A Level H2 Math

Vectors Test 9

Q1

Referred to the origin *O*, the points *A*, *B* and *C* have position vectors **a**, **b** and **c** respectively such that

$$\mathbf{a} = 2\mathbf{i} + 3\mathbf{j} - \mathbf{k}$$
, $\mathbf{b} = 5\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$ and $\mathbf{c} = 4\mathbf{i} + \mathbf{j} - 2\mathbf{k}$.

- (i) Given that M is the mid-point of AC, use a vector product to find the exact area of triangle ABM. [4]
- (ii) Find the position vector of the point N on the line AB such that MN is perpendicular to \overrightarrow{AB} . [4]

Q2

The line l_1 has equation $\frac{x}{-3} = \frac{y}{12} = \frac{z-1}{4}$ and the line l_2 has equation $\frac{x-1}{-3} = y-4 = \frac{z-1}{4}$.

(i) Show that l_1 and l_2 are skew lines.

(ii) Find a cartesian equation of the plane p which is parallel to l_1 and contains l_2 . [3]

(iii) The point A(0, a, 1) is equidistant from p and l_1 . Calculate the possible values of a exactly.

[6]

[2]

[3]

Q3

It is given that $\mathbf{u} + \mathbf{v} - \mathbf{w}$ is perpendicular to $\mathbf{u} - \mathbf{v} + \mathbf{w}$, where \mathbf{u} , \mathbf{v} and \mathbf{w} are unit vectors.

(i) Show that the angle between \mathbf{v} and \mathbf{w} is 60° . [4] Referred to the origin O, the points U, V and W have position vectors \mathbf{u} , \mathbf{v} and \mathbf{w} respectively.

- (ii) Find the exact area of triangle *OVW*.
- (iii) Given that **u** and $\mathbf{v} \times \mathbf{w}$ are parallel, find the exact volume of the solid *OUVW*. [2]

[The volume of a pyramid is $\frac{1}{3}bh$, where *b* is the base area and *h* is the height of the pyramid.]

<u>Answers</u> <u>Vectors Test 9</u>

(i)
$$\overrightarrow{OA} = \begin{pmatrix} 2\\3\\-1 \end{pmatrix}, \overrightarrow{OB} = \begin{pmatrix} 5\\-2\\3 \end{pmatrix}, \overrightarrow{OC} = \begin{pmatrix} 4\\1\\-2 \end{pmatrix}$$

Since *M* is the mid-point of *AC*,
 $\overrightarrow{OM} = \frac{\begin{pmatrix} 2\\3\\-1 \end{pmatrix} + \begin{pmatrix} 4\\1\\-2 \end{pmatrix}}{2} = \frac{1}{2} \begin{pmatrix} 6\\4\\-3 \end{pmatrix}$
 $\overrightarrow{AB} = \begin{pmatrix} 5\\-2\\3 \end{pmatrix} - \begin{pmatrix} 2\\3\\-1 \end{pmatrix} = \begin{pmatrix} 3\\-5\\4 \end{pmatrix}$
 $\overrightarrow{AB} = \begin{pmatrix} 5\\-2\\3 \end{pmatrix} - \begin{pmatrix} 2\\3\\-1 \end{pmatrix} = \begin{pmatrix} 1\\-1\\-1/2 \end{pmatrix}$
Area of ΔABM
 $= \frac{1}{2} \begin{bmatrix} 3\\-3\\-5\\4 \end{pmatrix} \times \begin{pmatrix} 1\\-1\\-1/2 \end{pmatrix}$
 $= \frac{1}{4} \begin{bmatrix} 3\\-5\\4 \end{pmatrix} \times \begin{pmatrix} 2\\-2\\-1 \end{pmatrix} = \frac{1}{4} \begin{bmatrix} 13\\11\\4 \end{bmatrix} = \frac{\sqrt{306}}{4} = \frac{3\sqrt{34}}{4}$
Or:
 $\overrightarrow{AB} = \begin{pmatrix} 5\\-2\\3 \end{pmatrix} - \begin{pmatrix} 2\\-2\\-1 \end{pmatrix} = \frac{1}{4} \begin{bmatrix} 13\\11\\4 \end{bmatrix} = \frac{\sqrt{306}}{4} = \frac{3\sqrt{34}}{4}$
Or:
 $\overrightarrow{AB} = \begin{pmatrix} 5\\-2\\3 \end{pmatrix} - \begin{pmatrix} 2\\3\\-1 \end{pmatrix} = \begin{pmatrix} 3\\-5\\4 \end{pmatrix}, \overrightarrow{AC} = \begin{pmatrix} 4\\1\\-2 \end{pmatrix} - \begin{pmatrix} 2\\3\\-1 \end{pmatrix} = \begin{pmatrix} 2\\-2\\-1 \end{pmatrix}$
Area of ΔABC
 $= \frac{1}{2} \begin{bmatrix} \overline{AB} \times \overline{AC} \end{bmatrix}$
 $= \frac{1}{2} \begin{bmatrix} 3\\-5\\4 \end{pmatrix} \times \begin{pmatrix} 2\\-2\\-1 \end{pmatrix}$
 $= \frac{1}{2} \begin{bmatrix} 3\\-5\\4 \end{pmatrix} \times \begin{pmatrix} 2\\-2\\-1 \end{pmatrix}$

Area of $\triangle ABM = \frac{1}{2}$ Area of $\triangle ABC = \frac{\sqrt{306}}{4} = \frac{3\sqrt{34}}{4}$

(ii)
$$l_{AB}$$
: $\mathbf{r} = \begin{pmatrix} 2\\ 3\\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 3\\ -5\\ 4 \end{pmatrix}, \lambda \in \mathbb{R}$

Since point N is on the line AB,

$$\overrightarrow{ON} = \begin{pmatrix} 2\\3\\-1 \end{pmatrix} + \lambda \begin{pmatrix} 3\\-5\\4 \end{pmatrix} \text{ for some } \lambda$$
$$\overrightarrow{MN} = \begin{pmatrix} 3\lambda - 1\\1 - 5\lambda\\1/2 + 4\lambda \end{pmatrix}$$

For \overrightarrow{MN} to be perpendicular to \overrightarrow{AB} , $\overrightarrow{MN}.\overrightarrow{AB} = 0$

$$\begin{pmatrix} 3\lambda - 1\\ 1 - 5\lambda\\ 1/2 + 4\lambda \end{pmatrix} \cdot \begin{pmatrix} 3\\ -5\\ 4 \end{pmatrix} = 0$$
$$\lambda = \frac{3}{25}$$

$$\overrightarrow{ON} = \begin{pmatrix} 2\\ 3\\ -1 \end{pmatrix} + \frac{3}{25} \begin{pmatrix} 3\\ -5\\ 4 \end{pmatrix} = \frac{1}{25} \begin{pmatrix} 59\\ 60\\ -13 \end{pmatrix}$$

3

(i)

$$l_{1}:\mathbf{r} = \begin{pmatrix} 0\\0\\1 \end{pmatrix} + \lambda \begin{pmatrix} -3\\12\\4 \end{pmatrix}, \ \lambda \in \mathbb{R} \qquad l_{2}:\mathbf{r} = \begin{pmatrix} 1\\4\\1 \end{pmatrix} + \mu \begin{pmatrix} -3\\1\\4 \end{pmatrix}, \ \mu \in \mathbb{R}$$

$$(-3) \qquad (-3)$$

Since $\begin{bmatrix} -3 \\ 12 \\ 4 \end{bmatrix}$ and $\begin{bmatrix} -3 \\ 1 \\ 4 \end{bmatrix}$ are not parallel, l_1 and l_2 are not parallel.

If the two lines intersect, there will be a unique value of λ and μ for the system of equations

$ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \lambda $	$\begin{pmatrix} -3\\12\\4 \end{pmatrix} =$	$\begin{pmatrix} 1\\4\\1 \end{pmatrix}$	$+\mu \left($	$\begin{pmatrix} -3 \\ 1 \\ 4 \end{pmatrix}$
-32	$(1 + 3\mu) =$	=1	(1)	
12	$2\lambda - \mu =$	= 4	(2)	
42	$1-4\mu =$	= 0	(3)	

studykaki.com

Q2

Using GC, no solution of λ and μ exist. Hence, the lines do not intersect.

Hence,
$$l_1$$
 and l_2 are skew lines.
(ii)
A normal to $p = \begin{pmatrix} -3 \\ 12 \\ 4 \end{pmatrix} \times \begin{pmatrix} -3 \\ 1 \\ 4 \end{pmatrix} = \begin{pmatrix} 44 \\ 0 \\ 33 \end{pmatrix} = 11 \begin{pmatrix} 4 \\ 0 \\ 3 \end{pmatrix}$
Since (1, 4, 1) lies on l_2 which is on p , $\begin{pmatrix} 1 \\ 4 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 0 \\ 3 \end{pmatrix} = 7$

Hence a cartesian equation for p is 4x+3z=7. (iii) (0, 0, 1) is a point on l_1 .

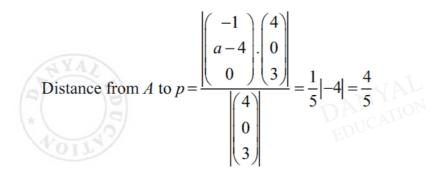
 $\begin{pmatrix} 0\\a\\1 \end{pmatrix} - \begin{pmatrix} 0\\0\\1 \end{pmatrix} = \begin{pmatrix} 0\\a\\0 \end{pmatrix}$

Danyal Education "A commitment to teach and nurture"

Distance from A to
$$l_1 = \frac{\begin{vmatrix} 0 \\ a \\ 0 \end{vmatrix} \times \begin{pmatrix} -3 \\ 12 \\ 4 \end{vmatrix}}{\begin{vmatrix} -3 \\ 12 \\ 4 \end{vmatrix}} = \frac{1}{13} \begin{vmatrix} 4a \\ 0 \\ 3a \end{vmatrix} = \frac{1}{13} \begin{vmatrix} 4a \\ 0 \\ 3 \end{vmatrix} = \frac{5}{13} |a|$$

$$\begin{pmatrix} 0\\a\\1 \end{pmatrix} - \begin{pmatrix} 1\\4\\1 \end{pmatrix} = \begin{pmatrix} -1\\a-4\\0 \end{pmatrix}$$

(1,



Since the point A is equidistant to p and l_1 ,

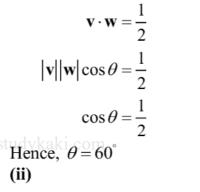
$$\frac{5}{13}|a| = \frac{4}{5}$$

$$a = \pm \frac{52}{25}$$

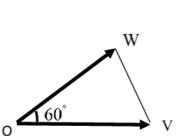
(i)
Since
$$\mathbf{u} + \mathbf{v} - \mathbf{w}$$
 is perpendicular to $\mathbf{u} - \mathbf{v} + \mathbf{w}$,
 $(\mathbf{u} + \mathbf{v} - \mathbf{w}) \cdot (\mathbf{u} - \mathbf{v} + \mathbf{w}) = 0$
 $\mathbf{u} \cdot \mathbf{u} - \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$
 $+ \mathbf{v} \cdot \mathbf{u} - \mathbf{v} \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{w}$
 $- \mathbf{w} \cdot \mathbf{u} + \mathbf{w} \cdot \mathbf{v} - \mathbf{w} \cdot \mathbf{w} = 0$

Since $\mathbf{u} \cdot \mathbf{u} = |\mathbf{u}|^2$, $\mathbf{v} \cdot \mathbf{v} = |\mathbf{v}|^2$, $\mathbf{w} \cdot \mathbf{w} = |\mathbf{w}|^2$, and $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$, $\mathbf{u} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{u}$, $\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v}$, $|\mathbf{u}|^2 - |\mathbf{v}|^2 - |\mathbf{w}|^2 + 2\mathbf{v} \cdot \mathbf{w} = 0$

Since $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are unit vectors, $|\mathbf{u}| = 1, |\mathbf{v}| = 1, |\mathbf{w}| = 1,$ $1 - 1 - 1 + 2\mathbf{v} \cdot \mathbf{w} = 0$

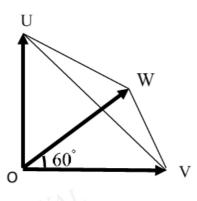


Q3



Area of
$$\triangle OVW$$

= $\left(\frac{1}{2}(OV)(OW)\sin 60^\circ\right)$
= $\left(\frac{1}{2}\right)(1)(1)\left(\frac{\sqrt{3}}{2}\right)$
= $\frac{\sqrt{3}}{4}$ units²
(iii)



Since **u** and $\mathbf{v} \times \mathbf{w}$ are parallel, we have $OU \perp OV, OU \perp OW$. Volume of OUVW

$$= \frac{1}{3} (\text{Area of } \triangle \text{OVW})(OU)$$
$$= \frac{1}{3} \left(\frac{\sqrt{3}}{4}\right) (1)$$
$$= \frac{\sqrt{3}}{12} \text{ units}^{3}$$