## ANDERSON SECONDARY SCHOOL Preliminary Examination 2020 Secondary Four Express & Five Normal



CANDIDATE NAME:

CLASS:

## MATHEMATICS

Paper 1

INDEX NUMBER:

4048/01

29 July 2020 2 hours

0800-1000h

Candidates answer on the Question Paper Additional Materials: Nil

## **READ THESE INSTRUCTIONS FIRST**

Write your name, class and index number in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use paper clips, highlighters, glue or correction fluid/tape.

Answer all the questions.

If working is needed for any question it must be **neatly and clearly** shown in the space below the question.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For  $\pi$ , use either your calculator value or 3.142, unless the question requires the answer in terms of  $\pi$ .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 80.

#### Mathematical Formulae

**Compound Interest** 

Total amount = 
$$P \overline{\square} + \frac{r}{100} \sqrt[n]{100}$$

Mensuration

Curved surface area of a cone =  $\pi r l$ 

Volume of a cone =  $\frac{1}{3}\pi r^2 h$ Surface area of a sphere =  $4\pi r^2$ 

Volume of a sphere =  $\frac{4}{3}\pi r^3$ 

Area of triangle 
$$ABC = \frac{1}{2}ab\sin C$$

Arc length =  $r\theta$ , where  $\theta$  is in radians

Sector area =  $\frac{1}{2}r^2\theta$ , where  $\theta$  is in radians

**Trigonometry** DANYAL

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$Mean = \frac{\Sigma f x}{\Sigma f}$$

Standard deviation = 
$$\sqrt{\frac{\Sigma f x^2}{\Sigma f} - \left(\frac{\Sigma f x}{\Sigma f}\right)^2}$$



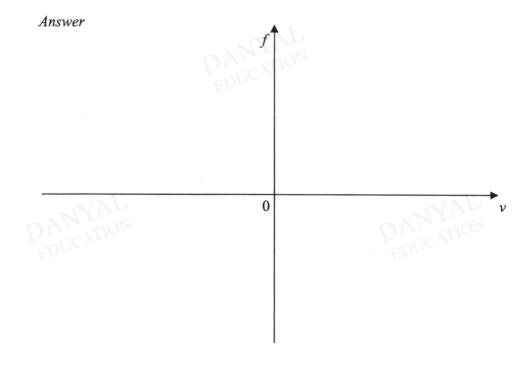


1 The number of spectators who attended a football match was 40 000 when rounded off to 1 significant figure. State the smallest and largest possible turnout for the match.

Answer smallest = .....

2 (a) Factorise  $x^2 + 9y^2 - 6xy - 1$  completely.

DANYAL Answer ..... [2]


(b) Express  $\frac{2}{3(x-4)^2} + \frac{1}{4-x}$  as a single fraction.

DANY

(a) Given that v is inversely proportional to  $t^3$  and v = 20 for a particular value of t, find the new value of v when this value of t is doubled.

3

(b) Given that f is directly proportional to  $v^2$ , sketch a graph of f against v in the axes drawn below.



[1]

- 4 The total area of a town is  $36 \text{ km}^2$ . It is represented by a total area of  $4 \text{ cm}^2$  on a map.
  - (a) Express the scale of the map in the form 1: r.

Answer

(b) Find the area of the town on a second map with scale is  $1:60\ 000$ . Leave your answer in cm<sup>2</sup>.

5 (a) Solve the inequality 
$$9-5x < 2-\frac{x}{4} \le \frac{x}{3}-\frac{4x}{7}$$
.





**(b)** Solve the equation 
$$\frac{3}{(2x-1)^2} = \frac{1}{3}$$
.

6 (a) Simplify  $\left(\frac{x^6}{25y^4}\right)^{-\frac{1}{2}}$ , giving your answer in positive indices.

Solve the equation  $9\sqrt[3]{3^{3x}} = \frac{1}{3^{3(2-x)}}$ . (b)

Answer  $x = \dots$ [3]

(c) Given that a > 0 and *n* is an even number, deduce the number of solutions for the equation  $ax^n - x = 0$ . Explain your answer clearly.

| Answer |     |
|--------|-----|
|        |     |
|        |     |
|        | [3] |

Answer ..... [2]

(b) Hence state the minimum value of  $x^2 - 2x + 3$ .

Answer ..... [1]

(c) State the equation of the line of symmetry of the graph of  $y = x^2 - 2x + 3$ .

DANYAD

8

**(a)** 

Express 13 824 as a product of its prime factors.

| (b) | Using your answer to part (a), explain why 13 824 is a perfect cube.                              |
|-----|---------------------------------------------------------------------------------------------------|
|     | Answer                                                                                            |
|     |                                                                                                   |
|     |                                                                                                   |
| (c) | Given that a and b are both prime numbers and $\frac{a}{b} < 1$ , find the values of a and b such |
|     | that $\frac{a}{b} \times 13$ 824 is a perfect square.                                             |
|     |                                                                                                   |
|     | Answer $a = \dots$                                                                                |
|     | $b = \dots $ [2]                                                                                  |

9 Solve the following simultaneous equations.

$$4x - y = -4$$
$$\frac{1}{3}y + x = \frac{5}{2}$$

ATION

Answer  $x = \dots$ 

- 10 A is the point (-4, 2) and B is the point (3, 0).
  - (a) Find the equation of the line AB.

Answer ......[3]

(b) Find the length AB.

DANYAL

Answer .....units [2]

(c) State the number of points of intersection between the line AB and the line  $y = \frac{1}{2}x + 1$ . Explain your answer.

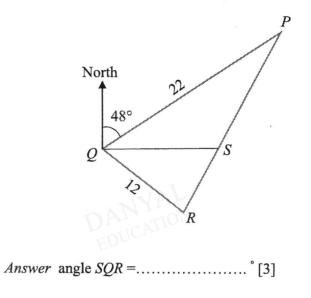
11 Consider the sequence

 $1^2 - 5$ ,  $2^2 - 7$ ,  $3^2 - 9$ ,  $4^2 - 11$ , ...

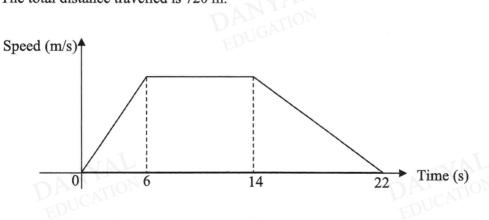
(a) Find an expression, in terms of *n*, for the *n*th term,  $T_n$ , of this sequence.

Answer  $T_n = ..... [1]$ 

Answer  $T_8 = .....$  [1]


12 A and B are two geometrically similar objects such that

 $\frac{\text{surface area of } A}{\text{surface area of } B} = \frac{y}{y+7} \text{ and } \frac{\text{volume of } A}{\text{volume of } B} = \frac{1}{8}.$ 


Find the value of y.

(b) Evaluate  $T_8$ .

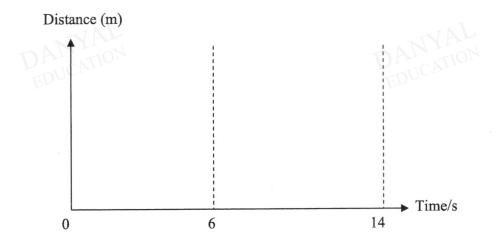
13 In the diagram below, PQ = 22 km, QR = 12 km, the bearing of P from Q is 048° and angle PQR is acute. S is due east of Q. The area of triangle PQR is thrice the area of triangle SQR. Find angle SQR.



14 The diagram shows the speed-time graph of a racing car driving along a road. The total distance travelled is 720 m.

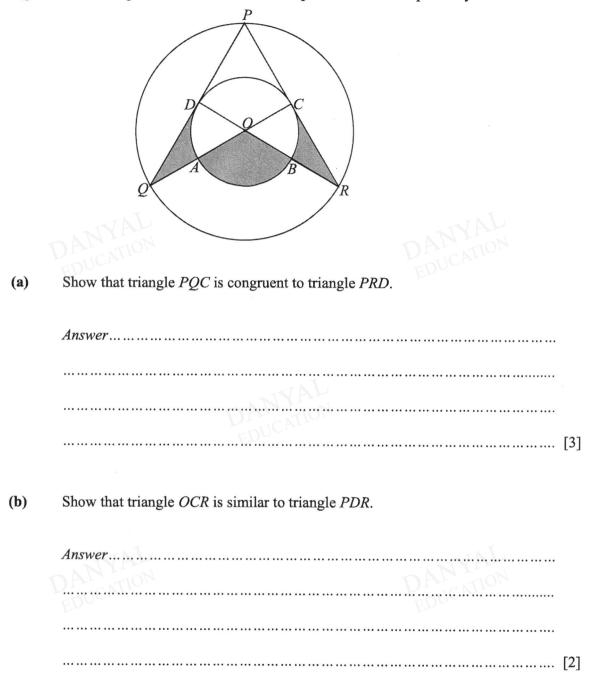


(a) Calculate the maximum speed of the racing car.

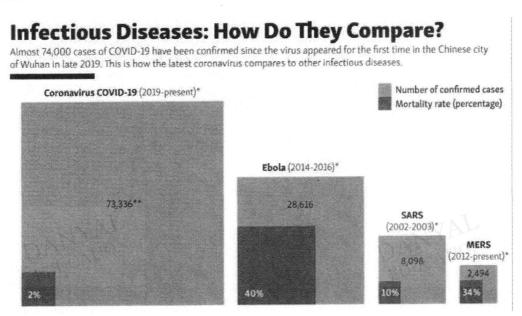

Find the deceleration in the last 8 seconds of the journey. **(b)** 

*Answer* ..... m/s<sup>2</sup> [1]

Find the speed of the racing car at time t = 16 s.


*Answer* ..... m/s [2]

Sketch the distance-time graph for the first 14 seconds of the racing car's journey, in (d) the axes provided below. [2]




(c)

In the diagram below, O is the centre of both circle ABCD and circle PQR.PQ and PR are tangents to the smaller circle at points D and C respectively.



16 The infographic shown below provides a statistical comparison of the latest coronavirus to other infectious diseases which are similar in nature.



Explain why this infographic could be misleading in nature.

| Answer | AND A |     |
|--------|-------|-----|
|        |       |     |
|        |       |     |
|        |       |     |
|        |       | [2] |
|        |       |     |

17 (a) The radius of planet A and B is approximately  $6.95 \times 10^5$  km and  $6 \times 10^6$  m. Find the difference in the diameter, in kilometres, of both the planets. Give your answer in standard form.

16

Answer..... ..... km [2]

(b) (i) Factorise completely  $(y-2)^3 - 4y + 8$ .



Hence, find the minimum value of  $(y-2)^3 - 4y + 8$  when  $y \ge 4$ .

-1'-

Answer ..... [1]

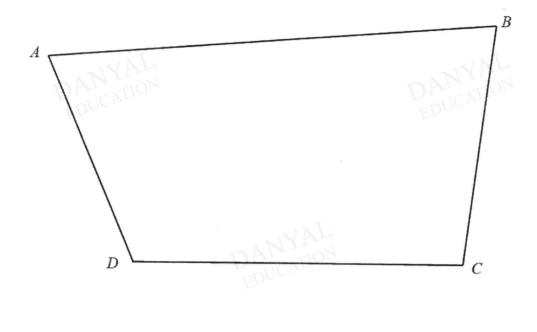
**(ii)** 

18 The test score of Class 4A consisting of 25 students is given in the stem-and-leaf diagram below.

| Stem | Leaf |   |   |   |   |   |   |  |
|------|------|---|---|---|---|---|---|--|
| 4    | 0    | 2 |   |   |   |   |   |  |
| 5    | 1    | 3 | 3 |   |   |   |   |  |
| 6    | 3    | 4 | 8 | 8 | 8 | 9 |   |  |
| 7    | 0    | 1 | 2 | 5 | 6 | 7 | 8 |  |
| 8    | 2    | 4 | 7 | 7 | 8 |   |   |  |
| 9    | 3    | 5 |   |   |   |   |   |  |

Legend: 4 | 0 represents 40.

(a) Find the median score.


(b) Find the interquartile range.

(c) Find the modal score.

DANYAL

(d) A score of at least 76 is required for a student to obtain a distinction. Find the percentage of students in class 4A who obtained a distinction.

19 The diagram below shows a plot of farming land *ABCD*.



Construct the perpendicular bisector of 
$$AB$$
. [1]  
Construct the bisector of angle  $ADC$ . [1]  
A water pump is to be installed at  $ABCD$  such that it is chosen to the U. (D) d

(c) A water pump is to be installed at ABCD such that it is closer to the line CD than the line AD. Shade the region representing the area where the water pump can be installed. [1]

#### **End of Paper**

(a)

(b)

## ANDERSON SECONDARY SCHOOL Preliminary Examination 2020 Secondary Four Express and Five Normal



| CANDIDATE NAME: |   |               |  |
|-----------------|---|---------------|--|
| CLASS:          | / | INDEX NUMBER: |  |

## MATHEMATICS

Paper 2

4048/02

30 July 2020

2 hours 30 minutes

0800 – 1030h

Candidates answer on the Question Paper.

Additional Materials: Nil

## **READ THESE INSTRUCTIONS FIRST**

## Write your name, class and index number on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue, correction fluid or tape.

## Answer all questions on the answer spaces provided.

If working is needed for any question, it must be shown with the answer. Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate. If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For  $\pi$ , use either your calculator value or 3.142, unless the question requires the answer in terms of  $\pi$ .

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is **100**. **Compound Interest** 

Total amount = 
$$P \overrightarrow{\square} + \frac{r}{100} \sqrt[n]{100}$$

Mensuration

Curved surface area of a cone =  $\pi r l$ 

Surface area of a sphere =  $4\pi r^2$ Volume of a cone =  $\frac{1}{3}\pi r^2 h$ 

Volume of a sphere = 
$$\frac{4}{3}\pi r^3$$

Area of triangle 
$$ABC = \frac{1}{2}ab\sin C$$

Arc length =  $r\theta$ , where  $\theta$  is in radians

Sector area =  $\frac{1}{2}r^2\theta$ , where  $\theta$  is in radians



$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc\cos A$$

**Statistics** 

$$Mean = \frac{\Sigma f x}{\Sigma f}$$

Standard deviation = 
$$\sqrt{\frac{\Sigma f x^2}{\Sigma f} - \left(\frac{\Sigma f x}{\Sigma f}\right)^2}$$

1 (a) It is given that  $\frac{2px+9qy}{2py+qx} = 3$ , p and q are constants and  $2p \neq 3q$ .

(i) Show that x = 3y.

[2]

(ii) Evaluate  $\frac{x+y}{y}$ .

**(b)** Simplify 
$$\frac{3a+7b}{16a^2-49(a+b)^2}$$
.



*Answer* [3]

(c) Solve the equation  $2^{x+3} = 320 - 2^{x+1}$ .

Answer x = \_\_\_\_\_

[3]

- The Singapore Indoor Stadium has a seating capacity of 12 000. For shows in February
- 2020, tickets for Disney on Ice are priced at \$50 per adult and \$35 per child.

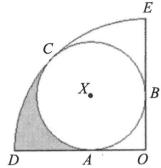
(a) For one of the evening shows in February, 85% of the seats in the stadium are occupied. 3200 of the people present are children. Calculate the total amount of money collected from the sale of tickets for that evening.

Answer \$\_\_\_\_\_[2]

(b) In light of the Covid-19 situation, the price of the adult ticket for a show in February 2020 is 20% cheaper than a show in December 2019. Calculate the price of the adult ticket in December 2019.



Answer \$\_\_\_\_\_[2]


(c) The amount of money collected from the sales of tickets from one day in February 2020 was \$375 000. This sum of money is divided among cost of operation, wages and profit in the ratio 3 : 5 : 7.

The profit is invested at a rate of 4% per annum compounded quarterly for a period of 2 years.

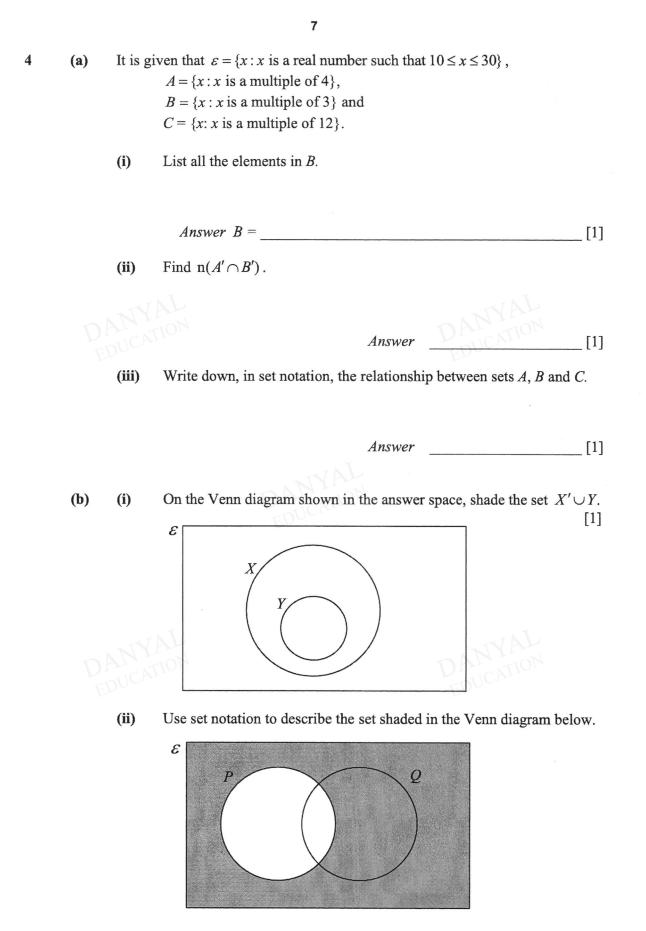
Calculate the compound interest earned.

[3]

3 ODE is a quadrant with centre O and radius 6 cm. ABC is a circle with centre X which touches the sides of the quadrant ODE at the points A, B and C.

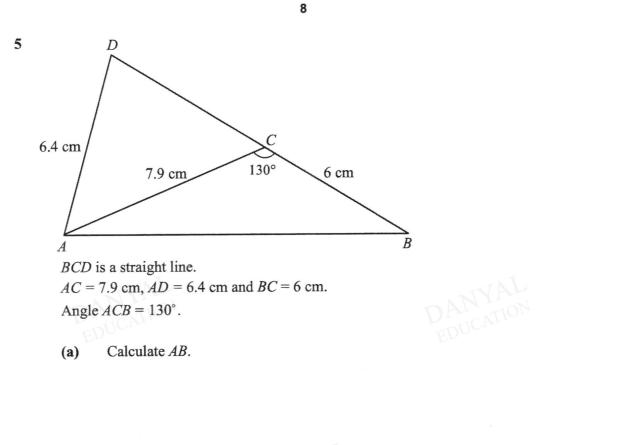


(a) Show that the radius of the circle *ABC* is 2.49 cm, correct to 3 significant figures.


Find the length of the minor arc AC. **(b)** 

Answer

cm [3]


(c) Find the area of the shaded region.

[3]



Answer

[1]



*Answer* \_\_\_\_\_ cm [3]

(b) Calculate angle ADC.

Answer [2]

(c) Calculate the shortest distance from C to AB.

6 The table shows the number of bottles of AndClean hand sanitizers, sold in three shops over the months of December 2019, January and February 2020.

|        | Selling Price (\$) | December 2019 | January 2020 | February 2020 |
|--------|--------------------|---------------|--------------|---------------|
| Shop A | 3.80               | 280           | 320          | 345           |
| Shop B | 3.50               | 250           | 265          | 280           |
| Shop C | 4.00               | 190           | 235          | 290           |

The selling price of AndClean hand sanitizers in each of the three shops can be represented by the matrix  $\mathbf{P} = (3.80 \ 3.50 \ 4.00)$ .

(a) Write down a  $3 \times 3$  matrix **Q** to represent the number of bottles of AndClean hand sanitizers sold in each of the three shops over the three months.

Answer  $\mathbf{Q} =$ [1]

**(b)** (i) State a  $3 \times 1$  matrix **R** such that the product **QR** represents the total number of AndClean hand sanitizers sold in each shop for the three months.

> Answer  $\mathbf{R} =$ [1] Evaluate the product **QR**.

**(ii)** 

PANYATVA

(c) Given that the cost price of a bottle of AndClean hand sanitizers is \$2.60, show that the profit each shop makes for selling a bottle of AndClean is given by  $\mathbf{S} = (1.20 \ 0.90 \ 1.40)$ . [1]

(d) (i) Evaluate the matrix T = S(QR).

|      | Answer $T =$                              | [1] |
|------|-------------------------------------------|-----|
| (ii) | Explain what the elements in T represent. |     |
|      | Answer                                    |     |
|      |                                           |     |
|      |                                           | [l] |

(e) The World Health Organisation classified Covid-19 as a pandemic in March 2020. The number of bottles of AndClean hand sanitizers sold in March 2020 increased by 40% across all 3 shops as compared to February 2020.

Using scalar multiplication, find the number of bottles of AndClean sold in each of the three shops in March 2020.

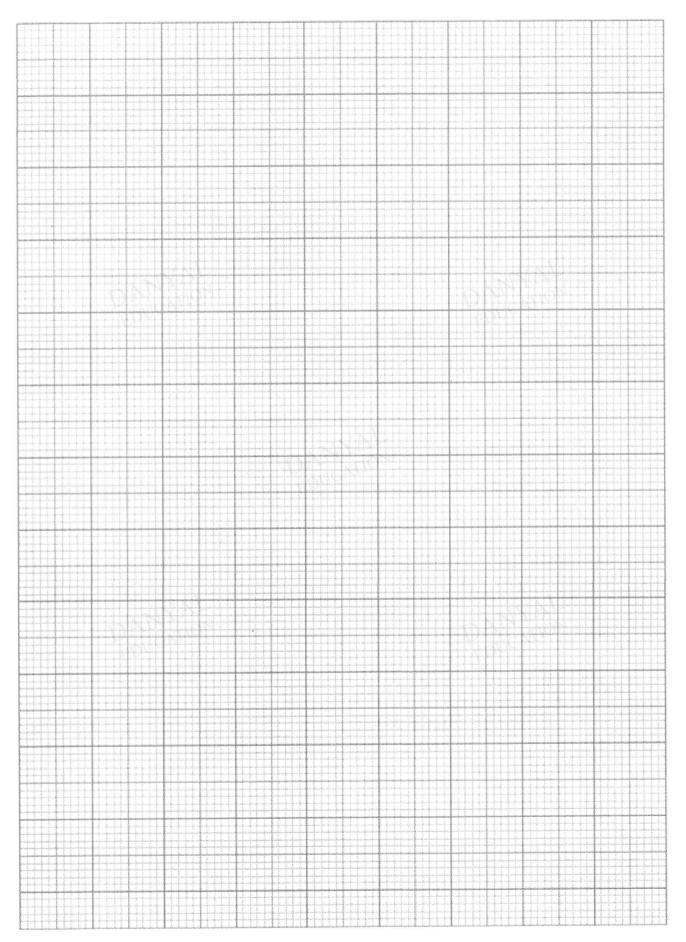
Answer

[2]

The variables x and y are connected by the equation  $y = \frac{1}{5}x^3 - \frac{4}{5}x^2$ .

Some corresponding values of x and y are given in the following table.

| x | -2   | -1 | 0 | 1    | 2 | 3    | 4 | 5 |
|---|------|----|---|------|---|------|---|---|
| у | -4.8 | -1 | 0 | -0.6 | р | -1.8 | 0 | 5 |


(a) Calculate the value of p.

7

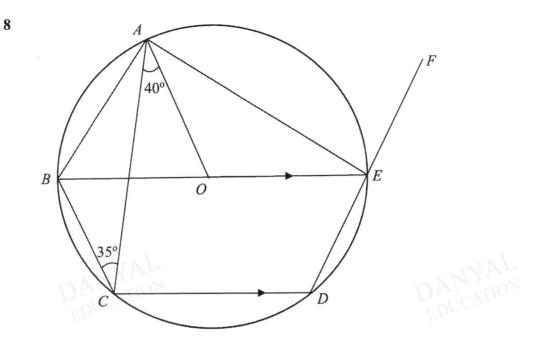


#### Answer p =[1]

(b) Using a scale of 2 cm to 1 unit, draw a horizontal x-axis for  $-2 \le x \le 5$ . Using a scale of 2 cm to 1 unit, draw a vertical y-axis for  $-5 \le y \le 5$ . On the grid provided, plot the points given in the table and join them with a smooth curve. [3]



(c) Use your graph to solve the equation  $\frac{1}{5}x^3 - \frac{4}{5}x^2 - 2 = 0$ .


Answer x = [2] (d) By drawing a tangent, find the gradient of the curve at the point (4, 0).

|     |     | Answer                                                             | [2] |
|-----|-----|--------------------------------------------------------------------|-----|
| (e) | (i) | On the same axes, draw the line $y = 4 - 2x$ for $0 \le x \le 5$ . | [1] |

(ii) Write down the x-coordinate of the point where this line intersects the curve.

Answer \_\_\_\_\_[1]

(iii) This value of x is a solution of the equation  $x^3 - 4x^2 + Ax + B = 0$ . Find the value of A and of B.



A, B, C, D and E are points on the circle, with centre O. The diameter of the circle, BE, is parallel to CD. Angle  $OAC = 40^{\circ}$  and angle  $ACB = 35^{\circ}$ . DEF is a straight line.

EDUCATION Find, giving reasons for each answer,

angle OEA, (a)

ANYAL [1] Answer EDI

reflex angle AOB, (b)

Answer

[2]

(c) angle *BAC*,

(d) angle *FEB*,

Answer \_\_[2] DANYAL



15

Answer \_\_\_\_\_

(e) angle DOE.

D. P. AETHIATH 0000 40400

[2]

[2]

- (a)
- Students from three classes A, B and C took a Mathematics examination and their mean marks and standard deviation were recorded in the table.

| Class | Number of | Mean mark | Standard  |
|-------|-----------|-----------|-----------|
|       | students  |           | deviation |
| A     | 15        | 85.4      | 0.313     |
| В     | 10        | 86.5      | 2.128     |
| С     | 14        | 75        | 0         |

State how it may be deduced from the data that the mark scored (i) by each student in class C was 75 marks.

|      | ION D                                   | AL ATION |    |
|------|-----------------------------------------|----------|----|
|      |                                         |          | [2 |
| (ii) | Compare the performance of the classes. |          |    |
|      | EDUCAL                                  |          |    |
|      |                                         |          |    |
|      |                                         |          |    |

Raymond's marks, giving your answer correct to the nearest whole number.

- (b) A box contains 8 cards, numbered '1' to '8' respectively. A card is drawn with replacement from the box until an '8' is obtained. Find the probability that
  - (i) the first draw was **not** an '8',

 Answer \_\_\_\_\_\_[1]

 (ii) it will take exactly n draws to obtain an '8', giving your answer in terms of n,

 Answer \_\_\_\_\_\_[1]

 (iii) it will take at least n draws to obtain an '8', giving your answer in terms of n.

Answer 

[1]

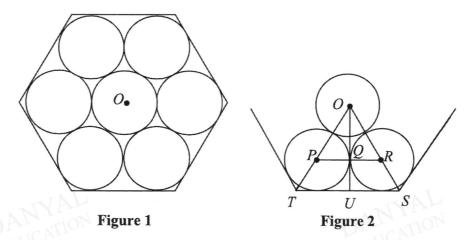
[2]

(c) Krystal said that since she has not drawn an '8' for the last 15 draws, her next draw will likely be an '8'. Comment on the validity of her statement.

Answer

- The volume of mixture required to make one cookie is  $15 \text{ cm}^3$ . 10
  - The mixture is first rolled into a sphere before baking. (a) Calculate the radius of the sphere.

cm [2] Answer


- After it is baked, the cookie takes the shape of a cylinder of radius 3 cm **(b)** and height of 6 mm due to air trapped in the cookie during baking.
  - Calculate the volume of air trapped in the cookie. (i) DANYAMPI

DANYAL  $cm^{3}[2]$ Answer

Express this volume of air as a percentage of the total volume of the **(ii)** cookie.

(c) The cookies are then packed into a box in the shape of a regular hexagon which can contain 7 cookies.

The cross-section of the box is as shown in Figure 1.

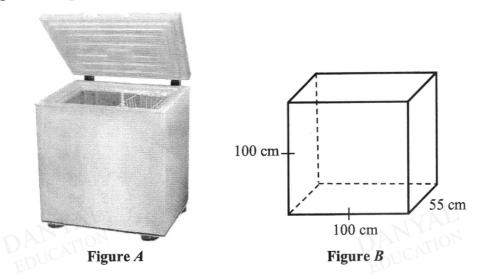


Three of the cookies are shown in Figure 2.

O is the centre of the hexagonal box and P and R are the centres of two cookie as shown in Figure 2. Q is the point where the two cookies touch and U is the midpoint of TS, a side of the box.

(i) Calculate the length of *OP*.

Answer \_\_\_\_\_\_cm [1]


(ii) Calculate the length of *OQ*.

Answer\_\_\_\_\_

cm [2]

(iii) Calculate the length of one side of the box.

11 The interior of a chest freezer as shown in Figure A can be modelled as a cuboid with length and height of 100 cm and a width of 55 cm as shown in Figure B.



Cool air must be circulated inside the freezer at any time.

When cool air meets the warm and humid air that is outside of the freezer, frost is formed at the point of contact.

To allow the freezer to work efficiently, defrosting is required when the layer of frost exceeds 1 cm.

(a) Due to the opening and closing of the freezer door, frost of x cm is formed uniformly on the four vertical walls of the freezer. The area of the horizontal base of the freezer not covered by the frost is 105(50-x) cm<sup>2</sup>.

Explain if defrosting is required and show your calculations clearly.

[4]

Answer

20

(b) Kara wants to design a box that can contain the freezer for shipping. There must be free space between the freezer and the box to allow for ease of removal and addition of protective materials to prevent scratches.

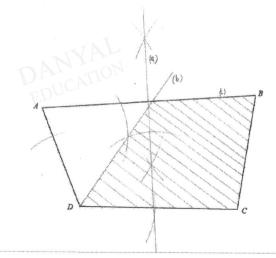
It is recommended to have a minimum distance of 2 cm of free space around the sides and a minimum distance of 3 cm of free space at the top. The thickness of the freezer wall and door of the freezer is 3.5 cm.

Find the smallest dimensions of the box required. State one assumption made in your calculation.

Answer Length = cm [1] Height = cm [1] Width = \_\_\_\_\_ cm [1] Assumption : \_\_\_\_\_[1]

#### **END OF PAPER**

#### **Answer Key:**


 $\frac{14-3x}{3(x-4)^2}$ **2a.** (x-3y+1)(x-3y-1)**1.** Smallest = 35 000 Largest = 44 999 2b. 3a. 2.5 3b. Sketch **4a.** 1:300 000 **4b.** 100 cm<sup>2</sup> **6a.**  $\frac{5y^2}{x^3}$  **6b.** x = 4**5b.** x = 2 or x = -1**5a.**  $x \ge 168$ 6c. 2 solutions **7a.**  $(x-1)^2 + 2$  **7b.** 2 **7c.** x = 18a.  $13824 = 2^9 \times 3^3$ 8c.  $a=2, \\ b=3$  9.  $x=\frac{1}{2}$  & y=68b. Can write as cube of another no' **10a.**  $y = -\frac{2}{7}x + \frac{6}{7}$  or 7y = -2x + 610b. 7.28 units **10c.** Different gradient, one pt of intersection **11a.**  $T_n = n^2 - (2n+3)$  or  $T_n = n^2 - 2n - 3$ **12.**  $y = \frac{7}{3}$  **13.**  $\angle SQR = 37.8^{\circ}$  **14a.** v = 48 **14b.** 6 m/s<sup>2</sup> **14c.** 36 11b. 45 14d. Sketch 15a.  $\angle QPC = \angle RPD$  (common  $\angle$ ),  $\angle RDP = 90^{\circ}$  (tan  $\perp$  rad)  $\angle QCP = 90^{\circ} (\tan \perp \operatorname{rad}), \therefore \angle RDP = \angle OCP$ PD = PC (tangents from an external point) Hence by ASA test, it is shown that  $\triangle PQC$  is congruent to  $\triangle PRD$ . 15b.

$$\angle OCR = \angle PDR = 90^{\circ} (\tan \perp \operatorname{rad}), \angle ORC = \angle PRD (\operatorname{common} \angle)$$

Hence, by AA test, it is shown that  $\triangle OCR$  is similar to  $\triangle PDR$ .

16. Area of the shaded square representing mortality rate is not in proportion to the percentage quoted or the number of confirmed cases quoted.(with specific data quoted)

**17a.**  $1.378 \times 10^6$  km **17bi.** v(v-2)(v-4) **17bii.** 0 **18a.** 71 **18b.** 19.5 **18c.** 68 **18d.** 40% 19.



19

| aO      | uestion  | Solution                                                                                                                               |  |
|---------|----------|----------------------------------------------------------------------------------------------------------------------------------------|--|
| 1       | (a)(i)   | As shown                                                                                                                               |  |
|         | (a)(ii)  | 4                                                                                                                                      |  |
|         | (b)      | 1                                                                                                                                      |  |
|         |          | $-\frac{11a+7b}{11a+7b}$                                                                                                               |  |
|         | (c)      | 5                                                                                                                                      |  |
| 2       | (a)      | \$462000                                                                                                                               |  |
|         | (b)      | \$62.50                                                                                                                                |  |
|         | (c)      | \$14499.92 (to nearest cent)                                                                                                           |  |
| 3       | (a)      | As shown                                                                                                                               |  |
|         | (b)      | 5.86 cm                                                                                                                                |  |
|         | (c)      | $3.77 \text{ cm}^2$                                                                                                                    |  |
| 4       | (a) (i)  | $B = \{12, 15, 18, 21, 24, 27, 30\}$                                                                                                   |  |
|         | (a)(ii)  | $\mathbf{n}(A' \cap B') = 11$                                                                                                          |  |
|         | (a)(iii) | $A \cap B = C$                                                                                                                         |  |
|         | (b)(i)   |                                                                                                                                        |  |
|         | (b)(ii)  | P'                                                                                                                                     |  |
| 5       | (a)      | 12.6 cm (to 3 s.f)                                                                                                                     |  |
|         | (b)      | 71.0° (to 1 dp)                                                                                                                        |  |
|         | (c)      | 2.88 cm                                                                                                                                |  |
| 6       | (a)      | $(280 \ 320 \ 345)$                                                                                                                    |  |
|         |          | $\mathbf{Q} = \begin{bmatrix} 250 & 265 & 280 \end{bmatrix}$                                                                           |  |
|         |          | 190 235 290                                                                                                                            |  |
|         |          | (170 233 290)                                                                                                                          |  |
|         | (b)(i)   | $\mathbf{R} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$                                                                               |  |
|         | (b)(ii)  | (945)<br>795<br>715)                                                                                                                   |  |
|         | (c)      | As shown                                                                                                                               |  |
| <b></b> | (d)(i)   | (2850.50)                                                                                                                              |  |
|         | (d)(ii)  | T represents the total amount of profit generated from the sales of AndClean hand sanitizers in all the 3 shops over the three months. |  |

### MATHEMATICS PAPER 2 ANSWER KEY

| $ \begin{array}{c} (a) \\ (c) \\ (d) \\ (e)(ii) \\ (e)(iii) \\ (a) \\ (c) \\ ($ | $ \begin{pmatrix} 483 \\ 392 \\ 406 \end{pmatrix} $<br>p = -1.6<br>x = 4.5<br>21<br>x = 2.9<br>A = 10, B = -20             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| (c)<br>(d)<br>(e)(ii)<br>(e)(iii)<br>(a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \begin{array}{c}     406 \\     p = -1.6 \\     x = 4.5 \\     21 \\     x = 2.9 \\     A = 10, B = -20 \\ \end{array} $ |
| (c)<br>(d)<br>(e)(ii)<br>(e)(iii)<br>(a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | p = -1.6<br>x = 4.5<br>21<br>x = 2.9<br>A = 10, B = -20                                                                    |
| (c)<br>(d)<br>(e)(ii)<br>(e)(iii)<br>(a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | x = 4.5 21<br>x = 2.9<br>A = 10, B = -20                                                                                   |
| (c)<br>(d)<br>(e)(ii)<br>(e)(iii)<br>(a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | x = 4.5 21<br>x = 2.9<br>A = 10, B = -20                                                                                   |
| (d)<br>(e)(ii)<br>(e)(iii)<br>(a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21<br>x = 2.9<br>A = 10, B = -20                                                                                           |
| (e)(iii)<br>(a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A = 10, B = -20                                                                                                            |
| (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                            |
| (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35°                                                                                                                        |
| (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 290°                                                                                                                       |
| (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15°                                                                                                                        |
| (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 105°                                                                                                                       |
| · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30°                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The mean mark of class C was 75.                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Since the standard deviation of the class was zero, all                                                                    |
| EL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | students scored the same marks of 75.                                                                                      |
| (a)(ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Class $B$ had the best performance as the mean mark was                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | the highest at 86.5.                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Class $B$ also had the highest inconsistency in the scores                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | at the standard deviation was the greatest at 2.128.                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a = 84  or  a = 66                                                                                                         |
| (b)(i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{7}{8}$                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                                                                                                                          |
| o(ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $(7)^{n-1}(1)$                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\left(\frac{1}{8}\right)$ $\left(\frac{1}{8}\right)$                                                                      |
| o(iii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ( ) n=1                                                                                                                    |
| ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\left(\frac{7}{2}\right)^{n-1}$                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                            |
| (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Not valid                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.53 cm                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.96 cm (to 3 sf)                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11.6% (to 3 sf)                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6 cm                                                                                                                       |
| (c)(ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.20 cm (to 3 sf)                                                                                                          |
| c)(iii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.46 cm                                                                                                                    |
| (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Defrosting required                                                                                                        |
| (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 111 cm, 110 cm, 66 cm                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e)<br>a)(i)<br>a)(ii)<br>a)(iii)<br>b)(i)<br>(iii)<br>(iii)<br>c)<br>a)<br>b)(i)<br>b)(i)<br>c)(i)                         |

### 4048/01 Mathematics Paper 1

### Preliminary Examination 2020 Mark Scheme

| Solution                                                                                                                                                              | Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Total<br>Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $Smallest = 35\ 000$ $Largest = 44\ 999$                                                                                                                              | B1<br>B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $x^2 + 9y^2 - 6xy - 1$                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $= (x-3y)^{2} - 1$<br>= (x-3y+1)(x-3y-1)                                                                                                                              | M1<br>A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\frac{2}{3(x-4)^2} + \frac{1}{4-x} = \frac{2}{3(x-4)^2} - \frac{1}{x-4}$ $\frac{2}{3(x-4)^2} - \frac{1}{x-4} = \frac{2-3(x-4)}{3(x-4)^2}$ $= \frac{14-3x}{3(x-4)^2}$ | M1<br>A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Alternative Method:                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\frac{2}{3(x-4)^2} + \frac{1}{4-x} = \frac{2}{3(4-x)^2} + \frac{1}{4-x}$                                                                                             | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\frac{2}{3(4-x)^2} + \frac{1}{4-x} = \frac{2+3(4-x)}{3(4-x)^2}$                                                                                                      | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $=\frac{14-3x}{3(4-x)^2}$                                                                                                                                             | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                       | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $=\frac{1}{8}v$                                                                                                                                                       | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $= \frac{1}{8} \times 20$ $= 2.5$                                                                                                                                     | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                       | Smallest = 35 000<br>Largest = 44 999<br>$x^{2} + 9y^{2} - 6xy - 1$<br>$= (x - 3y)^{2} - 1$<br>= (x - 3y + 1)(x - 3y - 1)<br>$\frac{2}{3(x - 4)^{2}} + \frac{1}{4 - x} = \frac{2}{3(x - 4)^{2}} - \frac{1}{x - 4}$<br>$\frac{2}{3(x - 4)^{2}} - \frac{1}{x - 4} = \frac{2 - 3(x - 4)}{3(x - 4)^{2}}$<br>$= \frac{14 - 3x}{3(x - 4)^{2}}$<br>Alternative Method:<br>$\frac{2}{3(x - 4)^{2}} + \frac{1}{4 - x} = \frac{2}{3(4 - x)^{2}} + \frac{1}{4 - x}$<br>$\frac{2}{3(4 - x)^{2}} + \frac{1}{4 - x} = \frac{2 + 3(4 - x)}{3(4 - x)^{2}}$<br>$= \frac{14 - 3x}{3(4 - x)^{2}}$<br>$v = \frac{k}{t^{3}}$<br>$v_{new} = \frac{k}{(2t)^{3}}$<br>$= \frac{1}{8}v$<br>$= \frac{1}{8}v$<br>$= \frac{1}{8}x 20$ | $\begin{aligned} & \text{Smallest} = 35\ 000 \\ & \text{Largest} = 44\ 999 \\ & \text{B1} \\ \hline x^2 + 9y^2 - 6xy - 1 \\ & = (x - 3y)^2 - 1 \\ & = (x - 3y + 1)(x - 3y - 1) \\ \hline \frac{2}{3(x - 4)^2} + \frac{1}{4 - x} = \frac{2}{3(x - 4)^2} - \frac{1}{x - 4} \\ & \frac{2}{3(x - 4)^2} + \frac{1}{x - 4} = \frac{2 - 3(x - 4)}{3(x - 4)^2} \\ & = \frac{14 - 3x}{3(x - 4)^2} \\ & = \frac{14 - 3x}{3(x - 4)^2} \\ \hline \text{A1} \\ \hline \\ & \frac{2}{3(x - 4)^2} + \frac{1}{4 - x} = \frac{2}{3(4 - x)^2} + \frac{1}{4 - x} \\ & = \frac{2}{3(4 - x)^2} + \frac{1}{4 - x} = \frac{2 + 3(4 - x)}{3(4 - x)^2} \\ & = \frac{14 - 3x}{3(4 - x)^2} \\ & = \frac{1}{3} \\ v_{new} = \frac{k}{t^3} \\ v_{new} = \frac{k}{8t^3} \\ & = \frac{1}{8} \\ v \\ & = \frac{1}{8} \\ x \\ & = \frac{1}{8} \\$ |

· · · ·

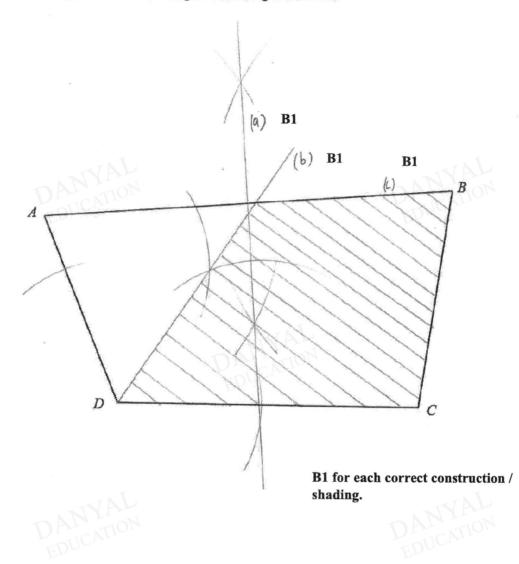
| 3b | f                                                |     | B1                      | 1 |
|----|--------------------------------------------------|-----|-------------------------|---|
|    |                                                  |     |                         |   |
|    | $f=kv^2$                                         |     |                         |   |
|    |                                                  |     |                         |   |
|    |                                                  |     |                         |   |
|    |                                                  |     |                         |   |
| 4a | $4 \text{ cm}^2$ : 36 km <sup>2</sup>            |     |                         | 2 |
|    | $1 \text{ cm}^2$ : $9 \text{ km}^2$              |     | MI                      |   |
|    | 1 cm : 3 km                                      |     | M1                      |   |
|    | 1:300 000                                        |     | TION                    |   |
|    | . BD                                             |     | A1                      |   |
| 4b | 1:60 000                                         |     |                         | 2 |
|    | 1 cm : 0.6 km                                    |     |                         |   |
|    | $1 \text{ cm}^2 : 0.36 \text{ km}^2$             |     | M1                      |   |
|    | $36 \div 0.36 = 100 \text{ cm}^2$                |     | A1                      |   |
|    | Alternative Method:                              |     |                         |   |
|    | Let x be the area of the town on the second map. |     |                         |   |
|    | $x:36=1:0.6^2$                                   |     | M1( for                 |   |
|    | $\frac{x}{36} = \frac{1}{0.36}$                  |     | squaring<br>the values) |   |
|    | 36 0.36                                          |     |                         |   |
|    | $x = \frac{36}{0.36}$                            |     |                         |   |
|    | x = 100                                          |     | A1                      |   |
| 5a | When $9 - 5x < 2 - \frac{x}{4}$ ,                | MAG | - AN                    | 3 |
|    | 4                                                |     | TIOL                    |   |
|    | $9-5x < \frac{8-x}{4}$                           |     |                         |   |
|    | 36-20x < 8-x                                     |     |                         |   |
|    | -19x < -28                                       |     |                         |   |
|    |                                                  |     |                         |   |
|    | $x > 1\frac{9}{19}$                              |     | M1                      |   |
|    |                                                  |     |                         |   |
|    |                                                  |     |                         |   |
|    |                                                  |     |                         |   |
|    |                                                  |     |                         | 1 |

.....

|    | When $2 - \frac{x}{4} \le \frac{x}{3} - \frac{4x}{7}$ ,                                                                         |      |                              |   |
|----|---------------------------------------------------------------------------------------------------------------------------------|------|------------------------------|---|
|    | $\frac{8-x}{4} \le \frac{7x - 12x}{21}$                                                                                         |      | M1                           |   |
|    | $21(8-x) \le 4(-5x)$                                                                                                            |      |                              |   |
|    | $168 - 21x \le -20x$                                                                                                            |      | A1                           |   |
|    | $x \ge 168$                                                                                                                     |      | 111                          |   |
|    | Hence, $x \ge 168$ .                                                                                                            | <br> |                              |   |
| 5b | $\frac{3}{(2x-1)^2} = \frac{1}{3}$ $(2x-1)^2 = 9$                                                                               |      | MI                           | 2 |
|    | 2x-1=3 or $2x-1=-3$                                                                                                             |      | MI                           |   |
|    | When $2x - 1 = 3$ ,                                                                                                             |      |                              |   |
|    | 2x = 4                                                                                                                          |      |                              |   |
|    | x = 2                                                                                                                           |      |                              |   |
|    | When $2x - 1 = -3$ ,                                                                                                            |      |                              |   |
|    | 2x = -2                                                                                                                         |      |                              |   |
|    | x = -1                                                                                                                          |      |                              |   |
|    | Hence $x = 2$ or $x = -1$ .                                                                                                     |      | A1 ( for<br>both<br>answers) |   |
| 6a | $\left(\frac{x^{6}}{25y^{4}}\right)^{-\frac{1}{2}} = \left(\frac{25y^{4}}{x^{6}}\right)^{\frac{1}{2}}$ $= \frac{5y^{2}}{x^{3}}$ |      | M1                           | 2 |
|    | $=\frac{5y^2}{x^3}$                                                                                                             |      | A1                           |   |
|    | Alternative Method:                                                                                                             |      | 105                          |   |
|    | $\frac{x^{6}}{\left(\frac{x^{6}}{25y^{4}}\right)^{\frac{1}{2}}} = \frac{x^{-3}}{5^{-1}y^{-2}}$ $= \frac{5y^{2}}{x^{3}}$         |      | M1 .                         |   |
|    | $=\frac{5y^2}{3}$                                                                                                               |      | A1                           |   |

| 6b       | $9\sqrt[3]{3^{3x}} = \frac{1}{3^{3(2-x)}}$                                           |                 | 3 |
|----------|--------------------------------------------------------------------------------------|-----------------|---|
|          | $9\sqrt[3]{3^{3x}} = \frac{1}{3^{3(2-x)}}$ $3^{2} \times 3^{x} = \frac{1}{3^{6-3x}}$ | M1              |   |
|          | $3^{2+x} = 3^{-6+3x}$                                                                |                 |   |
|          | 2 + x = -6 + 3x                                                                      | <b>M</b> 1      |   |
|          | -2x = -8 $x = 4$                                                                     |                 |   |
|          |                                                                                      | A1              |   |
| 6c       | $x(ax^{n-1}-1) = 0$                                                                  | M1              | 3 |
|          | $x = 0 \text{ or } ax^{n-1} - 1 = 0$                                                 | JAL AL          |   |
|          | When $ax^{n-1} - 1 = 0$ ,<br>$ax^{n-1} = 1$                                          | CATIO           |   |
|          | ax = 1<br>If <i>n</i> is even, $n-1$ is odd.                                         | <b>M</b> 1      |   |
|          | Hence, $ax^{n-1} = 1$ will have 1 solution.                                          |                 |   |
|          | There will be a total of 2 solutions for the given equation.                         | A1              |   |
|          | Alternative Method:                                                                  |                 |   |
|          | $ax^n = x$                                                                           |                 |   |
|          | $x^{n} = \frac{1}{a}x$ EDUCATION                                                     |                 |   |
|          | When $n$ is even, we will have a curve and a straight line as seen below             | (1 mark for     |   |
|          |                                                                                      | each<br>sketch) |   |
|          | $1 = \frac{1}{2} \times \frac{1}{2}$                                                 | Sketchij        |   |
|          | PAN y=x <sup>n</sup><br>ze                                                           | CATION          |   |
|          |                                                                                      | A1              |   |
|          | Hence, there will be 2 solutions for the given equation.                             |                 |   |
| 7a       | $x^{2}-2x+3 = x^{2}-2x+3+(-1)^{2}-(-1)^{2}$                                          | M1              | 2 |
|          | $=(x-1)^2+2$                                                                         | A1              |   |
| 7b       |                                                                                      |                 |   |
| 70<br>7c | Minimum value= 2                                                                     | B1              | 1 |
| 10       | x = 1                                                                                | B1              | 1 |

| 8a | 2 13824                                                                                          |     | 1 |
|----|--------------------------------------------------------------------------------------------------|-----|---|
| 0u | 2 6912                                                                                           |     |   |
|    |                                                                                                  |     |   |
|    | 2 3456                                                                                           |     |   |
|    | 2 1728                                                                                           |     |   |
|    | 2864                                                                                             |     |   |
|    | 2 432                                                                                            |     |   |
|    | 2 216                                                                                            | B1  |   |
|    | 2[108                                                                                            | DI  |   |
|    | 2 54                                                                                             | AL  |   |
|    | 3[27                                                                                             | MON |   |
|    |                                                                                                  |     |   |
|    | 3[5                                                                                              |     |   |
|    | 1                                                                                                |     |   |
| 8b | $13824 = 2^9 \times 3^3$<br>Since $13824 = (2^3 \times 3)^3$ , 13824 can be written as a cube of | B1  | 1 |
| 00 |                                                                                                  |     |   |
| 8c | another number. $a = 2$ ,                                                                        | B1  | 2 |
|    |                                                                                                  | B1  |   |
| 9  | b = 3  4x - y = -4  (1)                                                                          |     | 3 |
|    |                                                                                                  |     |   |
|    | $\frac{1}{3}y + x = \frac{5}{2}$ (2)                                                             |     |   |
|    | From (2), $x = \frac{5}{2} - \frac{1}{3}y$ (3)                                                   |     |   |
|    |                                                                                                  | M1  |   |
|    | Sub (3) into (1):                                                                                |     |   |
|    | $4\left(\frac{5}{2} - \frac{1}{3}y\right) - y = -4$                                              | M1  |   |
|    | (2 3)                                                                                            |     |   |
|    | $10 - \frac{4}{3}y - y = -4$                                                                     |     |   |
|    |                                                                                                  |     |   |
|    | $-\frac{7}{3}y = -14$                                                                            |     |   |
|    | y = 6                                                                                            |     |   |
|    | Sub $y = 6$ into (2):                                                                            |     |   |
|    | $x = \frac{5}{2} - \frac{1}{3} \times 6$                                                         |     |   |
|    |                                                                                                  |     |   |
|    | $=\frac{1}{2}$                                                                                   |     |   |
|    |                                                                                                  | A1  |   |
|    | Hence, $x = \frac{1}{2} \& y = 6$ .                                                              | *** |   |
| L  |                                                                                                  |     |   |


| 10a | gradient = $\frac{2-0}{-4-3}$                                                                                                                                |                                                         | 3 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---|
|     | $=-\frac{2}{7}$                                                                                                                                              | M1                                                      |   |
|     | $y - 0 = -\frac{2}{7}(x - 3)$                                                                                                                                | M1                                                      |   |
|     | $y = -\frac{2}{7}x + \frac{6}{7}$ or $7y = -2x + 6$                                                                                                          | A1                                                      |   |
|     | Alternative Method:                                                                                                                                          | M1                                                      |   |
|     | $\frac{y-0}{x-3} = \frac{2-0}{-4-3}$                                                                                                                         | IVII                                                    |   |
|     | $y = -\frac{2}{7}x + \frac{6}{7}$                                                                                                                            | A2                                                      |   |
| 10b | length of $AB = \sqrt{(-4-3)^2 + (2-0)^2}$                                                                                                                   | M1                                                      | 2 |
|     | $=\sqrt{53}$ units<br>= 7.28 units                                                                                                                           | A1                                                      |   |
| 10c | Since both the lines have a <u>different gradient</u> , they are not parallel. Hence, there will be <u>one point of intersection</u> between both the lines. | B2<br>(No marks<br>for answers<br>without<br>reasoning) | 2 |
| 11a | $T_n = n^2 - (2n+3)$ or $T_n = n^2 - 2n - 3$                                                                                                                 | B1                                                      | 1 |
| 11b | $T_8 = 8^2 - (2 \times 8 + 3)$                                                                                                                               |                                                         | 1 |
|     | = 64 -19<br>= 45                                                                                                                                             | B1                                                      |   |
|     | DAL<br>EDUCATION DAL<br>EDUCI                                                                                                                                | ALION                                                   |   |

| 12 $\frac{l_1}{l_2} = \sqrt[3]{\frac{1}{8}}$<br>$= \frac{1}{2}$<br>$\frac{A_1}{A_2} = \left(\frac{1}{2}\right)^2$<br>$= \frac{1}{4}$<br>$\frac{y}{y+7} = \frac{1}{4}$<br>4y = y+7<br>3y = 7<br>M1 |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| $ \begin{array}{c} = \frac{1}{2} \\ = \frac{1}{2} \\ \frac{A_1}{A_2} = \left(\frac{1}{2}\right)^2 \\ = \frac{1}{4} \end{array} $ M1                                                               |     |
| $\frac{A_1}{A_2} = \left(\frac{1}{2}\right)^2$ $= \frac{1}{4}$                                                                                                                                    |     |
| $=\frac{1}{4}$                                                                                                                                                                                    |     |
| $=\frac{1}{4}$                                                                                                                                                                                    |     |
|                                                                                                                                                                                                   |     |
|                                                                                                                                                                                                   |     |
| $\frac{1}{y+7} = \frac{1}{4}$                                                                                                                                                                     |     |
|                                                                                                                                                                                                   | N   |
| 4y = y + 7                                                                                                                                                                                        |     |
| 3y = .7                                                                                                                                                                                           |     |
| $y = \frac{7}{3}$ A1                                                                                                                                                                              |     |
| 13 Area of $\Delta SQR = 2 \times \text{Area of } \Delta PQS$                                                                                                                                     | 3   |
| $\frac{\text{area of } \Delta SQR}{\text{area of } \Delta PQS} = \frac{1}{2}$ M1                                                                                                                  | L   |
|                                                                                                                                                                                                   |     |
| $\frac{\frac{1}{2} \times 12 \times QS \times \sin SQR}{\frac{1}{2} \times 22 \times QS \times \sin 42^{\circ}} = \frac{1}{2}$ M1                                                                 | L   |
| $\frac{2}{1} \times 22 \times OS \times \sin 42^\circ = \frac{2}{2}$                                                                                                                              |     |
|                                                                                                                                                                                                   |     |
| $\begin{vmatrix} 12\sin SQR = 11\sin 42^{\circ} \\ \angle SQR = 37.8^{\circ} \end{vmatrix}$ A1                                                                                                    |     |
| $\begin{array}{c c} \hline 2.5QR = 57.8 \\ \hline 14a & \text{Let } v \text{ be maximum speed.} \\ \hline \end{array} $                                                                           | 1 2 |
|                                                                                                                                                                                                   |     |
| $720 = \frac{1}{2} \times 6 \times \nu + 8 \times \nu + \frac{1}{2} \times (8 \times \nu)$                                                                                                        | M   |
| $= 3\nu + 8\nu + 4\nu$ A1                                                                                                                                                                         |     |
| 15v = 720<br>v = 48                                                                                                                                                                               |     |
| $\frac{14b}{14b} = \frac{48 \text{ m/s}}{2}$                                                                                                                                                      | 1   |
| 8 s B1                                                                                                                                                                                            |     |
| $\begin{array}{c c} = 6 \text{ m/s}^2 \\ \hline 14c & \text{Let } x \text{ be speed of car at } t = 16. \end{array} $ M1                                                                          | 1 2 |
|                                                                                                                                                                                                   |     |
| $6 = \frac{48 - x}{2}$                                                                                                                                                                            |     |
| 12 = 48 - x A1                                                                                                                                                                                    |     |
| <i>x</i> = 36                                                                                                                                                                                     |     |

| 14d          |                                                                                                                                                                |                                                         | 2 |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---|
|              | Distance (m)                                                                                                                                                   | B2<br>(award 1<br>mark if<br>distance is<br>not written |   |
|              | 144                                                                                                                                                            | and shape<br>of graph is<br>correct)                    |   |
|              | 0 6 14<br>David                                                                                                                                                | AL                                                      |   |
| 15a          | $\angle QPC = \angle RPD$ (common $\angle$ )                                                                                                                   | B1                                                      | 3 |
|              | $\angle RDP = 90^{\circ} (\tan \perp \operatorname{rad})$                                                                                                      |                                                         |   |
|              | $\angle QCP = 90^{\circ}(\tan \perp rad)$                                                                                                                      |                                                         |   |
|              | $\therefore \angle RDP = \angle QCP$                                                                                                                           |                                                         |   |
|              | PD = PC (tangents from an external point)                                                                                                                      | B1                                                      |   |
|              | Hence by ASA test, it is shown that $\triangle PQC$ is congruent to $\triangle PRD$ .                                                                          | B1                                                      |   |
|              | Alternative Solution:                                                                                                                                          |                                                         |   |
|              | CQ = DR(sum of radius of circle)                                                                                                                               | B1                                                      |   |
|              | $\angle PCQ = \angle PDR = 90^{\circ} (\tan \perp \operatorname{rad})$                                                                                         | B1 (for                                                 |   |
|              | PD = PC (tangents from an external point)                                                                                                                      | both)                                                   |   |
|              | Hence by SAS test, it is shown that $\Delta PQC$ is congruent to $\Delta PRD$ .                                                                                | B1                                                      |   |
| 1 <b>5</b> b | $\angle OCR = \angle PDR = 90^{\circ} (\tan \perp \operatorname{rad})$                                                                                         | B1                                                      | 2 |
|              | $\angle ORC = \angle PRD \text{ (common } \angle)$                                                                                                             | B1                                                      |   |
|              | Hence, by AA test, it is shown that $\triangle OCR$ is similar to $\triangle PDR$ .                                                                            |                                                         |   |
| 16           | Area of the shaded square representing mortality rate is not in proportion to                                                                                  | B2                                                      | 2 |
|              | the percentage quoted or the number of confirmed cases quoted.                                                                                                 | (Any one                                                |   |
|              | Supporting reason (in terms of percentage): The mortality rate for COVID-                                                                                      | of the                                                  |   |
|              | 19 is 2% while the mortality rate for SARS is 10% but the area of the shaded                                                                                   | supporting                                              |   |
|              | square is smaller for SARS. <b>OR</b> The mortality rate for Ebola is 40% while the mortality rate for MERS is 34% yet, the area of the shaded square for MERS | reason is sufficient)                                   |   |
|              | is so much smaller than that of the shaded square for Ebola.                                                                                                   | Award B1                                                |   |
|              |                                                                                                                                                                | if no exact                                             |   |
|              | <b>Supporting reason (in terms of number of confirmed cases)</b> : The number of COVID-19 confirmed cases is 73,336 which is more than double the              | data is                                                 |   |
|              | 1 of the                                                                                                                   | quoted                                                  |   |

|       | number of Ebola cases. However, the area of the unshaded square for the case of COVID-19 is not double the area of the unshaded square for the case of Ebola. | from the infograph.                                                |   |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---|
| 17a   | $(2 \times 6.95 \times 10^{5}) - (2 \times 6 \times 10^{6} \div 10^{3}) = 1378000$ $= 1.378 \times 10^{6} \text{ km}$                                         | M1 (for<br>calculation)<br>A1 for<br>answer in<br>standard<br>form | 2 |
| 17bi  | $(y-2)^{3} - 4(y-2) = (y-2)[(y-2)^{2} - 4]$<br>= (y-2)(y-2-2)(y-2+2)<br>= y(y-2)(y-4)                                                                         | M1<br>A1                                                           | 2 |
| 17bii | Since $y \ge 4$ , minimum value of $y(y-2)(y-4)$ will be 0.                                                                                                   | B1                                                                 | 1 |
| 18a   | Median = 71                                                                                                                                                   | B1                                                                 | 1 |
| 18b   | Lower quartile = $63.5$<br>Upper quartile = $83$<br>Interquartile range = $83-63.5$                                                                           | M1                                                                 | 2 |
|       | =19.5                                                                                                                                                         | A1                                                                 |   |
| 18c   | Modal score = 68                                                                                                                                              | B1                                                                 | 1 |
| 18d   | Percentage distinction $=\frac{10}{25} \times 100\%$<br>= 40%                                                                                                 | B1                                                                 | 1 |
| 19a   | Refer to diagram attached.                                                                                                                                    |                                                                    |   |
| 19b   | Refer to diagram attached.                                                                                                                                    |                                                                    |   |
| 19c   | Refer to diagram attached.                                                                                                                                    |                                                                    |   |

## 9 The diagram below shows a plot of farming land *ABCD*.



# ANDERSON SECONDARY SCHOOL Prelim Examination 2020 Secondary Four Express and Five Normal



Marking Scheme

## MATHEMATICS

4048/02

| Qı | iestion | Solution                                                                                                                                         | Ma<br>rk     | Remarks |
|----|---------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|
| 1  | (a)(i)  | $\frac{2px+9qy}{2py+qx} = 3$ $2px+9qy = 6py+3qx$ $2px-3qx = 6py-9qy$ $x(2p-3q) = 3y(2p-3q)$ Since $2p \neq 3q$ , $2p-3q \neq 0$ $x = 3y$ (shown) | [M1]<br>[A1] |         |
|    | (a)(ii) | $\frac{x}{y} = 3$ $\frac{x+y}{y} = \frac{x}{y} + 1$ $= 3 + 1$ $= 4$ DANALON                                                                      | [M1]<br>[A1] |         |
|    | (b)     | $\frac{3a+7b}{16a^2-49(a+b)^2} = \frac{3a+7b}{\left[4a+7(a+b)\right]\left[4a-7(a+b)\right]}$ $= \frac{3a+7b}{(11a+7b)(-3a-7b)}$                  | [M1]<br>[M1] |         |
|    | DA      | $=-\frac{1}{11a+7b}$                                                                                                                             | [M1]         |         |
|    | (c)     | $2^{x+3} = 320 - 2^{x+1}$<br>$2^{x+1} + 2^{x+3} = 320$<br>$2^{x} \times 2 + 2^{x} \times 2^{3} = 320$<br>$2^{x} (2+8) = 320$                     | [M1]         |         |
|    |         | $2^{x} = 32$ $= 2^{5}$ $x = \underline{5}$                                                                                                       | [M1]<br>[A1] |         |

| 2 | (a) | Total tickets sold = $\frac{85}{100}$ (12000)                                                                                    |       |   |
|---|-----|----------------------------------------------------------------------------------------------------------------------------------|-------|---|
|   |     | =10200                                                                                                                           |       |   |
|   |     | Total amount from sales = $35(3200) + 50(10200 - 3200)$                                                                          | [M1]  |   |
|   |     | = \$462000                                                                                                                       |       |   |
|   | (b) | Cost of Dec 2019 show for an adult                                                                                               | [A1]  |   |
|   | 10  |                                                                                                                                  | D.(1) |   |
|   |     | $=\frac{100}{80}\times 50$                                                                                                       | [M1]  |   |
|   |     | = \$62.50                                                                                                                        | [A1]  |   |
|   | (c) | $Profit = \frac{7}{15}(375000)$                                                                                                  |       |   |
|   |     | =\$175000                                                                                                                        | [M1]  |   |
|   | D   |                                                                                                                                  | N III |   |
|   | E   | Compound Interest =175000 $\left(1 + \frac{4/4}{100}\right)^{2\times4} - 175000$                                                 | [M1]  |   |
|   |     | = \$14499.92 (to nearest cent)                                                                                                   | [A1]  |   |
| 3 | (a) | Let the radius of circle ABC be $r$ cm.                                                                                          |       |   |
|   |     | $OX^{2} = OA^{2} + AX^{2}$<br>(6-r) <sup>2</sup> = r <sup>2</sup> + r <sup>2</sup>                                               | [M1]  |   |
|   |     | (3-7) = 7 + 7<br>$36 - 12r + r^2 = 2r^2$                                                                                         |       |   |
|   |     | $r^2 + 12r - 36 = 0$                                                                                                             |       |   |
|   |     | $r = \frac{-12 \pm \sqrt{12^2 - 4(1)(-36)}}{2}$                                                                                  |       |   |
|   |     | $r = \frac{1}{2}$                                                                                                                | [M1]  |   |
|   |     | $=\frac{-12\pm\sqrt{288}}{2}$                                                                                                    | [111] |   |
|   |     | $=$ $\frac{1}{2}$                                                                                                                |       |   |
|   |     | Since $r \ge 0$ , $r = 2.485$                                                                                                    |       |   |
|   |     | Radius of circle ABC is 2.49 cm.                                                                                                 | [A1]  |   |
|   | (b) | Angle $AXC = \frac{1}{2} (360^\circ - 90^\circ) = 135^\circ$                                                                     | [M1]  | L |
|   | D   |                                                                                                                                  | ITAN  |   |
|   | E   | Length of minor arc $AC = \frac{135^{\circ}}{360^{\circ}} \times 2\pi (2.485)$                                                   | JUM   |   |
|   |     |                                                                                                                                  | [M1]  |   |
|   |     | = 5.855<br>= 5.86 cm                                                                                                             | [A1]  |   |
|   |     | - 5.80 cm                                                                                                                        | []    |   |
|   | (c) | Area of shaded region                                                                                                            |       |   |
|   |     | = Area of sector $OCD$ – Area of minor sector $AXC$ –<br>Area of $\triangle OAX$                                                 |       |   |
|   |     |                                                                                                                                  | D (0) |   |
|   |     | $=\frac{45^{\circ}}{360^{\circ}}\times\pi(6^{2})-\frac{135^{\circ}}{360^{\circ}}\times\pi(2.485^{2})-\frac{1}{2}\times2.485^{2}$ | [M2]  |   |
|   |     | = 3.7745                                                                                                                         |       |   |
|   |     | $= 3.77 \text{ cm}^2$                                                                                                            | [A1]  |   |

| ward B1 if<br>orrect answer<br>ven if not<br>implified |
|--------------------------------------------------------|
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |

| 6 | (a)      | (280, 220, 245)                                                                                                                   | [B1]  |                       |
|---|----------|-----------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------|
| 0 | ("       | $\begin{pmatrix} 280 & 320 & 345 \\ 250 & 265 & 200 \end{pmatrix}$                                                                |       |                       |
|   |          | $\mathbf{Q} = \begin{bmatrix} 250 & 265 & 280 \end{bmatrix}$                                                                      |       |                       |
|   |          | (190 235 290)                                                                                                                     |       |                       |
|   | (b)(i)   | $\begin{pmatrix} 1 \end{pmatrix}$                                                                                                 |       |                       |
|   |          | $\mathbf{R} =  1 $                                                                                                                | [B1]  |                       |
|   |          | (1)                                                                                                                               |       |                       |
|   |          |                                                                                                                                   |       |                       |
|   | (b)(ii)  | QR                                                                                                                                |       |                       |
|   |          | $= \begin{pmatrix} 280 & 320 & 345 \\ 250 & 265 & 280 \\ 190 & 235 & 290 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ |       |                       |
|   |          | = 250 265 280 1                                                                                                                   |       |                       |
|   |          | $(190 \ 235 \ 290) \ (1)$                                                                                                         | TIN   | C .                   |
|   |          | (945)                                                                                                                             | NYA   | M                     |
|   |          | = 795                                                                                                                             | [B1]  | 01                    |
|   | E E      | (715)                                                                                                                             |       |                       |
|   | (c)      | $S = (3.80 \ 3.50 \ 4.00) - (2.60 \ 2.60 \ 2.60)$                                                                                 | [B1]  |                       |
|   |          | = (1.20  0.90  1.40)  [shown]                                                                                                     |       |                       |
|   | (d)(i)   | T = S(QR)                                                                                                                         |       |                       |
|   | (((()))) |                                                                                                                                   |       |                       |
|   |          | = (120, 0.90, 1.40) 795                                                                                                           |       |                       |
|   |          | $= (1.20  0.90  1.40) \begin{pmatrix} 945\\ 795\\ 715 \end{pmatrix}$                                                              |       |                       |
|   |          | EP.                                                                                                                               | [B1]  |                       |
|   | (d)(ii)  | = (2850.50)<br>T represents the total amount of profit generated from the                                                         | [B1]  |                       |
|   | (4)(11)  | sales of AndClean hand sanitizers in all the 3 shops over the                                                                     |       |                       |
|   |          | three months.                                                                                                                     |       |                       |
|   | (e)      | (345)                                                                                                                             |       | Accept row            |
|   |          | 1.4 280                                                                                                                           | [M1]  | matrix,               |
|   |          | (290)                                                                                                                             | NA    | Award 1M if           |
|   | D        | (483)                                                                                                                             | TCATI | scalar                |
|   | E        | = 392                                                                                                                             |       | multiplication poorly |
|   |          | 406                                                                                                                               | [A1]  | expressed but         |
|   |          | (400)                                                                                                                             |       | used.                 |
|   |          |                                                                                                                                   |       | Award 0 if            |
|   |          |                                                                                                                                   |       | matrix                |
|   |          |                                                                                                                                   |       | multiplication used   |
| 7 | (a)      | p = -1.6                                                                                                                          | [B1]  | uscu                  |
|   | (b)      | All points plotted correctly                                                                                                      | [M1]  |                       |
|   |          | Smooth curve passing through all points                                                                                           | [M1]  |                       |
|   |          | Correct scale used with labels                                                                                                    | [M1]  |                       |

|   | (c)      | Draw line of $y = 2$<br>x = 4.5                                                                | [M1]<br>[B1] | Allow +/- 0.1 |
|---|----------|------------------------------------------------------------------------------------------------|--------------|---------------|
|   | (d)      | $\frac{x - 4.5}{\text{Correct tangent drawn}}$                                                 | [M1]         |               |
|   |          | Gradient of tangent = $\frac{2.6 - (-3.5)}{4.8 - 2.9}$<br>= 3.21                               | [A1]         | Allow +/- 0.1 |
|   | (e)(i)   | Correct line drawn                                                                             | [B1]         |               |
|   | (e)(ii)  | <i>x</i> = 2.9                                                                                 | [B1]         |               |
|   | (e)(iii) | $\frac{1}{5}x^3 - \frac{4}{5}x^2 = 4 - 2x$                                                     |              |               |
|   |          | 1 4                                                                                            | [M1]         | DN<br>N       |
|   |          | $x^3 - 4x^2 + 10x - 20 = 0$                                                                    | [M1]         |               |
|   |          | A = 10, B = -20                                                                                | [A2]         |               |
| 8 | (a)      | Angle $OEA = 35^{\circ}$ (Angles in the same segment)                                          | [B1]         |               |
|   | (b)      | Angle $AOB = 35^{\circ} \times 2$ (angle at centre = 2 angles at circumf                       | ertended)    |               |
|   |          | $=70^{\circ}$                                                                                  |              |               |
|   |          | Reflex $AOB = 360^{\circ} - 70^{\circ}$ (Angles at a point)                                    |              |               |
|   |          | $=290^{\circ}$                                                                                 | [A1]         |               |
|   | (c)      | Angle $OAE = 35^{\circ}(OA = OE)$                                                              | [M1]         |               |
|   |          | Angle $BAC = 90^{\circ} - 35^{\circ} - 40^{\circ}$ (Right angle in semi-circle)<br>= 15°       | [A1]         |               |
|   |          | OR<br>Angle $BAO = \frac{180^\circ - 70^\circ}{2} (OA = OB)$                                   | [M1]         | L             |
|   | DA       | $=55^{\circ}$                                                                                  | CATI         | DV            |
|   | E        | Angle $BAC = 55^{\circ} - 40^{\circ}$<br>= 15°                                                 | [A1]         |               |
|   | (d)      | Angle $CDE = 180^{\circ} - 40^{\circ} - 35^{\circ}$ (angles in opposite segment)               | [M1]         |               |
|   |          | $=105^{\circ}$<br>Angle <i>FEB</i> = 105°(Corresponding angles, <i>BE</i> parallel to <i>C</i> | 775) 🗛 1 1   |               |
|   | (e)      | Angle $OED = 180^{\circ} - 105^{\circ}$ (adj angles on a straight line)<br>= 75°               | [M1]         |               |
|   | 1        |                                                                                                |              |               |
|   |          | Angle $DOE = 180^\circ - 75^\circ - 75^\circ (OD = OE)$<br>= 30°                               | [A1]         |               |

|    |          | Since the standard deviation of the class was zero, all students scored the same marks of 75.                                            | [B1]   |                 |
|----|----------|------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------|
|    | (a)(ii)  | Class $B$ had the best performance as the mean mark was                                                                                  | [B1]   |                 |
|    |          | the highest at 86.5.                                                                                                                     | [21]   |                 |
|    |          | Class $B$ also had the highest inconsistency in the scores                                                                               |        |                 |
|    |          | at the standard deviation was the greatest at 2.128.                                                                                     | [B1]   |                 |
|    | (a)(iii) | Let the new student's score be <i>a</i> .                                                                                                |        |                 |
|    |          | New mean = $\frac{14 \times 75 + a}{15}$                                                                                                 |        |                 |
|    |          |                                                                                                                                          | [M1]   |                 |
|    |          | $=\frac{1050+a}{15}$                                                                                                                     |        |                 |
|    |          |                                                                                                                                          |        |                 |
|    |          | $2.30^{2} = \frac{14 \times 75^{2} + a^{2}}{15} - \left(\frac{1050 + a}{15}\right)^{2}$                                                  | [M1]   |                 |
|    |          |                                                                                                                                          | NA     |                 |
|    | D.       | $1190.25 = 1181250 + 15a^2 - 1102500 - 2100a - a^2$                                                                                      | TIAD   | DIA             |
|    | E        | $14a^2 - 2100a + 77559.75 = 0$                                                                                                           | [M1]   |                 |
|    |          | $(2100) + \sqrt{(2100)^2 - 4(14)(77550,75)}$                                                                                             | []     |                 |
|    |          | $a = \frac{-(-2100) \pm \sqrt{(-2100)^2 - 4(14)(77559.75)}}{2(14)}$                                                                      |        |                 |
|    |          | 2(14)                                                                                                                                    | 5 4 13 |                 |
|    |          | a = 84 or $a = 66$ (to nearest whole number)                                                                                             | [A1]   |                 |
|    | (b)(i)   | P(first draw not an '8') = $\frac{7}{8}$                                                                                                 | (D)1]  |                 |
|    |          | 8                                                                                                                                        | [B1]   |                 |
|    | b(ii)    | P(it will take exactly <i>n</i> draws) = $\left(\frac{7}{8}\right)^{n-1} \left(\frac{1}{8}\right)$                                       | [B1]   |                 |
|    | b(iii)   | P(it will take at least <i>n</i> draws) = $\left(\frac{7}{8}\right)^{n-1}$                                                               | [B1]   |                 |
|    |          | (6)                                                                                                                                      |        |                 |
|    | (c)      | Statement is not valid.                                                                                                                  | [A1]   | No A1 if reason |
|    |          | As the balls were <b>drawn with replacement</b> , her chances of getting an '8' in the draw is <b>independent</b> of her previous draws. | [M1]   | is invalid.     |
| 10 | (a) D    | Radius of sphere = $\sqrt[3]{\frac{15}{\frac{4}{3}\pi}}$                                                                                 | [M1]   | DK              |
|    |          | =1.5299                                                                                                                                  |        |                 |
|    |          | =1.53  cm (to  3  sf)                                                                                                                    | [A1]   |                 |
|    | (b)(i)   |                                                                                                                                          |        |                 |
|    |          | Volume of cookie after baking = $\pi(3)^2(0.6)$                                                                                          |        |                 |
|    |          | $=16.964 \text{ cm}^3$                                                                                                                   | [M1]   |                 |
|    |          | Volume of trapped air = $16.964 - 15$                                                                                                    |        |                 |
|    |          | =1.964                                                                                                                                   |        |                 |
|    |          | =1.96 cm (to 3 sf)                                                                                                                       | [A1]   |                 |
|    | L        |                                                                                                                                          | [m]    |                 |

|    | (b)(ii)  | 1.964                                                            |      |     |
|----|----------|------------------------------------------------------------------|------|-----|
|    |          | % of trapped air = $\frac{1.964}{16.964} \times 100\%$           |      |     |
|    |          | =11.577                                                          |      |     |
|    |          | =11.6% (to 3 sf)                                                 | [B1] |     |
|    | (c)(i)   | Length of $OP = 6 \text{ cm}$                                    | [B1] |     |
|    | (c)(ii)  | $OQ = \sqrt{6^2 - 3^2}$                                          | [M1] |     |
|    |          | = 5.196                                                          |      |     |
|    |          | = 5.20  cm (to  3  sf)                                           | [A1] |     |
|    | (c)(iii) | TS = 5.196 + 3                                                   | [M1] |     |
|    |          | $\frac{1}{6} = \frac{1}{5.196}$                                  |      |     |
|    |          | TS = 9.464  cm                                                   | AYZ  |     |
|    | D        | Length of one side of box = $9.46 \text{ cm}$ (to 3 sf)          | [A1] | 7(  |
| 11 | (a) B    | (100-2x)(55-2x) = 105(50-x)                                      | [M1] |     |
|    |          | 2(50-x)(55-2x) = 105(50-x)                                       |      |     |
|    |          | (50-x)[2(55-2x)-105] = 0                                         |      |     |
|    |          | x = 50 or $2(55 - 2x) = 105$                                     | [M1] |     |
|    |          | 55 - 2x = 52.5                                                   | []   |     |
|    |          | x = 1.25                                                         |      |     |
|    |          | NON ARE ADDRESS TON                                              |      |     |
|    |          | Since $x \le 27.5, x = 1.25$                                     | [M1] |     |
|    |          | Defrosting is required since the thickness of frost $>1$ cm.     | [A1] |     |
|    | (b)      | Length of box space = $100 + 2(2) + 2(3.5)$                      | [D1] |     |
|    |          | = 111  cm                                                        | [B1] |     |
|    |          | Height of box space = $100 + 3 + 2(3.5)$                         | TN   |     |
|    |          | = 110 cm                                                         | [B1] | M   |
|    |          | $W_{14} = 6 horr area = 55 + 2(2) + 2(2,5)$                      | CATI | 7.5 |
|    | E        | Width of box space = $55 + 2(2) + 2(3.5)$<br>= 66 cm             | [B1] |     |
|    |          | Assumption: The height of the legs of the freezer is negligible. | [B1] |     |