound interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\text { Curved surface area of a cone }=\pi r l
$$

$$
\text { Surface area of a sphere }=4 \pi r^{2}
$$

$$
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h
$$

$$
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3}
$$

$$
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
$$

Arc length $=r \theta$, where θ is in radians

$$
\text { Sector area }=\frac{1}{2} r^{2} \theta, \text { where } \theta \text { is in radians }
$$

Trigonometry

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

Answer all the questions

1 The number of beans in a bowl is given as 120 , correct to the nearest ten.
Write down the minimum number of beans that could be in the bowl at this time.

Answer
2 A toy shop put up this chart.

State one aspect of the graph that may be misleading and explain how this may lead to a misinterpretation of the graph.
\qquad
\qquad
\qquad

3 For the parallelogram $A B C D, A E=C F . D E$ is parallel to $B F . G$ is the mid-point of $A B$.
a. Show that $\triangle D A E$ is congruent to $\triangle B C F$.

\qquad
\qquad
\qquad
\qquad
\qquad
b. Triangle $A G H$ is similar to triangle $A C B, A B=2 \mathrm{~m}$ and $A C=2.1 \mathrm{~m}$, John claims that the length of $A H$ is half of the length of $A C$. Using appropriate calculations, comment on the correctness of John's claim.
(a) Express 540 as a product of its prime factors.
(b) The number $\frac{540 p}{q}$ is a perfect square.
p and q are prime numbers.
Find the smallest value of p and the corresponding value of q.

5 Express $8 \frac{3}{4} \%$ as a
(a) decimal,
(b) fraction in its simplest form.
Answer (a)___ [1]
(b)

6 A farm rears chickens and sheep.
Each chicken has 2 legs and each sheep has 4 legs.
The total number of legs is 100 while the total number of heads is 35 .
Let the number of chickens be c and the number of sheep be s.
Solve for the values of c and s.

$$
\begin{aligned}
\text { Answer } c & = \\
s & =\square
\end{aligned}
$$

7 A bag contains 10 red marbles, 3 blue marbles and 2 white marbles.
Ethan picked two marbles at random.
Calculate the probability that he picked at least 1 white marble.
(a) Solve the inequalities $2 \leq 3 x+2<17$.

Answer
(b) List all the prime numbers such that $2 \leq 3 x+2<17$.
$9 \quad I$ is inversely proportional to the square of r.
(a) When $r=\frac{1}{5}, I=500$. Find I when $r=\frac{1}{10}$.

Answer \qquad
(b) When the value of r is tripled, find the percentage decrease in the value of I.

Answer \qquad

Find two pairs of numbers, all numbers being smaller than 1400 , that have a lowest common multiple of 5400 and a highest common factor of 90 .
\qquad
Answer
and
11 (a) Factorise $4 a^{2}+12 a b+9 b^{2}$

Answer \qquad
(b) Hence, completely factorise $4 a^{2}+12 a b+9 b^{2}-1$
(c) n is a positive integer.

Show that, for all $n,(3 n+1)^{2}-(3 n-1)^{2}$ is a multiple of 4 .

12 Sketch the graph of $y=-(x+3)^{2}+5$ on the axes below.
Indicate clearly the coordinates of the points where the graph crosses the axes and the turning point on the curve.

13. The sum of the first n terms of a sequence is given by $2 n^{2}-n$.

Find the $10^{\text {th }}$ term of this sequence.

The diagram shows the positions of three points, A, B and C. Angle $A B C=35^{\circ}$. Point A is due north of point B. The bearing of point C from point A is $80^{\circ} . A B$ is 50 m .
(a) Find the bearing of point B from point C.

Answer

(b) Calculate the length $A C$.

15 Mary weighed 3 pet kittens.
The mean mass of the kittens was 200 grams.
The standard deviation of the masses of the kittens was 10 grams.
The scales used by Mary were found to be inaccurate.
The correct mass of each kitten was 20 grams less than Mary recorded.
(a) Write down the correct value for the mean and standard deviation (SD).

$$
\begin{array}{rc}
\text { Answer Mean }= & \mathrm{g}[1] \\
\mathrm{SD}= & \mathrm{g}[1]
\end{array}
$$

(b) After a number of years, the mass of each of the 3 kittens are tripled. Calculate the new standard deviation.

16 The speed-time graph shows the journeys for two drivers, Alfred and Ben. They travelled on the same road. Ben drove past Alfred at the time when Alfred started his journey.

(a) Charles commented that Alfred will meet Ben at time $=M$ hour since the graphs intersect at time $=M$ hours. Is Charles correct ? Explain.
\qquad
\qquad
\qquad
(b) Calculate the value of M.
\qquad
$\xi=\{$ integers $x: 2 \leq x<10\}$
$E=\{$ even numbers $\}$
$M=\{$ multiples of 3$\}$
$F=\{$ factors of 48$\}$
(a) List the element(s) in
(i) $\quad M \cap E$

Answer
(ii) $(M \cup F)^{\prime}$

Answer

18 Cindy deposited $\$ 20000$ in a bank account which offered an interest of 1.2% per annum compounded monthly. She withdrew her money after 1 year 6 months. Calculate the amount of interest earned.
19. The diagram shows two geometrically similar figures made of the same material.

The length of the smaller figure is 6 cm .
The length of the larger figure is 14 cm .

(a) The area of the heart in the larger figure is $15 \mathrm{~cm}^{2}$. Calculate the area of the heart in the smaller figure.

Answer \qquad cm^{2} [2]
(b) If the mass of the smaller figure is 200 grams, calculate the mass of the larger figure.
(c) The smaller figure is sold for $\$ 2.50$ while the larger figure is sold for $\$ 25.50$. Which figure will be a better buy? Explain.

Two cafe outlets, A and B sells coffee, tea and cakes.
Both outlets charge $\$ 2.50$ for a cup of tea, $\$ 3.50$ for a cup of coffee and $\$ 3.00$ for a piece of cake.
(a) On a Saturday, Cafe A sells 100 cups of coffee, 70 cups of tea and 50 pieces of cake. Cafe B sells 120 cups of coffee, 90 cups of tea, and 40 pieces of cake.

Represent this information in a 2×3 matrix \boldsymbol{Q}.
Answer $\mathrm{Q}=(\quad)$
(b) By multiplying Q with another matrix, calculate the total amount collected by each of the two outlets respectively.

Answer: Outlet A : \$ \qquad
Outlet B : \$ [2]
(c) Both outlets decided to give a special discount of 20% for coffee, 10% for tea and 10% for cakes. By the multiplication of two matrices, calculate the new prices of a cup of coffee, of a cup of tea and of a piece of cake.

Answer: New price of a cup of coffee : \$

\qquad

New price of a cup of tea : $\$$ \qquad

The line L passes through the point $A(0,2)$ and meets the line $y=x$ at point $C . O$ is the origin. The area of $O A C$ is 3 units 2.
(a) What is the equation of line L ?

Answer
(b) There is a point B such that $O C$ is the line of symmetry of the figure $O A C B$.
(i) What is the name of quadrilateral $O A C B$?

> Answer
(ii) State the coordinates of the point B.
22. The cumulative frequency represents the marks scored by a group of 80 students.

(a) Use the graph to find the number of students with a score of more than 26 marks.
(b) Calculate the range of the marks scored.

Answer
(c) If another group of 80 students have the same median mark with a smaller interquartile range, how would the cumulative frequency graph of this second group of students differ from this cumulative frequency graph ?
\qquad
\qquad

23 A building is drawn to a scale of 1: n.
The actual area of the building floor is $500 \mathrm{~m}^{2}$ while the area of the building on the map is $20 \mathrm{~cm}^{2}$. Find the value of n.

24 In the triangle $B F C, D$ is the mid - point of $B F$. $D E$ is parallel to $F C$.

Show that $\triangle B D E$ is similar to $\triangle B F C$.
\qquad
\qquad
\qquad
\qquad
\qquad
25. In the diagram, the straight line $A B C$ is parallel to the line $D E F$.

The straight line $D B$ is parallel to the line $E G . \angle B D E=75^{\circ}$ and $\angle C B G=40^{\circ}$.

Calculate the value of the following angles, stating your reasons clearly.
a. $\angle D B G$
\qquad
\qquad
\qquad
\qquad
b. $\quad \angle B G E$
\qquad
\qquad
\qquad
\qquad
26. Explain whether a kite can be a rhombus.
\qquad
\qquad
\qquad
\qquad
\qquad Class \qquad Index No \qquad

BUKIT PANJANG GOVERNMENT HIGH SCHOOL
 PRELIMINARY EXAMINATION 2020
 SECONDARY FOUR EXPRESS
 SECONDARY FIVE NORMAL ACADEMIC

MATHEMATICS

Paper 2
Candidates answer on the question paper.
Additional materials: Graph paper

4048/2

Date: 25 August 2020
Time: 0800-1030
Duration: 2h 30 min

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in. Write in dark blue or black pen on both sides of the paper.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate. If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

At the end of the examination, fasten all your work securely together The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 100 .

This paper has a total of 22 pages.

Mathematical Formulae

Compound interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\text { Curved surface area of a cone }=\pi r l
$$

$$
\text { Surface area of a sphere }=4 \pi r^{2}
$$

$$
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h
$$

$$
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3}
$$

$$
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
$$

Arc length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

1 (a) Simplify $\frac{2 x}{x^{0}} \div\left(\frac{2 y}{x}\right)^{-2}$, leaving your answer in positive indices.

Answer

(b) Express y in terms of p and q, given that $\frac{1}{q}=\frac{2}{y}+p$.

2 (a) Express $\frac{1}{x-3}-\frac{6}{x^{2}-9}$ as a single fraction in its simplest form.

Answer

(b) (i) Express $y=x^{2}+4 x-5$ in the form $y=(x+a)^{2}+b$, where a and b are constants.

Answer
(ii) Write down the equation of the line of symmetry of the graph of $y=x^{2}+4 x-5$.

3 The line $A B$ is shown below.
(a) Construct an equilateral triangle $A B C$.
(b) Construct the perpendicular bisector of $A B$.
(c) Construct the angle bisector of $\angle C A B$.
(d) Mark clearly a possible point that is inside the triangle, equidistant from $A C$ and $A B$, and is nearer to A than B. Label this point P.

A
(e) The point Q is such that $\angle A C Q=120^{\circ}$ and $\frac{B Q}{B A}=0.9$.

Find two possible positions of Q. Label these point Q_{1} and Q_{2}.
Measure and write down the length $A Q$ (where Q can be any of the two points).

Answer

4 The exterior angle of a regular n-sided polygon is 14° more than the exterior angle of a regular $(2 n+6)$-sided polygon.
(a) Write down and simplify an expression, in terms of n, each exterior angle of the $(2 n+6)$-sided polygon.

Answer

(b) Write down an equation in n and show that it reduces to $14 n^{2}-138 n-1080=0$.
(c) Solve the equation $14 n^{2}-138 n-1080=0$.

Answer

(d) Explain why one of the solutions above is rejected. Answer
(e) Hence, find the value of each interior angle of the n-sided polygon.

5 The points A, B, C, D and E lie on the circle. $\angle A E B=28^{\circ}, \angle C A B=62^{\circ}$ and $\angle A B E=34^{\circ}$. $A E$ is parallel to $B D$.

(a) Find two other angles that are 62°, stating the angle property.

Answer
(b) Explain whether $A C$ is the diameter of the circle.

Answer
(c) Find the following angles, stating all the angle properties.
(i) $\angle E B D$
(ii) $\angle D E A$

(ii)
(d) Explain why G is the center of the circle.

Answer
(e) If the radius of the circle is 7 cm , find the area of the shaded region.

6 In the diagram, $A B C D$ represents a vertical cliff face. The bottom of the cliff, $B C$, is 100 m and is at sea level. A boat is in the sea at E.
B is due north of E and the bearing of C from E is 070°.
E is known to be equidistant from B and C.

(a) Find the bearing of C from B.
(b) Show that $B E=87.17 \mathrm{~m}$.

Answer
(c) Find the area of $\triangle B C E$, leaving your answer to the nearest square metre.

[2]
(d) It is given that the angle of depression of E from A is 20.2°. Find the height of the cliff $B A$, leaving your answers in 3 significant figures.
(e) P is a point on $B C$ such that $\frac{\text { Area of } \triangle B E P}{\text { Area of } \triangle C E P}=\frac{3}{2}$.

Find the length of $C P$.

7 Part of a pattern of numbers is shown in the table below.

	\mathbf{C}_{1}	\mathbf{C}_{2}	\mathbf{C}_{3}	\mathbf{C}_{4}	\mathbf{C}_{5}	\mathbf{C}_{6}	
Row	1	2	3	4	5	6	7
Row	2	8	9	10	11	12	13
Row	3	14	15	16	17	18	19
Row	4	20	21	22	23	24	25
Row	5	26	27	28	29	30	31
$*$	$*$	$*$	$*$	$*$	$*$		
$*$	$*$	$*$	$*$	$*$	$*$		
Row	n		x	y			
Row	$n+1$		s	t			

(a) Express y, s and t in terms of x.

Answer | $y=$ |
| ---: |
| $s=$ |
| $t=$ |

(b) Show that the difference between $x t$ and $y s$ is always 6 .

Answer
(c) Express x in terms of n.

(d) Explain why $x y$ would be in column number C_{5}, for any value of n.

Answer

(e) From the above, which column would $y s$ lies in $\left(\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}\right.$ or $\left.\mathrm{C}_{6}\right)$?

8 The ordered stem-and-leaf diagram records the height of 21 plants in Plantation A.

Stem	Leaf							
13	0	7	8	9	9			
14	1	1	2	6	7	8	9	9
15	0	2	3	5	6	8	8	8

Key: 14 | 8 means 148 cm
(a) Represent the above information in a box and whisker.

Answer

(b) State the modal height.
(c) Calculate the percentage of plants having a height of less than 150 cm .
(d) Two plants are selected at random from Plantation A.

The students are asked to calculate the probability of selecting a plant that is less than 150 cm and another plant that is at least 150 cm .
(i) Alice says that the above probability is calculated using $\frac{8}{21}$ and $\frac{13}{21}$.

Explain why she is wrong.
Answer
(ii) Calculate the above-mentioned probability.

Answer
(e) 30 plants are planted in Plantation B on the same day. The range of height is 24 cm , the interquartile range is 10 cm and the median is 152 cm . Compare the height in Plantation A and B in two ways.

Answer

9 The frustum shown in the diagram is a metal solid obtained by cutting off the top part of a pyramid horizontally.
The dimension of the top rectangular plane is 8 cm by 6 cm .
The dimension of the bottom rectangular plane is 16 cm by 12 cm .
The height, $A B$, of the frustum is 7 cm where A is the center of the base.

(a) Explain why the height of the pyramid that is cut off is 7 cm . Answer
(b) Show that the volume of the frustum is $784 \mathrm{~cm}^{3}$.

Answer
(c) Assuming negligible loss in the process of melting, how many spherical balls (of radius 2 cm) can be formed if the frustrum is melted?

Answer

(d) 3 of the above frustums are to be packed into a rectangular box. To save cost, the seller should keep the amount of material of the rectangular box to the minimum.

Albert claims that the dimension should be 30 cm by 16 cm by 7 cm (Box A).
Betty claims that the dimension should be 38 cm by 12 cm by 7 cm (Box B).
Carol claims that the dimension should be 21 cm by 16 cm by 12 cm (Box C).
(i) Explain which box will be too small.

Answer
(ii) Which of the other two boxes would use the minimum amount of material?

10 A group of researchers brought 180 koalas to an island and tracked the number of koalas over a few years.

x (years)	0	0.5	1	2	3	4	5	6	6.5	7	7.5
y (no of animals)	180	177	175	172	p	172	175	180	183	187	191

(a) Using a scale of 2 cm on both axes to represent 1 year on the x-axis and 2 animals on the y-axis for $170 \leq y \leq 192$, plot the values given and join them with a smooth curve.
(b) Use your curve to estimate the value of p, corrected to nearest integer.

Answer

(c) By drawing a tangent, find the gradient at $x=6$.

Answer

(d) The number of koalas (y) turns out to be related to an unknown quadratic function $y=(x+a)^{2}+b$. Find the value of a and of b.

$$
\begin{equation*}
\text { Answer } a=\quad b= \tag{2}
\end{equation*}
$$

(e) The researchers also brought 180 penguins to the same island and noticed that the number of penguins increased at a steady rate of 1 per year.
(i) Write down an equation connecting the number of penguins, y, and the number of years, x.

Answer

(ii) On the same graph in (a), draw the graph of the equation in (e)(i) and state the point of intersection (x, y).

Answer
(iii) What would this point of intersection represent in this research? Answer

11 Charlotte takes the taxi every day. She is thinking of buying a car and wants to pay off the car loan as soon as possible. The tables below give the information Charlotte can use.

Charlotte's financial situation

Money set aside to buy a car	$\$ 50000$
Monthly salary	$\$ 4500$

Information on the car and car loan	
Car Price	$\$ 96000$ Customer must take a minimum loan of 50% from the car dealer.
Loan Period (Number of years, x	$\bullet \quad 2 \leq x \leq 7, x$ is an integer Customer needs to decide on the loan period on the day he or she buys the car.
Interest rate of loan	2.45% per annum simple interest

Information on how Charlotte uses her monthly salary

(a) Determine the minimum loan amount.

Answer \$

(b) Charlotte calculated that if the loan period is 2 years and that she took a loan of $\$ 48000$, her monthly car instalment will be $\$ 2098.00$. Show that Charlotte is correct. Answer
(c) Charlotte intends to use no more than her current taxi expenditure to pay for her monthly car instalment. Suggest the minimum loan period. Justify your answer with clear workings.
(d) Give a possible reason to explain why Charlotte's savings will be reduced even if her monthly instalment is the same as the current taxi expenditure.

Answer

Answer all the questions
1 The number of beans in a bowl is given as 120 , correct to the nearest ten.
Write down the minimum number of beans that could be in the bowl at this time.

$$
115-[1]
$$

Answer \qquad
2 A toy shop put up this chart.

State one aspect of the graph that may be misleading and explain how this may lead to a misinterpretation of the graph.
There is no indication of sales figures for March, April and
months after June [A1], there is incomplete data to support "Increasing sales..." [A1] OR=
It is not known whether sales is proportional to height [2] or area of shape for each month [A1], readers may awe at wong sales figme [A1]

3 For the parallelogram $A B C D, A E=C F$. $D E$ is parallel to $B F . G$ is the mid-point of $A B$.
a. Show that $\triangle D A E$ is congruent to $\triangle B C F$.

b. Triangle $A G H$ is similar to triangle $A C B, A B=2 \mathrm{~m}$ and $A C=2.1 \mathrm{~m}$, John claims that the length of $A H$ is half of the length of $A C$. Using appropriate calculations, Comment on John's claim as to whether he is right.

$$
\left.\begin{array}{rl}
\angle C A B & =\angle G A H \text { (commonangle) } \\
\frac{A H}{A B} & =\frac{A G}{A C} \\
\frac{A H}{2} & =\frac{1}{2.1} \\
A H & =0.95238 \\
\frac{1}{2} & \times A C \neq \frac{1}{2} \times 2.1=1.05 \mathrm{~m}
\end{array}\right]-[1]
$$

$\mathrm{AH} \neq 1.05 \mathrm{~m}$
John's claim is not connect [1]
(a) Express 540 as a product of its prime factors.

$$
540=2^{2} \times 3^{3} \times 5 \text { - }[1]
$$

(b) The number $\frac{540 p}{q}$ is a perfect square.
p and q are prime numbers.
Find the smallest value of p and the value of q.

$$
\begin{aligned}
\frac{540 p}{q} & =\frac{2^{2} \times 3^{3} \times 5 p}{q} \\
& =\frac{2^{2} \times 3^{2} \times 3 \times 5 p}{q} \\
p & =5, \text { then } q=3 \\
p & =3, \text { then } q=5
\end{aligned}
$$

$$
\begin{aligned}
\text { Answer } p & =5 \text { or } 3 \\
q & =3 \text { or } 5
\end{aligned}
$$

Express $8 \frac{3}{4} \%$ as a
(a) decimal
(b) fraction in its simplest form
a) $\frac{8-75}{100}=0.0875-[1]$
b) $\frac{8-75}{100}=\frac{7}{80}-[1]$

6 A farm rears chickens and sheep.
Each chicken has 2 legs and each sheep has 4 legs.
The total number of legs is 100 while the total number of heads is 35 .
Let the number of chickens be c and the number of sheep be s.
Solve for the values of c and s.

$$
\begin{gathered}
C+S=35-(1) \\
2 C+45=100-(2) \\
C=35-5-(3) \\
2(35-5)+45=100 \\
S=15 \\
C=20
\end{gathered}
$$

' 7 A bag contains 10 red marbles, 3 blue marbles and 2 white marbles. Ethan picked two marbles at random.
Calculate the probability that there is at least 1 white marble.

$$
\left.\begin{array}{rl}
P(\text { at least white } \\
& =1-\frac{13}{15} \times \frac{12}{14}-[1] \\
& =9 / 35
\end{array}\right]
$$

(a) Solve the inequalities $2 \leq 3 x+2<17$.

$$
\begin{gathered}
2 \leq 3 x+2 \text { and } 3 x+2<17 \\
0 \leq x \text { and } x<5 \\
0 \leq x<5
\end{gathered}
$$

(b) List all the prime numbers such that $2 \leq 3 x+2<17$.

$$
2,3-[1]
$$

$$
\text { Answer } \quad 2,3 \quad \text { [1] }
$$

'9 I is inversely proportional to the square of r.
(a) When $r=\frac{1}{5}, I=500$. Find I when $r=\frac{1}{10}$.

$$
\begin{aligned}
& I=\frac{K}{r^{2}} \\
& 500=\frac{k}{\left(\frac{1}{5}\right)^{2}} \\
& K=20-[1] \\
& I=\frac{20}{\left(\frac{1}{10}\right)^{2}} \\
& I=2000-[1]
\end{aligned}
$$

Answer \qquad 2000
(b) When the value of r is tripled, find the percentage decrease in the value of I.

$$
\begin{aligned}
& I_{0}=\frac{k}{r_{0}{ }^{2}} \\
& k=I_{0} r_{0}{ }^{2} \\
& I_{\text {new }}=\frac{I_{0} r_{0}{ }^{2}}{\left(3 r_{0}\right)^{2}} \\
& =\frac{1}{9} I_{0} \quad[1] \\
& \text { qodecrease }=888 / 9\{[-[1]
\end{aligned}
$$

10 Find two pairs of numbers, all numbers being smaller than 1400 , that have a lowest common multiple of 5400 and a highest common factor of 90.

$$
\begin{aligned}
\text { st pair: } & \begin{aligned}
N_{1} & =2 \times 3^{3} \times 5^{2}=1350 \\
N_{2} & =2^{3} \times 3^{2} \times 5=360 \\
\text { LCM } & =2^{3} \times 3^{3} \times 5^{2}=5400 \\
\text { HCF } & =2 \times 3^{2} \times 5=90 \\
\text { 2ndpair: } n_{1} & =2 \times 3^{2} \times 5^{2}=450 \\
n_{2} & =2^{3} \times 3^{3} \times 5=1080
\end{aligned}
\end{aligned}
$$

Working [lm]
lost pair $=360,1350-[1]$
zudpair 450,1080-[1]

$$
\text { Answer } 360,1350 \text { and } 450,1080[3]
$$

11 (a) Factorise $4 a^{2}+12 a b+9 b^{2}$

$$
\begin{gathered}
(2 a)^{2}+2(2 a)(3 b)+(3 b)^{2} \\
=(2 a+3 b)^{2}-[1]
\end{gathered}
$$

(b) Hence, completely factorise $4 a^{2}+12 a b+9 b^{2}-1$

$$
\begin{aligned}
& (2 a+3 b)^{2}-1^{2}-[1] \\
& \left.=(2 a+3 b+1)(2 a+3 b-1)-[1]_{\text {Answer }}(2 a+3 b+1)(2 a+3 b-2)\right]
\end{aligned}
$$

(c) n is a positive integer.

Show that, for all $n,(3 n+1)^{2}-(3 n-1)^{2}$ is a multiple of 4 .

$$
\begin{aligned}
& (3 n+1)^{2}-(3 n-1)^{2} \\
= & (3 n+1+3 n-1)[3 n+1-(3 n-1)] \\
= & (6 n)(2) \\
= & (2 n \\
= & 4(3 n) \quad \text { is a multiple of } 4
\end{aligned}
$$

12 Sketch the graph of $y=-(x+3)^{2}+5$ on the axes below.
Indicate clearly the coordinates of the points where the graph crosses the axes and the turning point on the curve.

13. The sum of the first n terms of a sequence is given by $2 n^{2}-n$.

Find the $10^{\text {th }}$ term of this sequence.

$$
\begin{aligned}
& \text { Sum of Term } 1=2(1)^{2}-1=1 \\
& \text { Sum of Term } 2=2(2)^{2}-2=6 \\
& \text { Sum of Term } 3=2(3)^{2}-3=15 \\
& \text { Sum of Term } 4=2(4)^{2}-4=28 \\
& \text { Term } 1=1=1] \\
& \text { Term } 2=6-1=5 \\
& \text { Term } 3=15-6=-9 \\
& \text { Term } 4=28-15=13
\end{aligned}
$$

commondifference is $4-[1]$

$$
\begin{aligned}
T_{n} & =1+4(n-1) \\
T_{n} & =4 n-3 \\
T_{10} & =4(10)-3 \\
& =37
\end{aligned}
$$

Answer $\quad 37$

The diagram shows the positions of three points, A, B and C. Angle $A B C=35^{\circ}$. Point A is due north of point B. The bearing of point C from point A is $80^{\circ} . A B$ is 50 m .
(a) Find the bearing of point B from point C.

$$
\begin{aligned}
& \angle B C N_{2}=180^{\circ}-35^{\circ}=145^{\circ} \\
& \text { Bearing of point } B \text { from point+ } C \\
& =360^{\circ}-145^{\circ} \\
& \left.=215^{\circ}-C 1\right]
\end{aligned}
$$

\qquad
(b) Calculate the length $A C$.

$$
\begin{aligned}
& \angle B A C=180^{\circ}-80^{\circ}=100^{\circ} \\
& \angle A C B\left.=180^{\circ}-100^{\circ}-35^{\circ}=45^{\circ}-C 0\right] \\
& \frac{50}{\sin 45^{\circ}}=A C \\
& A C=\frac{50}{\sin 35^{\circ}}-[1] \\
&=40-6 \mathrm{~m}-\sin 35^{\circ} \\
&\hline 1]
\end{aligned}
$$

$$
\text { Answer } 40-6 \quad m[2]
$$

15 Mary weighed 3 pet kittens.
The mean mass of the kittens was 200 grams.
The standard deviation of the masses of the kittens was 10 grams.
The scales used by Mary were found to be inaccurate.
The correct mass of each kitten was 20 grams less than Mary recorded.
(a) Write down the correct value for the mean and standard deviation (SD).

$$
\begin{aligned}
\text { Correct mean } & =200-20 \\
& =180 \mathrm{~g}-[1] \\
S-D & =10 \mathrm{~g} .
\end{aligned}
$$

$$
\begin{array}{r}
\text { Answer } \text { Mean }=\frac{180}{} \quad \mathrm{~g}[1] \\
\mathrm{SD}=\frac{10}{} \mathrm{~g}[1]
\end{array}
$$

(b) After a number of years, the mass of each of the 3 kittens are tripled. Calculate the new standard deviation.

$$
\begin{aligned}
& \text { New SD }=3 \times 10 \\
& =30 \mathrm{~g}
\end{aligned}
$$

$$
\text { Answer } \mathrm{SD}=30 \mathrm{~g}[1]
$$

The speed-time graph shows the journeys for two drivers, Alfred and Ben. They travelled on the same road. Ben drove past the point at the same time that Alfred started his journey.

(a) Charles commented that Alfred will meet Ben at time $=M$ hour since the graphs intersect at time $=M$ hours. Is Charles correct? Explain.
No, [1] at time M, both vehides have the same speed, but the distance covered need not be the same [1]
(b) Calculate the value of M.

$$
\begin{aligned}
& a_{\text {Ben }}=\frac{0-40}{4}\left.=-10 \mathrm{~km} / \mathrm{h}^{2}-a_{1}\right] \\
& V_{\text {Ben }}=40-10 \mathrm{~m} \\
& 40-10 m=30 \\
& M=1 \text { hour }-[1] \\
& \text { or } \frac{40}{4}=\frac{30}{4-m}-[1] \\
& m=1 \text { hour }-[1]
\end{aligned}
$$

\qquad h

17

$$
\begin{aligned}
& \xi=\{\text { integers } x: 2 \leq x<10\} \\
& E=\{\text { even numbers }\} \\
& M=\{\text { multiples of } 3\} \\
& F=\{\text { factors of } 48\}
\end{aligned}
$$

(a) List the elements in
(i)

$$
\begin{aligned}
& M \cap E \\
& M=\{3,6,9\} \\
& E=\{2,4,6,8\} \\
& M \cap E=\{6\}
\end{aligned}
$$

(ii) $(M \cup F)^{\prime}$

$$
\begin{aligned}
& F=\{2,3,4,6,8\} \\
& m \cup F=\{2,3,4,6,8,9\} \\
& (\text { OOF })^{\prime}=\{5,7\}
\end{aligned}
$$

Answer \{6\} [1]

Answer $\{5,7\} \quad[2]$

18 Cindy deposited $\$ 20000$ in a bank account which offered an interest of 1.2% per annum compounded monthly. She withdrew her money after 1 year 6 months. Calculate the amount of interest earned.

$$
\begin{aligned}
I & =20000\left(1+\frac{0-1}{100}\right)^{18}-20000 \quad[1] \\
& =\$ 363.08 \quad[1]
\end{aligned}
$$

19. The diagram shows two geometrically similar figures made of the same material. The length of the smaller figure is 6 cm . The length of the larger figure is 14 cm .

(a) The area of the heart in the larger figure is $15 \mathrm{~cm}^{2}$. Calculate the area of the heart in the smaller figure.

$$
\begin{aligned}
& \frac{\text { Area }_{\text {small }}}{15}=\left(\frac{6}{14}\right)^{2}-[1] \\
& \text { Area }_{\text {small }}=2-76 \mathrm{~cm}^{2} \quad \text { Answer } \quad 276 \quad \mathrm{~cm}^{2}[2]
\end{aligned}
$$

(b) If the mass of the smaller figure is 200 grams, calculate the mass of the larger figure.

$$
\begin{aligned}
& \frac{200}{M_{\text {ass }}}=\left(\frac{6}{14}\right)^{3}-[1] \\
& M_{M S S_{L}}=2540 g-[1]
\end{aligned}
$$

Answer \qquad 2540 $g[2]$
(c) The smaller figure is sold for $\$ 2.50$ while the larger figure is sold for $\$ 25.50$. Which figure will be a better buy? Explain.

Small figure
$200 \mathrm{~g} \rightarrow \$ 2-50$ $\lg \cos t s \$ 0.0125$

Largefigme

$$
\begin{aligned}
& 2540.7408 \mathrm{~g} \rightarrow \$ 25.50 \\
& \text { lg costs } \$ 0.010036 \\
& \text { Answer Larger figure .[2] }
\end{aligned}
$$

20 Two cafe outlets, A and B sells coffee, tea and cakes.
Both outlets charge $\$ 2.50$ for a cup of tea, $\$ 3.50$ for a cup of coffee and $\$ 3.00$ for a piece of cake.
(a) On a Saturday, Cafe A sells 100 cups of coffee, 70 cups of tea and 50 pieces of cake. Cafe B sells 120 cups of coffee, 90 cups of tea, and 40 pieces of cake.

Represent this information in a 2×3 matrix \boldsymbol{Q}.

$$
\text { Answer } Q=\left(\begin{array}{lll}
100 & 70 & 50 \tag{1}\\
12 & 0 & 90
\end{array}\right)
$$

(b) By multiplying Q with another matrix, calculate the total amount collected by each of the two outlets respectively.

$$
\begin{gathered}
\left(\begin{array}{lll}
100 & 70 & 50 \\
120 & 90 & 40
\end{array}\right)\left(\begin{array}{l}
3.50 \\
2.50 \\
3.00
\end{array}\right)=\binom{675}{765} \\
L[1]
\end{gathered}
$$

Answer: Outlet $A: \$ \frac{675}{765}$
Outlet $B: \$ 72]$
(c) Both outlets decided to give a special discount of 20% for coffee, 10% for tea and 10% for cakes. By the multiplication of two matrices, calculate the new prices of a cup of coffee, of a cup of tea and of a piece of cake.

$$
\left[\begin{array}{ccc}
0.8 & 0 & 0 \\
0 & 0.9 & 0 \\
0 & 0 & 0.9
\end{array}\right]\left[\begin{array}{l}
3-50 \\
2.50 \\
3.00
\end{array}\right]=\left[\begin{array}{c}
2-80 \\
2.25 \\
2.70
\end{array}\right]
$$

\qquad 2.25

New price of a piece of cake : \$

The line L passes through the point $A(0,2)$ and meets the line $y=x$ at point C. O is the origin. The area of $O A C$ is 3 units 2.
(a) What is the equation of line L ?

$$
\begin{array}{c|c}
\frac{1}{2} \times 2 \times \text { height }=3 \\
\text { height }=3 \\
c(3,3)
\end{array} \left\lvert\, \begin{array}{r}
\text { gradient }=\frac{3-2}{3-0}=1 / 3 \\
\text { Equation }=y=\frac{1}{3} x+2 \\
\\
\text { Answer } y=-1 / 3 x+2
\end{array}\right.
$$

(b) There is a point B such that $O C$ is the line of symmetry of the figure $O A C B$.
(i) What is the name of quadrilateral $O A C B$?
(ii) State the coordinates of the point B.

$$
\begin{array}{rc}
\text { Answer } B(2, & 0 \\
& G]
\end{array}
$$

22. The cumulative frequency represents the marks scored by a group of 80 students.

(a) Use the graph to find the number of students with a score of more than 26 marks.

$$
\begin{gather*}
\left.\begin{array}{l}
\text { No of students } \\
\text { With a score } 726=80-22=58-[1] \\
\\
\text { Answer } \quad 58
\end{array}\right] .[1]
\end{gather*}
$$

(b) Calculate the range of the marks scored.

$$
\begin{aligned}
\text { range } & =50-10 \\
& =40 \mathrm{marks}
\end{aligned}
$$

(c) If another group of 80 students have the same median mark with a smaller interquartile range, how would the cumulative frequency graph of this second group of students differ from this cumulative frequency graph?
\qquad

23 A building is drawn to a scale of 1: n.
The actual area of the building floor is $500 \mathrm{~m}^{2}$ while the area of the building on the map is $20 \mathrm{~cm}^{2}$. Find the value of n.

$$
\begin{aligned}
& \left(\frac{1}{n}\right)^{2}=\frac{20}{500 \times 110 \times 800}-[1] \\
& 1=h=1=500 \\
& \quad h=500-[1]
\end{aligned}
$$

\qquad

24 In the triangle $B F C, D$ is the mid - point of $B F$. $D E$ is parallel to $F C$.

Show that $\triangle B D E$ is similar to $\triangle B F C$.

\qquad

[2]
25. In the diagram, the straight line $A B C$ is parallel to the line $D E F$. The straight line $D B$ is parallel to the line $E G . \angle B D E=75^{\circ}$ and $\angle C B G=40^{\circ}$.

Calculate the value of the following angles, stating your reasons clearly.
a. $\angle D B G$

$$
\begin{align*}
\angle O B C & =180^{\circ}-75^{\circ}=105^{\circ} \quad\left(\text { sum of int. ifs is } 180^{\circ}\right) \quad[1] \\
\angle D B G & =105^{\circ}-40^{\circ} \quad{ }^{\circ} 10^{\prime \prime} \text { level write in full" } \\
& =65^{\circ} \tag{1}
\end{align*}
$$

b. $\angle B G E$

$$
\begin{align*}
& \angle B G X=40^{\circ} \text { (alt. } 45 \text {) "0"l level wanted in full. } \\
& \angle G E F 75^{\circ} \text { (cow }-x_{s} \text {) } \\
& \angle X G E=75^{\circ} \quad \text { (alt } \text { \& ss }_{s} \text {) } \\
& \angle B G E=40+75^{\circ} 115^{\circ} —[1] \tag{1}
\end{align*}
$$

26. Explain whether a kite can be a rhombus.

Kite ha $2 . \quad$ L adjacent sides [1]
If the 2 pairs of sides have equal length,
then kite can be a rhombus
(rhombs is a kite)
\qquad
\qquad

BUKIT PANJANG GOVERNMENT HIGH SCHOOL

PRELIMINARY EXAMINATION 2020
SECONDARY FOUR EXPRESS
SECONDARY FIVE NORMAL ACADEMIC

MATHEMATICS

4048/2

Paper 2

Candidates answer on the question paper.
Additional materials: Graph paper

Date: 28 August 2020
Time: 0800-1030
Duration: 2h 30 min

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in.
Write in dark blue or black pen on both sides of the paper.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

At the end of the examination, fasten all your work securely together The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 100.

This paper has a total of 22 pages.

> Setter: Chong Lin Lin

Mathematical Formulae

Compound interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

Curved surface area of a cone $=\pi r l$

$$
\text { Surface area of a sphere }=4 \pi r^{2}
$$

$$
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h
$$

$$
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3}
$$

Area of triangle $A B C=\frac{1}{2} a b \sin C$
Arc length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

Statistics

$$
\text { Mean }=\frac{\sum f x}{\sum f}
$$

Standard deviation $=\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}$

1 (a) Simplify $\frac{2 x}{x^{0}} \div\left(\frac{2 y}{x}\right)^{-2}$, leaving your answers in positive indices.

$$
\begin{align*}
\frac{2 x}{x^{0}} \div\left(\frac{2 y}{x}\right)^{-2} & =\frac{2 x}{1} \div\left(\frac{x}{2 y}\right)^{2} \quad[\text { M1] } \\
& =\frac{2 x}{1} \div \frac{x^{2}}{4 y^{2}} \\
& =\frac{2 x}{1} \times \frac{4 y^{2}}{x^{2}} \\
& =\frac{8 y^{2}}{x} \tag{A1}
\end{align*}
$$

(b) Express y in terms of p and q and s, given that $\frac{1}{q}=\frac{2}{y}+p$.

$$
\begin{aligned}
& \frac{1}{q}=\frac{2}{y}+p \\
& \frac{2}{y}=\frac{1}{q}-p \quad[\mathrm{M} 1] \\
& \frac{2}{y}=\frac{1}{q}-\frac{p q}{q} \\
& \frac{2}{y}=\frac{1-p q}{q} \quad[\mathrm{M} 1] \\
& \frac{y}{2}=\frac{q}{1-p q} \\
& y=\frac{2 q}{1-p q} \quad[\mathrm{M} 1]
\end{aligned}
$$

2 (a) Express $\frac{1}{x-3}-\frac{6}{x^{2}-9}$ as a single fraction in its simplest form.

$$
\begin{aligned}
& \frac{1}{x-3}-\frac{6}{x^{2}-9} \\
& =\frac{1}{x-3}-\frac{6}{(x-3)(x+3)} \\
& =\frac{(x+3)-6}{(x-3)(x+3)} \\
& =\frac{(x-3)}{(x-3)(x+3)} \\
& =\frac{1}{(x+3)} \quad[A 1]
\end{aligned}
$$

Answer

(b) (i) Express $y=x^{2}+4 x-5$ in the form $y=a-(x+b)^{2}$, where a and b are constants.

$$
\begin{array}{ll}
y=x^{2}+4 x-5 & \\
& \text { [M1,A1] method mark for } \\
& =(x+2)^{2}-4-5 \\
& =(x+2)^{2}-9
\end{array}
$$

(ii) Write down the equation of the line of symmetry

$$
x=-2
$$

Answer

3 The line $A B$ is shown below.
(a) Construct an equilateral triangle $A B C$. [1]
(b) Construct the perpendicular bisector of $A B$. [1]
(c) Construct the angle bisector of $\angle C A B$. [1]
(d) Mark clearly a possible point that is inside the triangle, equidistant from $A C$ and $A B$, and is nearer to A than B. Label this point P.

A

B

$A B=9.5$
 $\mathrm{AQ}=8.55$ or 14.4 Allow ± 0.1

(e) The point Q is such that $\angle A C Q=120^{\circ}$ and $\frac{B Q}{B A}=0.9$.

Find two possible positions of Q. Label these point Q_{1} and Q_{2}.
Measure and write down the length $A Q$ (where Q can be any of the two points).

Draw a line such that $\angle A C Q=120^{\circ}[\mathrm{M} 1]$
 Draw a circle center B , radius $(\mathrm{BQ})=8.55 \mathrm{~cm}[\mathrm{M} 1]$
 Mark both Q_{1} and Q_{2} [A1]

4 The exterior angle of a regular n-sided polygon is 14° more than the exterior angle of a regular $(2 n+6)$-sided polygon.
(a) Write down and simplify an expression, in terms of n, each exterior angle of the $(2 n+6)$-sided polygon.

Each ext angle of $(2 n+6)$ sides polygon

$$
=\frac{360}{2 n+6} \text { or } \frac{180}{n+3}[A 1] \text { Accept both }
$$

$$
\text { Accept } \frac{360}{n}-14
$$

(b) Write down an equation in n and show that it reduces to $14 n^{2}-138 n-1080=0$.

$$
\begin{align*}
& \frac{360}{n}-\frac{180}{n+3}=14 \tag{M1}\\
& \frac{360(n+3)-180 n}{n(n+3)}=14 \tag{M1}\\
& 360 n+1080-180 n=14 n(n+3) \tag{M1}\\
& 1080+180 n=14 n^{2}+42 n \\
& 14 n^{2}+42 n-180 n-1080=0 \\
& 14 n^{2}-138 n-1080=0
\end{align*}
$$

(c) Solve the equation $14 n^{2}-138 n-1080=0$.

$$
\begin{align*}
& 14 n^{2}-138 n-1080=0 \\
& n=\frac{-(-138)+\sqrt{(-138)^{2}-4(14)(-1080)}}{2(14)} \tag{M1}\\
& n=15 \text { or } \frac{-36}{7} \tag{A1}
\end{align*}
$$

Answer
(d) Explain why one of the solutions above is rejected.

Answer
n is a positive integer since it is the number of sides of a polygon
(e) Hence, find the value of each interior angle of the n-sided polygon.

$$
\text { Each exterior angle }=\frac{360}{15}=24^{\circ} \quad[\mathrm{M} 1]
$$

Each interior angle

$$
=180-24=156^{\circ}[\mathrm{A} 1]
$$

5 The points A, B, C, D and E lie on the circle. $\angle A E B=28^{\circ}, \angle C A B=62^{\circ}$ and $\angle A B E=34^{\circ}$. $A E$ is parallel to $B D$.

(a) Find two other angles that is 62°, stating the angle property.

```
\angleBEC and }\angleBDC[A1
(angles in the same segment) [A1]
```

Answer
(b) Explain whether $A C$ is the diameter of the circle.

Answer


```
or
\angleBDA=28
\angleBDC+}\angleBDA=62+28=90
[M1] show how they get right angle
\(\angle \mathrm{AEC}\) or \(\mathrm{ADC}=90^{\circ}, \mathrm{AC}\) is the diameter. (right angle in semicircle) [M1]
```

(c) Find the following angles, stating all the angle properties.
(i) $\angle E B D$
(ii) $\angle D E A$

```
\angleEBD =28年(alt }\angle\textrm{s},\textrm{AE}//\textrm{BD}) [A1]
\angleDEA
=(180-28-34)}\mp@subsup{)}{}{\circ}\mathrm{ (angles in opposite segments/opp angles in cyclic quad)
= 118
[M1] all necessary angle properties written for (i) (ii)
```

Answer (i)
(ii)
[3]
(d) Explain why G is the center of the circle.

Answer
Many possible explanations

Example
$\angle G B A=34+28=62^{\circ} . \quad[\mathrm{M} 1]$
Since $\angle G B A=\angle G A B, G A=G B=$ radius of circle. $[M 1]$
(e) If the radius of the circle is 7 cm , find the area of the shaded region.
Area of the shaded region

$$
=\frac{180-62-62}{360} \times \pi(7)^{2}-\frac{1}{2} \times(7)^{2} \times \sin (180-62-62)
$$

[M1 - area of sector]
[MI - area of triangle]

$$
=3.63449
$$

$$
\approx 3.63 \mathrm{~cm}^{2}[\mathrm{~A} 1]
$$

Answer

6 In the diagram, $A B C D$ represent a vertical cliff face. The bottom of the cliff, $B C$, is 100 m and is at sea level. A boat is in the sea at E.
B is due north of E and the bearing of C from E is 070°.
E is known to be equidistant from B and C.

(a) Find the bearing of C from B.

$$
\begin{aligned}
& \angle E B C=\frac{180^{\circ}-70^{\circ}}{2} \\
& \qquad=55^{\circ}[\mathrm{M} 1] \\
& \text { The bearing of } \mathrm{C} \text { from } \mathrm{B}=125^{\circ}[\mathrm{A} 1]
\end{aligned}
$$

Answer
-
(b) Show that $B E=87.17 \mathrm{~m}$.

Answer

(c) Find the area of $\triangle B C E$, leaving your answer to the nearest square metre.

$$
\begin{align*}
& \text { Area } \\
& =0.5(87.17)^{2} \sin 70^{\circ} \quad \text { (accept using more accurate BE) } \\
& =3570.178356 \\
& =3570 \mathrm{~m}^{2} \tag{A1}
\end{align*}
$$

Answer
(d) It is given that the angle of depression of E from A is 20.2°. Find the height of the cliff $B A$, leaving your answers in 3 significant figures.

$$
\begin{align*}
& \tan 20.2=\frac{A B}{87.17} \\
& A B=87.17 \tan 20.2[\mathrm{M} 1] \text { make height the subject } \\
& \mathrm{AB}=32.1 \mathrm{~m}(3 \text { significant figures }) \tag{A1}
\end{align*}
$$

Answer m
(e) $\quad P$ is a point on $B C$ such that $\frac{\text { Area of } \triangle B E P}{\text { Area of } \triangle C E P}=\frac{3}{2}$.

Find the length of $C P$.

$$
\begin{aligned}
& \frac{\text { Area of } \triangle B E P}{\text { Area of } \triangle C E P}=\frac{3}{2} \text {. } \\
& \text { So } \frac{B P}{C P}=\frac{3}{2} \quad[\mathrm{M} 1] \\
& \mathrm{CP}=40 \mathrm{~m}[\mathrm{Al} \text { or } \mathrm{B} 2]
\end{aligned}
$$

7 Part of a pattern of numbers is shown in the table below.

	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	
Row	1	2	3	4	5	6	7
Row	2	8	9	10	11	12	13
Row	3	14	15	16	17	18	19
Row	4	20	21	22	23	24	25
Row	5	26	27	28	29	30	31
$*$	$*$	$*$	$*$	$*$	$*$		
$*$	$*$	$*$	$*$	$*$	$*$		
Row	n		x	y			
Row	$n+1$		s	t			

(a) Express y, s and t in terms of x.

(b) Explain why the difference between $x t$ and $y s$ is always 6 .

Answer

```
xt-ys
=x(x+7)-(x+1)(x+6)
    = \mp@subsup{x}{}{2}+7x-(\mp@subsup{x}{}{2}+7x+6) [M1]
    =-6
Difference = 6 [M1]
```

(c) Express x in terms of n.

$$
x=(6 n-3)
$$

(d) Explain why $x y$ would be in column number C_{5}, for any value of n.

$$
\begin{aligned}
& x y \\
& =(6 n-3)(6 n-2) \\
& =36 n^{2}-30 n+6 \\
& =6\left(6 n^{2}-5 n+1\right) \quad[\text { M1] Take } 6 \text { as common factor }
\end{aligned}
$$

Since 6 is a factor, $x y$ is multiple of 6 . Therefore it is in C_{5}. [M1]
(e) From the above, where would $y s$ lies in $\left(\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}\right.$ or $\left.\mathrm{C}_{6}\right)$?

8 The ordered stem-and-leaf diagram records the height of 21 plants in Plantation A.

Stem	Leaf							
13	0	7	8	9	9			
14	1	1	2	6	7	8	9	9
15	0	2	3	5	6	8	8	8

Key: 14 | 8 means 148 cm
(a) Represent the above information in a box and whisker.

Answer

(b) State the modal height.

158 cm

Answer
cm
(c) Calculate the percentage of students having a height of less than 150 cm .

(d) Two trees are selected at random from Plantation A.

The students are asked to calculate the probability of selecting a plant that is less than 150 and another plant that is more than or equal to 150 .
(i)

Alice says that the above probability is calculated using $\frac{8}{21}$ and $\frac{13}{21}$.
Explain why she is wrong.
Answer

Possible answer

(1) After selecting the first tree, there are only 20 trees left.
(2) P (select one <150 and one at least 150)
$=\mathrm{P}($ first plant at least 150 , second less than 150$)+\mathrm{P}($ first plant less than 150 , second at least 150)
(ii) Calculate the above-mentioned probability.
P (select one <150 and one at least 150) should be
$=\frac{8}{21} \times \frac{13}{20} \times 2 \quad[\mathrm{MI}]$
$=\frac{52}{105} \quad$ [A1]

Answer
(e) 30 plants are planted in Plantation B on the same day. The range of height is 24 cm , the interquartile range is 10 cm and the median is 152 cm . Compare the height in Plantation A and B in two ways.

Answer

```
One mark each
(1) MedianA < MedianB:The plants in Plantation B are taller.(or grow faster)
(2) Calculate IQRR= 14. IQRA}>IQ\mp@subsup{R}{B}{}\mathrm{ : The spread in height of plantation for Plantation A
    is wider.
```

9 The frustum shown in the diagram is a metal solid obtained by cutting off the pyramid.

The dimension of the top rectangular plane is 8 cm by 6 cm .
The dimension of the bottom rectangular plane is 16 cm by 12 cm .

The height, $A B$, of the frustum is 7 cm where A is the center of the base.

(a) Explain why the height of the pyramid that is cut off is 7 cm .

Answer
The cone that is cut off is similar to the bigger cone.
$\frac{l_{1}}{l_{2}}=\frac{b_{1}}{b_{2}}=\frac{\text { height of small cone (cut off) }}{\text { height of larger cone }}$
$\frac{8}{16}=\frac{6}{12}=\frac{h}{h+7}$
$\frac{1}{2}=\frac{h}{h+7}$
$h+7=2 h$
$h=7$
(b) Show that the volume of the frustum is $784 \mathrm{~cm}^{3}$.

Answer
Volume of frustum
= Volume of big cone - Volume of small cone
$=\frac{1}{3}(12 \times 16 \times 14)-\frac{1}{3}(6 \times 8 \times 7) \quad[$ M1, M1 - Volume of big and small cone $]$
$=784 \mathrm{~cm}^{3}$
(c) Assuming negligible loss in the process of melting, how many spherical balls (of radius 2 cm) can be formed if the frustrum is melted?

Approximate no of spheres

$=784 \div\left(\frac{4}{3} \pi \times 2^{3}\right) \quad[\mathrm{M} 1]$
$=23.39577$
No of spherical balls that can be formed $=23$ [A1]

Answer
(d) 3 of the above frustums are to be packed into a rectangular box. To save cost, the seller should keep the amount of material of the rectangular box to the minimum.

Albert claim that the dimension should be 30 cm by 16 cm by 7 cm (Box A).
Betty claim that the dimension should be 38 cm by 12 cm by 7 cm (Box B).
Carol claim that the dimension should be 21 cm by 16 cm by 12 cm (Box C).
(i) Explain which box will be too small.

Answer
Box B. The minimum length should be $(16+8+16)=40 \mathrm{~cm}$. not 38 cm
(ii) Which of the other two boxes would use the minimum amount of material?

Calculate surface area

Surface Area $($ Box A $)=2 \times[(30 \times 16)+(30 \times 7)+(16 \times 7)]=1604 \mathrm{~cm}^{2}$
Surface Area $($ Box C) $)=2 \times[(12 \times 16)+(12 \times 21)+(16 \times 21)]=1560 \mathrm{~cm}^{2}$
Answer: Box C
[M1, M1, A1]

Answer

10 A group of researchers brought 180 koalas to an island and tracked the number of koalas over a few years.

x (years)	0	0.5	1	2	3	4	5	6	6.5	7	7.5
y (no of animals)	180	177	175	172	p	172	175	180	183	187	191

(a) Using a scale of 2 cm on both axes to represent 1 year on the x-axis and 2 animals on the y-axis for $170 \leq y \leq 192$, plot the values given and join them with a smooth curve.
(b) Use your curve to estimate the value of p, corrected to nearest integer.

$$
\mathrm{p}=171
$$

Answer

(c) By drawing a tangent, find the gradient $x=6$.

```
Draw a suitable tangent. [M1]
Gradient = 6 }\pm1[\mathrm{ Al]
```


Answer

(d) The number of koalas (y) turns out to be related to an unknown quadratic function $y=(x+a)^{2}+b$. Find the value of a and of b.

(e) The researchers also brought 180 penguins to the same island and noticed that the number of penguins increased at a steady rate of 1 per year.
(i) Write down an equation connecting the number of penguins, y, and the number of years, x.

(ii) On the same axes, draw the graph of the equation in (i) and state the point of intersection (x, y).
Draw line [M1]

Accept $(0,180)$ and $(7,187)[A 1]$

Answer
(iv) What would this point of intersection represent in this research? Answer

11 Charlotte takes the taxi every day. She is thinking of buying a car and wants to pay off the car as soon as possible. The tables below give the information Charlotte can use.

Charlotte's financial situation	
Money set aside to buy a car	$\$ 50000$
Monthly salary	$\$ 4500$

Information on the car and car loan

Car Price	$\$ 96000$ Customer must take a minimum loan of 50\% from the car dealer.
Loan Period Number of years, x	$\bullet 2 \leq x \leq 7, x$ is an integer -Customer needs to decide on the loan period on the day he or she buys the car. Car agent's interest rate2.45% per annum simple interest

Information on how Charlotte uses her monthly salary

(a) Determine the minimum loan amount.

$$
\begin{aligned}
& \text { Loan amount }= \\
& =\frac{50}{100} \times 96000 \\
& =48000 \\
& \text { [A1] }
\end{aligned}
$$

(b) Charlotte calculated that if the loan period is 2 years and that she took a loan of $\$ 48000$, her monthly car instalment will be $\$ 2098.00$. Show that Charlotte is correct. Answer

Monthly instalment
$=\frac{\text { Loan }+ \text { Simple interest }}{\text { Number of months }}$
$=\frac{48000+48000 \times \frac{2.45}{100} \times 2}{24}$ [M1 calculate simple interest]
$=2098$ [M1 show correct steps to calculate instalement]
(c) Charlotte intends to use no more than her current taxi expenditure to pay for her monthly car instalment. Suggest the minimum loan period. Justify your answer with clear working.
First part of calculation (3 marks)
Angle representing Food
$=\frac{850}{4500} \times 360^{\circ} \quad[\mathrm{M} 1-$ convert info from pie chart $]$
$=68^{\circ}$
Current monthly expenditure
$=\frac{360-90-130-68}{360} \times 4500$ [M1 - calculate angle, form ratio]
$=900$ [M1]
Method 1 (3 marks) : Forming an algebraic inequality to solve
Method 2 (3 marks) : Calculating monthly instalment for appropriate number of years 4 years and 5 years. Explain why it will not be more than 5 years.

Minimum number of years $=5$ years [A1]

Answer
(d) Give a possible real-life scenario to explain why Charlotte's savings will be reduced even if her monthly instalment is the same as the current taxi expenditure.

Answer
Any logical real-context reasons such as carpark fee, petrol, car maintenance.

End of paper

