-	rinner i
1155	
2.24	
Sec. 1	

NATIONAL JUNIOR COLLEGE SENIOR HIGH 1 PROMOTIONAL EXAMINATIONS HIGHER 2

NAME

SUBJECT CLASS

1ma2

REGISTRATION NUMBER

MATHEMATICS

9758 01 October 2020

3 hours

Candidates answer on the Question Paper.

Additional Materials: List of Formulae (MF26)

Writing Paper

READ THESE INSTRUCTIONS FIRST

This paper constitutes 70% of your overall score for SH1 H2 Mathematics.

Write your name, class and registration number on the work you hand in.

Please write clearly and use capital letters.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs. Do not use paper clips, glue or correction fluid.

Answer all the questions.

Write your answers in the spaces provided in the Question Paper. Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

You are expected to use an approved graphing calculator.

Unsupported answers from a graphing calculator are allowed unless a question specifically states otherwise.

Where unsupported answers from a graphing calculator are not allowed in a question, you are required to present the mathematical steps using mathematical notations and not calculator commands.

You are reminded of the need for clear presentation in your answers. Up to 2 marks may be deducted for improper presentation.

The number of marks is given in brackets [] at the end of each question or part question.

	Question Number	Marks Possible	Marks Obtained
	1	4	
	2	6	
	3	5	
	4	4	
	5	7	
	6	9	
	7	7	
	8	7	
4	9	11	
	10	CA11	
	11	9	-
	12	8	
	13	12	
	Presentation Deduction		-1/-2
	TOTAL	100	

This document consists of 28 printed pages and 0 blank page.

1 A curve has equation $y = ax^3 + bx^2 + cx$ where a, b and c are constants. The curve passes through the point with coordinates (1,12) and the gradient of the curve is -112 at the point where x = 3. When the curve is reflected in the y-axis, the resulting curve passes through the point (-2,3). Find the values of a, b and c. [4]

2 Using partial fractions, find
$$\int \frac{2x^2 - x + 7}{(1 - x)(3x^2 + 5)} dx.$$
 [6]

- 3 Point P is a variable point on the circumference of a circle with fixed radius r cm. Two fixed points A and B lie on the circumference of the circle such that the line segment AB forms the diameter of the circle. Length BP is given by y cm and length AP is given by x cm. Given that the rate of increase of x is 0.3r cm per second, find, in terms of r, the rate of increase of the area of triangle APB when x is r cm.
 [5]
- 4 A curve has equation $y + \ln y = e^x$.

(i) Show that
$$\frac{d^2 y}{dx^2} (y^2 + y) = y^2 e^x + \left(\frac{dy}{dx}\right)^2$$
. [2]

(ii) Explain why the curve is concave upwards for all real values of x. [2]

5

graph of
$$y = \frac{6-3x}{3x-4}$$
. [4]

The diagram shows the graph of y = f(x) with asymptotes with equations x = 2 and

Describe a sequence of transformations which transform the graph of $y = \frac{1}{r}$ onto the

(b)

(a)

y = 2. The curve passes through the origin and has a turning point at (4,0.75).

Sketch the graph of $y = \frac{1}{f(x)}$, clearly labelling the equations of the asymptotes and the coordinates of any turning points. [3]

(a) Without using a calculator, solve the inequality $\frac{4x}{x^2 - 3x - 4} \ge -x$. Hence solve the

inequality
$$\frac{4|x|}{x^2 - 3|x| - 4} < -|x|$$
. [6]

(b) The diagrams below show the graphs of y = |f(x)| and y = f'(x).

Sketch the graph of y = f(x), labelling the equations of any asymptotes and the coordinates of the turning point and the points where the curve crosses the axes.

[3]

7 Referred to the origin, points A and B have non-zero position vectors **a** and **b** respectively.

(i) Show that $(\mathbf{a} + \mathbf{b}) \times (\mathbf{a} - \mathbf{b}) = -2(\mathbf{a} \times \mathbf{b})$. [2]

It is given that $|\mathbf{b}| = 2|\mathbf{a}|$.

(ii) Find the maximum value of $|(\mathbf{a} + \mathbf{b}) \times (\mathbf{a} - \mathbf{b})|$ in terms of $|\mathbf{a}| = 0^{1/2}$ [3]

It is further given that A is a fixed point on the x-axis and B is a variable point on the xz-plane.
(iii) Given that the value of |(a+b)×(a-b)| is maximum, write down all possible expressions for (a+b)×(a-b) in terms of |a|. [2]

- Points A, B and C are non-collinear and origin O is not on the plane ABC. Point P has position vector given by $\overrightarrow{OP} = \lambda \overrightarrow{OA} + \mu \overrightarrow{OB} + (1 - \lambda - \mu) \overrightarrow{OC}$, where $\lambda, \mu \in \mathbb{R}$.
 - (i) Prove that P lies in the plane ABC. [2]

It is now given that $\overrightarrow{OA} = \mathbf{i} + \mathbf{j} + \mathbf{k}$, $\overrightarrow{OB} = 2\mathbf{i} + 2\mathbf{j} + 4\mathbf{k}$ and $\overrightarrow{OC} = -2\mathbf{i} + \mathbf{k}$. Furthermore, *P* is the point of reflection of *B* in the line passing through *A* and *C*.

[5]

[2]

[4]

(ii) Find the value of λ and of μ .

(a) The functions f and g are defined by

f:
$$x \mapsto \frac{1}{1+x} - 2$$
, for $x \in \mathbb{R}, x \ge 0$,
g: $x \mapsto \left(x + \frac{4}{3}\right)^2 - \frac{1}{5}$, for $x \in \mathbb{R}$.

- (i) Determine whether the composite function fg exists. [2]
- (ii) Sketch the graph of y = f(x) and find the range of f. [2]
- (iii) Find the exact range of gf.
- (b) The function h is defined by

$$\mathbf{h}: x \mapsto (x+1)^2 (x-2), \ x \in \mathbb{R}.$$

(i) Explain why the function h^{-1} does not exist. [1]

For the rest of the question, the domain of h is restricted to $x \in [-1,1]$.

(ii) State the domain of h^{-1} . [1]

(iii) Sketch on the same diagram the graphs of y = h(x), $y = h^{-1}(x)$ and $y = h^{-1}h(x)$. [3]

10 A curve C has parametric equations

ric equations

$$x = t^3$$
, $y = 1 + \sqrt{1 - t^2}$ where $-1 \le t \le 1$.

(i) Sketch *C*, labelling clearly the axial intercept. [2] (ii) Use the substitution $t = \cos\theta$ to find the exact value of $\int_{-\frac{1}{2}}^{\frac{\sqrt{3}}{2}} t^2 \sqrt{1-t^2} dt$ [5]

(ii) Use the substitution
$$t = \cos \theta$$
 to find the exact value of $\int_0^{\infty} t^2 \sqrt{1-t^2} dt$. (iii) Hence, find the exact area bounded by C, the x-axis and the lines $x = 0$ and $x = \frac{\sqrt{27}}{8}$.

9

11 (i) Find
$$\int \frac{x}{\sqrt{1-k^2x^2}} dx$$
, where k is a positive constant.

(ii) Hence, find
$$\int (\sin^{-1} kx) \frac{x}{\sqrt{1-k^2 x^2}} dx$$
. [3]

(iii) Evaluate
$$\int_{0}^{\frac{1}{\sqrt{2}}} (\sin^{-1}x) \frac{x}{\sqrt{1-x^2}} dx$$
, giving your answer in the form $\frac{1}{\sqrt{a}} \left(1 - \frac{\pi}{b}\right)$,

where a and b are integers to be determined.

(iv) Deduce the exact value of

$$\int_{m}^{\frac{1}{\sqrt{2}}+m} \left[\sin^{-1}(x-m)\right] \frac{x-m}{\sqrt{1-(x-m)^{2}}} \, \mathrm{d}x$$

for any constant *m*. Explain your answer.

12 A curve D has equation $3ax^2 - ay^2 = 1$, where a > 0 and $-60 \le y \le 30$.

(i) Sketch D, labelling clearly the axial intercepts and the coordinates of the end-points.

Curve *D* traces the curved outline of the side view of a cooling tower as shown in the figure below. All units are in metres. The horizontal cross-sections of the cooling tower are circular planes whose centres lie on the *y*-axis. This hyperbolic form of the cooling tower allows it to withstand extreme winds while requiring less material than any other forms of their size and strength.

(Source: https://www.pleacher.com/mp/mlessons/calculus/mobaphyp.html)

[2]

[2]

[2]

[3]

An engineer is asked to design cooling towers for two different sites.

- (ii) For the cooling tower at the first site, a = 0.01 is chosen. Find the exact volume contained by the tower. [You do not need to consider the thickness of the tower's walls.]
- (iii) For the cooling tower at the second site, another value of a is chosen such that the ratio of its smallest circumference to the circumference of its base is 1:2. Determine the value of a to achieve this design. [2]

13 A curve C has equation $y = x^2 + 1$. A point Q on C has coordinates $\left(\frac{1}{\sqrt{2}}, \frac{3}{2}\right)$.

(i) Find the exact equation of the normal to C at Q.

The curvature of a point P on a curve can be understood as a measure of the deviation of the curve from its tangent at P. The greater the curvature at P, the more the curve deviates from its tangent at P.

The curvature function of *C* is given by

$$k(x) = \frac{2}{(1+4x^2)^{\frac{3}{2}}},$$

where $k(a) = \frac{2}{(1+4a^2)^{\frac{3}{2}}}$ gives the curvature of C at the point (a, a^2+1) .

(ii) Find the exact curvature at Q.

To visually represent the curvature at Q, mathematicians draw calculation circles. The calculation circles at Q are circles that pass through Q and have the same tangent as C at Q. The radii of the circles are equal to the reciprocal of the curvature at Q.

(iii) State the value of the radii of the calculation circles at Q. By considering this value and part (i), find the exact equation of the calculation circle at Q whose centre has a negative x-coordinate.

Mathematicians would like to investigate the calculation circles.

(iv) Sketch the graph of $y = \frac{2}{\left(1+4x^2\right)^{\frac{3}{2}}}$, labelling the coordinates of the turning point and

the equation of the asymptote.

(v) Hence, explain why there are four calculation circles on C with radius r for $r > \frac{1}{2}$.

[2]

[2]

[3]

[1]

Qn.	Working	Comments
1	$f(x) = ax^3 + bx^2 + cx$	Overall well done, a large majority
		of students scored full credit.
	f(1) = 12	Mistakes were generally on
	a+b+c=12(1)	transformation, most common being
		wrongly replacing 'y' with ' $-y$ ' to
	$f'(x) = 3ax^2 + 2bx + c$	obtain $y = -ax^3 - bx^2 - cx$.
	f'(3) = 112	AVAL
	$3a(3)^2 + 2b(3) + c = -112$	DANTION
	$\Rightarrow 27a + 6b + c = -112(2)$	EDUCAI
	$f(-x) == a(-x)^3 + b(-x)^2 + c(-x)$	
	$=-ax^3+bx^2-cx$	
	At $x = -2, y = 3$	
	$-a(-2)^{3}+b(-2)^{2}-c(-2)=3$	
0	$\Rightarrow 8a + 4b + 2c = 3(3)$	
	System of equations:	
	a+b+c=12(1)	
	27a + 6b + c = -112(2) EDUC	
	8a + 4b + 2c = 3 (3)	
	By GC, $a = -6.5, b = 9.5$	
	CU SS	
Qn.	Solution et account	Comments
$ 2\rangle$	$2x^2 + x + 7$ $A = \frac{Bx + C}{A}$	- INT
(a)	$(1-x^2)(3x^2+5)$ $1-x^3x^2+5$	DANNAL
131	DIUCANO	DIUCATIO
	$2x^{2} - x + 7 = A(3x^{2} + 5) + (Bx + C)(1 - x)$	EL
	When $x = 1$:	Advice:
	8A = 2 - 1 + 7	It is imperative that you
	A = 1	work on techniques central
	Comparing coefficients:	such as the handling of partial fractions.
	8.	

2020 SH1 H2 Math Promotional Examinations Markers' Comments

....

$$x^{2}:$$

$$3-B=2$$

$$B=1$$

$$x^{0} \text{ (constant):}$$

$$5+C=7$$

$$C=2$$
Hence we get
$$\frac{2x^{2}-x+7}{(1-x)(3x^{2}+5)} = \frac{1}{1-x} + \frac{x+2}{3x^{2}+5}$$
Therefore,
$$\int \frac{2x^{2}-x+7}{(1-x)(3x^{2}+5)} dx$$

$$= \int \frac{1}{1-x} + \frac{x+2}{3x^{2}+5} dx$$

$$= \int \frac{1}{1-x} dx + \int \frac{x+2}{3x^{2}+5} dx$$

$$= \int \frac{1}{1-x} dx + \int \frac{x+2}{3x^{2}+5} dx + \int \frac{2}{3x^{2}+5} dx$$

$$= -\int \frac{-1}{1-x} dx + \int \frac{5}{3x^{2}+5} dx + \int \frac{2}{3x^{2}+5} dx$$

$$= -\int \frac{-1}{1-x} dx + \int \frac{5}{3x^{2}+5} dx + \int \frac{2}{3x^{2}+5} dx$$

$$= -\int \frac{-1}{1-x} dx + \int \frac{5}{3x^{2}+5} dx + \int \frac{2}{3x^{2}+5} dx$$

$$= -\int \frac{-1}{1-x} dx + \int \frac{5}{3x^{2}+5} dx + \int \frac{2}{3x^{2}+5} dx$$

$$= -\int \frac{-1}{1-x} dx + \int \frac{5}{3x^{2}+5} dx + \int \frac{2}{3x^{2}+5} dx$$

$$= -\int \frac{-1}{1-x} dx + \int \frac{5}{3x^{2}+5} dx + \int \frac{2}{3x^{2}+5} dx$$

$$= -\int \frac{-1}{1-x} dx + \int \frac{5}{3x^{2}+5} dx + \int \frac{2}{3x^{2}+5} dx$$

$$= -\int \frac{-1}{1-x} dx + \int \frac{1}{5} \int \frac{5}{3x^{2}+5} dx + \int \frac{3}{5} \int \frac{\sqrt{3}}{(\sqrt{5}x)^{2} + (\sqrt{5})^{2}} dx$$

$$= -\int \frac{-1}{1-x} dx + \int \frac{1}{5} \int \frac{1}{\sqrt{5}} dx + \int \frac{2}{\sqrt{5}} \int \frac{\sqrt{5}}{\sqrt{5}} tan^{-1} \left(\frac{\sqrt{3}x}{\sqrt{5}}\right) + c$$

$$= \tan(-1) + \int \ln (3x^{2}+5) + \frac{2}{\sqrt{15}} tan^{-1} \left(\frac{\sqrt{15}x}{5}\right) + c$$

$$= \tan(-1) + \int \ln (3x^{2}+5) + \frac{2}{\sqrt{15}} tan^{-1} \left(\frac{\sqrt{15}x}{5}\right) + c$$

$$= \tan(-1) + \int \ln (3x^{2}+5) + \frac{2}{\sqrt{15}} tan^{-1} \left(\frac{\sqrt{15}x}{5}\right) + c$$

$$= \frac{1}{a} \tan^{-1} \left[\frac{\Gamma(x)}{a}\right] + C$$

OR Method 2: Use $\int \frac{1}{a^2 + \left[x\right]^2} \, \mathrm{d}x$ $=\frac{1}{a}\tan^{-1}\left[\frac{x}{a}\right]+C$ Therefore, we have $\int \frac{2}{5+3x^2} \, \mathrm{d}x$ $=\frac{2}{3}\int \frac{1}{\frac{5}{2}+x^2} dx$ $=\frac{2}{3}\int \frac{1}{\left(\sqrt{\frac{5}{3}}\right)^2 + x^2} dx$ $=\frac{2}{3}\left[\frac{1}{\sqrt{\frac{5}{3}}}\tan^{-1}\left(\frac{x}{\sqrt{\frac{5}{3}}}\right)\right].$ $=\frac{2\sqrt{3}}{3\sqrt{5}}\tan^{-1}\left(\frac{\sqrt{3}x}{\sqrt{5}}\right)$ $=\frac{2\sqrt{15}}{15}\tan^{-1}\left(\frac{\sqrt{15}x}{5}\right)+C$ upp Only 88680031 Islandwide Delivery I Whatsa EDUCATION

Qn.	Working	Comments
3	Since APB is a right-angle triangle,	
	$x^2 + y^2 = (2r)^2$	
	$y = \sqrt{4r^2 - x^2}$ (since $y > 0$)	Many students are able to see that that they can write y in terms of x
	$A = \frac{1}{2}xy = \frac{1}{2}x\sqrt{4r^2 - x^2}$	and r . From those who did, many realized that they need to differentiate
	$\frac{dA}{dx} = \frac{2r^2 - x^2}{\sqrt{4r^2 - x^2}}$	the expression w.r.t x , however, some did not apply BOTH the product and Chain Pula
	When $x = r$, $\frac{dA}{dx} = \frac{2r^2 - r^2}{\sqrt{4r^2 - r^2}} = \frac{r^2}{\sqrt{3r^2}} = \frac{r}{\sqrt{3}}$	A more serious mistake when student
	$\frac{dA}{dA} = \frac{dA}{dx} \frac{dx}{dx}$	substitute $x = r$ into $y = \sqrt{4r^2 - x^2}$
	dt dx dt	and differentiate w.r.t r , this makes
	$=\frac{r}{\sqrt{3}}\frac{3}{10}r$	no sense as r is a constant.
	$=r^2\frac{\sqrt{3}}{10}$	Most students are able to come up with the correct chain rule to compute connected rate of change.
	The rate of change of area is $\frac{\sqrt{3}}{10}r^2$ cm ² /s	Some students didn't simplify their final answer.

(ii)
$$\frac{d^2 y}{dx^2} (y^2 + y) = y^2 e^x + \left(\frac{dy}{dx}\right)^2$$

Since ln y is defined, $y > 0$, and $e^x > 0$ for all
 $x \in \mathbb{R}, \quad \frac{d^2 y}{dx^2} = \frac{y^2 e^x + \left(\frac{dy}{dx}\right)^2}{y^2 + y} > 0$ for $x \in \mathbb{R}$.
The curve is concave upwards for $x \in \mathbb{R}$.

Qn.	Solution	Comments
5(a)	$y = \frac{-3x+6}{3x-4} = -1 + \frac{2}{3x-4}$ $y = \frac{1}{3x-4}$	It is important to express y in the form $A + \frac{B}{3x-4}$ first.
	$x - 4$ $\rightarrow y = \frac{1}{3x - 4} \rightarrow y = \frac{2}{3x - 4}$ $\rightarrow y = -1 + \frac{2}{3x - 4}$	Some students describe the transformations in the wrong order /wrong unit/factor for the x or y directions.
	3x-4 1: Translation by 4 units in the positive x direction, 2: Scaling parallel to the x-axis by factor of $\frac{1}{3}$,	Common mistake in the description of transformation : 1) use transformation, shift,
	 3: Scaling parallel to the <i>y</i>-axis by a factor of 2, 4: Translation by 1 unit in the negative <i>y</i> direction 	 instead of translation 2) to describe scaling parallel to x/y axis by a factor of k, common mistakes are factor is
Ķ	Kampaper Winatsapp Only 88680031	missing or students wrote k unit or did not write parallel to x or y axis.

Many students did not draw the graph approaching the horizontal asymptote y = 0when x tends to negative infinity.

Some students drew the graph from x = 0 to 2 below the x axis and increasing to (2,0) which is incorrect.

Use
$$(x, y) \rightarrow \left(x, \frac{1}{y}\right)$$
 to find

the asymptotes, the corresponding turning points and axial intercepts.

Qn.	Solution	Comments
6(a)	$\frac{4x}{x^2 - 3x - 4} \ge -x$	
	$\Rightarrow \frac{4x}{x^2 - 3x - 4} + x \ge 0$ $\Rightarrow \frac{4x + x(x^2 - 3x - 4)}{x^2 - 3x - 4} \ge 0$ $\Rightarrow \frac{x^3 - 3x^2}{(x - 4)(x + 1)} \ge 0$ $\Rightarrow \frac{x^2(x - 3)}{(x - 4)(x + 1)} \ge 0$	Most students are able to answer the first part of the question by achieving the fully factorised form and finding the critical values. Some students seem to still have an incorrect idea of what fully factorised mean, as they try to read critical values from completed square form of the quadratics.
1 P	$\frac{1}{3} + \frac{1}{3} + \frac{1}$	The latter part is generally not well done. While most students realized the replacement of x with x , they didn't take account of the fact that the inequality sign has changed compared to the first inequality.

Qn.	Working	Comments
7 (i)	$(\mathbf{a}+\mathbf{b})\times(\mathbf{a}-\mathbf{b})$ = $\mathbf{a}\times\mathbf{a}+\mathbf{a}\times(-\mathbf{b})+\mathbf{b}\times\mathbf{a}+\mathbf{b}\times(-\mathbf{b})$ = $\mathbf{a}\times\mathbf{a}-\mathbf{a}\times\mathbf{b}+\mathbf{b}\times\mathbf{a}-\mathbf{b}\times\mathbf{b}$ = $0-\mathbf{a}\times\mathbf{b}+\mathbf{b}\times\mathbf{a}-0$ = $-\mathbf{a}\times\mathbf{b}-\mathbf{a}\times\mathbf{b}$ = $-2(\mathbf{a}\times\mathbf{b})$	The vector algebraic manipulations were generally well handled but many students wrote $a \times a = 0$ instead of the zero vector 0 .
(iii) KN EX8 Istandari	$ (\mathbf{a} + \mathbf{b}) \times (\mathbf{a} - \mathbf{b}) $ $= -2(\mathbf{a} \times \mathbf{b}) $ $= 2 (\mathbf{a} \times \mathbf{b}) $ Maximum value of $ (\mathbf{a} + \mathbf{b}) \times (\mathbf{a} - \mathbf{b}) $ occurs when the value of $2 (\mathbf{a} \times \mathbf{b}) $ is maximum. $2 (\mathbf{a} \times \mathbf{b}) $ $= 2 (\mathbf{a} \times \mathbf{b}) $ $= 2 (\mathbf{a} \times \mathbf{b}) $ $= 2 \mathbf{a} \mathbf{b} \sin \theta $ Maximum of $ \sin \theta = 1$ Maximum of $2 (\mathbf{a} \times \mathbf{b}) $	Some students wrote $ \mathbf{a} \times \mathbf{b} = \mathbf{a} \times \mathbf{b} $ without clearly explaining how the RHS expression gave a maximum value. Very often, the wrong definition " $\mathbf{a} \times \mathbf{b} = \mathbf{a} \mathbf{b} \sin \theta$ " was written, failing to see that $\mathbf{a} \times \mathbf{b}$ is a vector rather than a scalar.

	$= 2 \mathbf{a} \mathbf{b} 1 $ = 2 \mathbf{a} \mbox{b} = 2 \mbox{a} (2 \mbox{a}) = 4 \mbox{a} ^2 Maximum value is 4 \mbox{a} ^2.	
(iii)	Maximum length of $ (\mathbf{a} + \mathbf{b}) \times (\mathbf{a} - \mathbf{b}) $ = $4 \mathbf{a} ^2$ By right-hand rule, $(\mathbf{a} + \mathbf{b}) \times (\mathbf{a} - \mathbf{b})$ can be parallel to $-\mathbf{j}$ or \mathbf{j} . Possible expressions = $4 \mathbf{a} ^2 \begin{pmatrix} 0\\1\\0 \end{pmatrix}$ or $4 \mathbf{a} ^2 \begin{pmatrix} 0\\-1\\0 \end{pmatrix}$	Poorly done. Majority of the students were not able to observe that $(\mathbf{a}+\mathbf{b})\times(\mathbf{a}-\mathbf{b})$ is parallel to $-\mathbf{j}$ or \mathbf{j} . Once again, students who wrote $(\mathbf{a}+\mathbf{b})\times(\mathbf{a}-\mathbf{b}) = 4 \mathbf{a} ^2$ failed to see that the answer should be a vector, and not a scalar

Qn.	Working	Comments
8 (i)	$\overrightarrow{OP} = \lambda \overrightarrow{OA} + \mu \overrightarrow{OB} + (1 - \lambda - \mu) \overrightarrow{OC}$	Many students actually thought
K Istan	$= \lambda \overline{OA} + \mu \overline{OB} + (\overline{C} - \lambda \overline{OC} - \mu \overline{OC})$ $= \overline{OC} + \lambda (\overline{OA} - \overline{OC}) + \mu (\overline{OB} - \overline{OC})$ $= \overline{OC} + \lambda CA + \mu \overline{CB}, \lambda, \mu \in \mathbb{R}$ Since \overline{OP} is equal to the sum of \overline{OC} and scalar multiples of \overline{CA} and \overline{CB} , point P is a point on plane ABC	that \overrightarrow{OP} lies on the plane although it is clear from the question that the origin is not on the plane. Similarly, there were students who wrote that $\overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC}$ lie on the plane. For students who tried to find the equation of the plane to show that it had the same expression as that for \overrightarrow{OP} , the parameters should be defined differently from λ and μ as they represent some specific real values for the point <i>P</i> whereas in the plane equation, the parameters are any real values.

(ii) Method 1

$$\overline{OB} = 21 + 2j + 4k$$

 $l_{ac} : \mathbf{r} = \overline{OA} + \gamma \overline{AC}, \gamma \in \mathbb{R}$
 $l_{ac} : \mathbf{r} = \overline{OA} + \gamma \overline{AC}, \gamma \in \mathbb{R}^{*}$.
 $l_{ac} : \mathbf{r} = \overline{OI} + \gamma \overline{AC}, \gamma \in \mathbb{R}^{*}$.
 $l_{ac} : \mathbf{r} = \overline{OI} + \gamma \overline{AC}, \gamma \in \mathbb{R}^{*}$.
Most students were able to
interpret the question correctly
and adopt suitable approaches
to solve it, with Method 1 as
the more common strategy.
 $\overline{ON} = \begin{pmatrix} -1 - 3\gamma \\ 1 - \gamma \\ 1 \end{pmatrix}$, for some γ .
 $\overline{ON} = \begin{pmatrix} -1 - 3\gamma \\ -1 - \gamma \\ -3 \end{pmatrix}$ for some γ .
 $\overline{BN} \cdot \overline{AC} = 0$
 $\begin{pmatrix} -1 - 3\gamma \\ -1 - \gamma \\ -3 \end{pmatrix} \begin{pmatrix} -3 \\ -1 \\ 0 \end{pmatrix}$
 $\overline{BN} \cdot \overline{AC} = 0$
 $(1 - 3\gamma) \begin{pmatrix} -3 \\ -1 \\ -1 \\ -3 \end{pmatrix} \begin{pmatrix} -3 \\ -1 \\ 0 \end{pmatrix}$
 $3 + 9\gamma + 1 + \gamma = 0$
 $10\gamma + 4 = 0$
 $\gamma = -0.4$
 $\overline{ON} = \begin{pmatrix} 1 - 3(-0.4) \\ 1 - 2(-2) \\ 0 \end{pmatrix}$
 $\overline{DN} = \sqrt{1 - 3(-0.4)} \begin{pmatrix} 2, 2 \\ -2 \\ 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}$
 $\overline{DB} = \overline{OB} - \overline{OD} = \begin{pmatrix} 2 \\ 2 \\ -4 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}$

$$\overline{DN} = \begin{pmatrix} 1\\ 1\\ 3 \end{pmatrix} \begin{pmatrix} -3\\ -1\\ 0 \end{pmatrix} \begin{pmatrix} -3\\ -1\\ 0 \end{pmatrix} = \frac{1}{10} \begin{pmatrix} -3\\ -1\\ 0 \end{pmatrix} = \frac{1}{10} \begin{pmatrix} -3\\ -1\\ 0 \end{pmatrix} = \frac{1}{10} \begin{pmatrix} -3\\ -1\\ 0 \end{pmatrix} = \frac{2}{5} \begin{pmatrix} -3\\ -1\\ 0 \end{pmatrix}$$

$$\overline{ON} = \overline{OD} + \overline{DN} = \begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix} - \frac{2}{5} \begin{pmatrix} -3\\ -1\\ 0 \end{pmatrix} = \begin{pmatrix} 2.2\\ 1.4\\ 1 \end{pmatrix}$$
Cont'd
$$\overline{ON} = \frac{\overline{OB} + \overline{OP}}{2}$$

$$\begin{pmatrix} 2.2\\ 1.4\\ 1 \end{pmatrix} = \frac{2}{4} \begin{pmatrix} 2\\ 4\\ 4 \end{pmatrix}$$

$$\overline{ON} = \frac{24}{4}$$

$$\overline{ON} = \frac{2}{2}$$

$$\overline{ON}$$

Qn.	Solution	Comments
9	The function g is a quadratic function and has a	Mostly well done.
(a)(i)	minimum point at $\left(-\frac{4}{3}, -\frac{1}{5}\right)$.	Some students wrongly used the <i>x</i> -coordinate of the minimum point instead and
	$R_g = \left[-\frac{1}{5},\infty\right]$	answered
	$D_{f} = [0,\infty)$	
	Since $R_g \not\subseteq D_f$, fg does not exist.	
(a)(ii)	y = f(x)	It is a good observation that most students included the asymptote and axial intercept in their sketch.
	(0,-1)	The common mistake is neglecting the domain $(x \ge 0)$
	y = -2	of the function f and instead sketched the full graph. This often led to the wrong range
	$x \to \infty, \frac{1}{1+x} - 2 \to -2$	$(-\infty,-2)\cup(-2,\infty)$.
	At $x = 0, y = -1$ B _c = (-2, -1]	Some students wrongly expressed the set as $[-1, -2)$.
(a)(iii)	<u>Method 1: Map R_f using graph of $y = g(x)$</u>	Not well done.
	From the graph of f: $[0,\infty) \xrightarrow{f} (-2,-1]$ From the graph of g: $(-2,-1] \xrightarrow{g} \left[-\frac{1}{5},\frac{11}{45}\right]$	Many students did not show evidence of considering graph (whether it is $y = g(x)$ for
K	$\frac{A}{ampaper} \frac{A}{b} \frac{B}{a} \frac{B}{a$	Method 1 or $y = gf(x)$ for Method 2), and only substituted endpoints which led to the
lai31	EDUCATION /	common wrong answer $\left[-\frac{4}{45}, \frac{11}{45}\right]$.
	$\left(-2,\frac{11}{45}\right)$	
	$\left(-\frac{4}{3},-\frac{1}{5}\right)\left(-1,-\frac{4}{45}\right)$	

Therefore, $(0,\infty) \xrightarrow{f} (-2,-1] \xrightarrow{g} \left[-\frac{1}{5}, \frac{11}{45} \right]$. i.e. $R_{gf} = \left[-\frac{1}{5}, \frac{11}{45} \right]$ <u>Method 2: Map D_{gf} using graph of y = gf(x)</u> $y = \mathrm{gf}(x)$ $y = \frac{11}{45}$ $\left(0, -\frac{4}{45}\right) \left(\frac{1}{2}, -\frac{1}{5}\right)$ $gf(x) = \left(\frac{1}{1+x} - \frac{2}{3}\right)^2 - \frac{1}{5}, x \in \mathbb{R}, x \ge 0$ When $x \to \infty$, $\frac{1}{1+x} \to 0$. Therefore, $y = \left(\frac{1}{1+x} - \frac{2}{3}\right)^2 - \frac{1}{5} \rightarrow \left(0 - \frac{2}{3}\right)^2 - \frac{1}{5} = \frac{11}{45}$ Using GC, the minimum point is $\left(\frac{1}{2}, -\frac{1}{5}\right)$. From graph, $R_{gf} = 0, \frac{11}{3}, \frac{11}{45}$ Islandwide Delivery Lynaisapp Only 88660091 EDUCATION

Qn.	Solution	Comments
9(b)	Method 1	Good attempts but incomplete
(i)	Since $h(-1) = h(2) = 0$, hence h is not 1-1.	answers.
	Therefore, h^{-1} does not exist.	Most students attempted using
	Method 2	Method 2. The main concern
		was that the sketch was not
	Soundation and Soundation of Sou	included to illustrate the
	$\xrightarrow{((-1,0))} ((2,0) \rightarrow X$	identified horizontal line and
	$-\sqrt{2}$	the graph of $y = h(x)$.
	(0,-2)	DAMATION
		EDUCI
	(1,-4)	
	The horizontal line $y = -1$ cuts the graph of $y = h(x)$	
	at more than one point. Hence, h is not 1-1.	
	Therefore, h^{-1} does not exist.	
(b)(ii)	$D_{h^{-1}} = R_h = [-4, 0]$	Mostly well done. Some
	n at a	students wrongly stated $[0, -4]$.
(b)(iii)	NOTION A	$y = h(x)$ and $y = h^{-1}(x)$:
	EDUCT	Shape and symmetry.
	(41) $y = h^{-1}h(r)$	Correct endpoints $(-1,0)$ and
	$y = h^{-1}(x)$ (11)	(1,-4), $(0,-1)$ and $(-4,1)$.
2		For the graph of $y = h^{-1}h(x)$:
11/1	AJORT HABEGODY O	Must label endpoints $(-1, -1)$
	(0,-1)	and $(1,1)$, the origin O and the
B	(-1, -1)	line should pass through the
15/21	DALAMON	point of intersection between
	EDUCA	$y = h(x)$ and $y = h^{-1}(x)$.
	y = h(x)	
		Position of points labelled
	▶ (1,-4)	example $(-1, -1)$ and $(0, -1)$
	I I	have the same <i>v</i> -coordinates.

Qn. Solu	tion	Comments
10 (i)	y (0,2) (0,2) (1,1) (1,1)	Most graphs were not well drawn. The sharp point was hard to see on the GC, so it is understandable that students did not sketch it properly. What was more alarming was that some graphs did not have the end points and some graphs only sketched the right hand side of the graph, which meant that some students sketched the graph without adjusting the range of values of t.
(ii) $\frac{dt}{d\theta} = t = 0$ $\int_{0}^{\frac{\sqrt{3}}{2}} t$ $= \int_{\frac{\pi}{2}}^{\frac{\pi}{6}} t$ $= -\int_{\frac{\pi}{2}}^{\frac{\pi}{6}} t$ $= -\int_{\frac{\pi}{2}}^{\frac{\pi}{6}} t$ $= -\int_{\frac{\pi}{2}}^{\frac{\pi}{6}} t$ $= -\int_{\frac{\pi}{2}}^{\frac{\pi}{6}} t$	$= -\sin\theta$ $0, \cos\theta = 0, \theta = \frac{\pi}{2}; t = \frac{\sqrt{3}}{2}, \cos\theta = \frac{\sqrt{3}}{2}, \theta$ $e^{2}\sqrt{1-t^{2}} dt$ $\cos^{2}\theta\sqrt{1-\cos^{2}\theta} (-\sin\theta) d\theta$ $\frac{\pi}{6}\cos^{2}\theta\sqrt{1-\cos^{2}\theta} (-\sin\theta) d\theta$ $\frac{\pi}{6}\cos^{2}\theta\sqrt{\sin^{2}\theta}\sin\theta d\theta$ $\frac{\pi}{2}\cos^{2}\theta\sqrt{\sin^{2}\theta}\sin\theta d\theta$ $\frac{\pi}{6}\cos^{2}\theta\sin\theta \sin\theta d\theta$ (since θ is acute) $\frac{1}{4}\int_{\frac{\pi}{2}}^{\frac{\pi}{6}}4\cos^{2}\theta\sin^{2}\theta d\theta$ $\frac{1}{4}\int_{\frac{\pi}{2}}^{\frac{\pi}{6}}(2\cos\theta\sin\theta)^{2} d\theta$	 These were the common mistakes made in the substitution process: 1. Did not do a full substitution, omitting to substitute the limits or "dt". 2. Placing the larger value of θ as the top limit of the definite integral. 3. Use degrees instead of radians for θ. 4. Confusion between cosine and inverse cosine. Common to see "cos θ = 0 ⇒ θ = 1" in the working. Students who were able to do the substitution correctly and get ∫^π/₂ cos² θ sin² θ dθ often did not use the efficient method to evaluate this definite integral. A lot of students converted cos² θ and sin² θ individually to cos 2θ and ended in a long averaging which they head to
		do a lot of simplification before they reached $1-4\cos 4\theta$. Thus some made, careless mistakes and often

_

. .

IUZ

$= -\frac{1}{4} \int_{\frac{\pi}{2}}^{\frac{\pi}{6}} (\sin 2\theta)^2 d\theta$ $= -\frac{1}{4} \int_{\frac{\pi}{2}}^{\frac{\pi}{6}} \left(\frac{1 - \cos 4\theta}{2}\right) d\theta$ $= -\frac{1}{8} \int_{\frac{\pi}{2}}^{\frac{\pi}{6}} 1 - \cos 4\theta d\theta$ $= -\frac{1}{8} \left[\theta - \frac{\sin 4\theta}{4}\right]_{\frac{\pi}{2}}^{\frac{\pi}{6}}$	could not get the correct answer. Some of these students, in my opinion, were exhausted by all the manipulations they had to do and simply integrated $\sin^2 2\theta$ as $\frac{\sin^3 2\theta}{3}$ or $\frac{\cos^3 2\theta}{3}$.
$= -\frac{1}{8} \left(\frac{\pi}{6} - \frac{\sin 4\left(\frac{\pi}{6}\right)}{4} - \frac{\pi}{2} \right)$ $= \frac{\sqrt{3}}{64} + \frac{\pi}{24}$	DANYAL EDUCATION
(iii) $\frac{dx}{dt} = 3t^{2}$ $x = 0, t = 0$ $x = \frac{\sqrt{27}}{8}, t^{3} = \frac{\sqrt{27}}{8} \Rightarrow t = \frac{\sqrt{3}}{2}$	Students who were able to form the correct definite integral were able to use their answer in (ii) correctly.
$= \int_{0}^{\frac{\sqrt{3}}{2}} (1 + \sqrt{1 - t^{2}}) (3t^{2}) dt$ $= \int_{0}^{\frac{\sqrt{3}}{3}} 3t^{2} + 3t^{2} \sqrt{1 - t^{2}} dt$ $= \int_{0}^{\frac{\sqrt{3}}{3}} \frac{1}{2} t^{2} dt + 3 \int_{0}^{\frac{\sqrt{3}}{2}} t^{2} \sqrt{1 - t^{2}} dt$ $= \left[t^{3}\right]_{0}^{\frac{\sqrt{3}}{2}} + 3 \left(\frac{\sqrt{3}}{64} + \frac{\pi}{24}\right)$	DANYAL EDUCATION
$= \frac{3\sqrt{3}}{8} + \left(\frac{3\sqrt{3}}{64} + \frac{\pi}{8}\right)$ $= \frac{27\sqrt{3}}{64} + \frac{\pi}{8}$	

Qn.	Solution	Comments
11 (i)	$\int \frac{x}{\sqrt{1-k^2x^2}} dx$ $= \int x \left(1-k^2x^2\right)^{-\frac{1}{2}} dx$	Advice: Imperative for you to recognise integrand of the form $f'(x)[f(x)]^n$.
	$=\frac{-1}{2k^2}\int -2k^2x(1-k^2x^2)^{-\frac{1}{2}}\mathrm{d}x$	
	$= \frac{-1}{2k^2} \frac{\left(1 - k^2 x^2\right)^{\frac{-1}{2}+1}}{-\frac{1}{2}+1} + C$ $= \frac{-1}{k^2} \left(1 - k^2 x^2\right)^{\frac{1}{2}} + C$	DANYAL EDUCATION
(ii)	$\int \left(\sin^{-1}kx\right) \frac{x}{\sqrt{1-k^2x^2}} dx$ $u = \left(\sin^{-1}kx\right), \qquad \frac{dv}{dx} = \frac{x}{\sqrt{1-k^2x^2}}$	Advice: Understanding of integration by parts displayed but you ought to take care of getting the du Many and ideted
5	$\frac{du}{dx} = \frac{k}{\sqrt{1 - k^2 x^2}}, v = \frac{-1}{k^2} (1 - k^2 x^2)^{\frac{1}{2}}$	omitted the k at the numerator.
	$\int \left(\sin^{-1} kx\right) \frac{x}{\sqrt{1 - k^2 x^2}} \mathrm{d}x$	Advice: $\int \frac{1}{k} dx \neq \ln k $ k is a CONSTANT!
	$= \left(\sin^{-1}kx\right) \frac{-1}{k^2} \left(1 - k^2 x^2\right)^{\frac{1}{2}} - \int \frac{-1}{k^2} \left(1 - k^2 x^2\right)^{\frac{1}{2}} \frac{k}{\sqrt{1 - k^2 x^2}} \mathrm{d}x$	
K	$= \frac{-(\sin^{-1}kx)(1+kx^2)^2}{k^2} + \int \frac{1}{k} dx$ $= \frac{-(\sin^{-1}kx)(1+kx^2)^2}{(\sin^{-1}kx)(1+kx^2)^2} + \frac{1}{k} + D$	NAL
15	and K K	DARANON

- - -

. . .

(iii)	When $k = 1$, $\int (\sin^{-1} kx) \frac{x}{\sqrt{1 - k^2 x^2}} dx$ becomes	Advice: Try to familiarise with the result of $\sin^{-1} x$ for the following:
	$\int (\sin^{-1} x) \frac{x}{\sqrt{1-x^2}} \mathrm{d}x \mathrm{so}$	$\sin^{-1}\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4}, \ \sin^{-1}\left(-\frac{1}{\sqrt{2}}\right) = -\frac{\pi}{4}$
	$\int_{0}^{\sqrt{2}} (\sin^{-1} x) \frac{x}{\sqrt{1 - x^2}} \mathrm{d}x$	$\sin^{-1}(1) = \frac{\pi}{2}, \sin^{-1}(-1) = -\frac{\pi}{2}$
	$= \left[-(\sin^{-1}x)(1-x^2)^{\frac{1}{2}} + x \right]_0^{\frac{1}{\sqrt{2}}}$	$\sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}, \ \sin^{-1}\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$
	$= -\sin^{-1}\left(\frac{1}{\sqrt{2}}\right)\left(1 - \frac{1}{2}\right)^{\frac{1}{2}} + \frac{1}{\sqrt{2}}$	$\sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3}, \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) = -\frac{\pi}{3}$
	$= -\frac{\pi}{4} \left(\frac{1}{\sqrt{2}} \right) + \frac{1}{\sqrt{2}}$	Alternatively, observe these results from the graph of $\sin^{-1} x$.
	$=\frac{1}{\sqrt{2}}\left(1-\frac{\pi}{4}\right)$	
(iv)	Method 1	Advice:
	$\int_{-\infty}^{\frac{1}{\sqrt{2}}+m} \left[\sin^{-1}(x-m)\right] \frac{x-m}{\sqrt{1-(x-m)^2}} dx$	
	$=\frac{1}{\sqrt{2}}\left(1-\frac{\pi}{4}\right)$	Note that a replacement of x with $x - m$ has taken place. It is
	Both integrand and limits of integration underwent a translation of m units in the positive or negative x -direction so the area under the curve is preserved.	insufficient to mention that the graph has been translated without making
X	or Super only addedost	limit or the fact that the area under the curve remains the same.
	Method 2, whatsar	For method 2, you must show the
F	$\sum_{and m} t e u^{am} x - m$	change of variable and substitution
)\$	$\int \frac{\mathrm{d}u}{\mathrm{d}x} = 1$	clearly.
	x = m, u = m - m = 0	
	$x = \frac{1}{\sqrt{2}} + m, \ u = \frac{1}{\sqrt{2}} + m - m = \frac{1}{\sqrt{2}}$	

$$\int_{m}^{\frac{1}{\sqrt{2}}+m} \left[\sin^{-1}(x-m)\right] \frac{x-m}{\sqrt{1-(x-m)^{2}}} dx$$
$$= \int_{0}^{\frac{1}{\sqrt{2}}} \left(\sin^{-1}u\right) \frac{u}{\sqrt{1-u^{2}}} du$$
$$= \frac{1}{\sqrt{2}} \left(1-\frac{\pi}{4}\right)$$

	Given $a = 0.01$	
	Siven $u = 0.01$. $3(0.01)x^2 - (0.01)y^2 = 1$, Volume of the tower $= \int_{0}^{30} \pi x^2 dy$	Students can remember the formula to find volume but are not proficient in its application.
-	$= \pi \int_{-60}^{30} \frac{1}{3(0.01)} + \frac{y^2}{3} dy$ = $\frac{\pi}{3} \left[100y + \frac{y^3}{3} \right]_{-60}^{30}$ = $30000\pi \text{ m}^3.$	 Skills to improve: 1. Identifying the limits in volume. 2. Rotation about the <i>y</i> -axis requires students to integrate with respect to <i>y</i>.
		3. Exact solution is required. Hence the G.C. is not allowed in this question.
(iii)	Radius of base $=\sqrt{\frac{1+a(60)^2}{3a}}$ $\frac{\text{Smallest circumference}}{\text{Circumference of base}} = \frac{1}{2} = \frac{2\pi(\frac{1}{\sqrt{3a}})}{2\pi\left(\sqrt{\frac{1+a(60)^2}{3a}}\right)}$ $1 \qquad \frac{1}{3a}$	Most students recognised and used the formula for the circumference of a circle.
KE	$\frac{1}{4} = \frac{\frac{1}{1+3600a}}{\frac{1}{3a}}$ $\frac{1}{4} = \frac{1}{1+3600a}$ $\frac{1}{1+3600a}$ $\frac{1}{1+3600a}$ $\frac{1}{1+3600a}$ $\frac{1}{1200}$ $\frac{1}{1200}$ $\frac{1}{1200}$ $\frac{1}{1200}$	However, some students did not realised that the smallest circumference is found at the <i>x</i> -axis instead of the end points.
	EDUCAT	DUCAT

Qn.	Working	Comments
13	Gradient of C at Q	Many students who did
(i)	dy al	this part wrongly did not
	$\frac{1}{ dx } = 2x _{x=\frac{1}{\sqrt{2}}}$	find the numerical value
	$\sqrt{1}$	of the gradient of the
	$=\sqrt{2}$	normal and yet proceeded
	-1	to do the substitution
	Gradient of normal at Q to $C = \frac{1}{\sqrt{2}}$	
	$\sqrt{2}$	

Since the distance from the centre of the calculation

$$\begin{pmatrix} x, -\frac{1}{\sqrt{2}}x+2 \end{pmatrix} \text{ to } \mathcal{Q}\left(\frac{1}{\sqrt{2}}1.5\right) \text{ must be } \frac{\sqrt{27}}{2}, \text{ we have the following equation:} \\
\begin{pmatrix} x-\frac{1}{\sqrt{2}} \end{pmatrix}^2 + \left(-\frac{1}{\sqrt{2}}x+2-\frac{3}{2}\right)^2 = \left(\frac{\sqrt{27}}{2}\right)^2 \\
\text{Method 2} \\
\text{The centres of the calculation circles must satisfy both} \\
y = -\frac{1}{\sqrt{2}}x+2 \text{ and } \left(x-\frac{1}{\sqrt{2}}\right)^2 + \left(y-\frac{3}{2}\right)^2 = \left(\frac{\sqrt{27}}{2}\right)^2 \\
\Rightarrow \left(x-\frac{1}{\sqrt{2}}\right)^2 + \left(-\frac{1}{\sqrt{2}}x+2-\frac{3}{2}\right)^2 = \left(\frac{\sqrt{27}}{2}\right)^2 \\
\text{Cont'd} \\
\begin{pmatrix} x-\frac{1}{\sqrt{2}} \end{pmatrix}^2 + \frac{1}{2}\left(x-\frac{1}{\sqrt{2}}\right)^2 = \frac{27}{4} \\
(rejected since x < 0) \\
\text{To find the y-coordinate of the centre of the calculating circle:} \\
\Rightarrow y = \frac{1}{\sqrt{2}}\left(\sqrt{27}+\sqrt{2}+\sqrt{2}\right) \\
\text{Hquartor of catrularms errcle:} \\
(x+\sqrt{2}) + (y-3)^2 = \frac{27}{4} \\
\text{Hquartor of catrularms errcle:} \\
(x+\sqrt{2}) + (y-3)^2 = \frac{27}{4} \\
\text{Hquartor of catrularms errcle:} \\
(x+\sqrt{2}) + (y-3)^2 = \frac{27}{4} \\
\text{Hquartor of catrularms errcle:} \\
(x+\sqrt{2}) + (y-3)^2 = \frac{27}{4} \\
\text{Hquartor of catrularms errcle:} \\
(x+\sqrt{2}) + (y-3)^2 = \frac{27}{4} \\
\text{Hquartor of catrularms errcle:} \\
(x+\sqrt{2}) + (y-3)^2 = \frac{27}{4} \\
\text{Hquartor of catrularms errcle:} \\
\text{Hquartor of catrularms errcle:} \\
(x+\sqrt{2}) + (y-3)^2 = \frac{27}{4} \\
\text{Hquartor of catrularms errcle:} \\
\text{Hquartor of catr$$

