A Level H2 Math

Vectors Test 6

Q1

With respect to the origin O, the position vectors of the points U, V and W are \mathbf{u} , \mathbf{v} and \mathbf{w} respectively. The mid-points of the sides VW, WU and UV of the triangle UVW are M, N and P respectively.

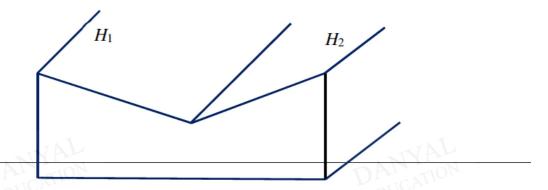
(i) Show that
$$\overline{UM} = \frac{1}{2} (\mathbf{v} + \mathbf{w} - 2\mathbf{u}).$$
 [2]

(ii) Find the vector equations of the lines *UM* and *VN*. Hence show that the position vector of the point of intersection, *G*, of *UM* and *VN* is $\frac{1}{3}(\mathbf{u} + \mathbf{v} + \mathbf{w})$. [5]

(iii) It is now given that
$$\mathbf{u} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \mathbf{v} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \mathbf{w} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
. Find the direction cosines of \overrightarrow{OG} .
[2]

Q2

Peter is using equations of planes to model two hillsides that meet along a river. The river is modelled by the line where the two planes meet.



One of the hillsides, H_1 , contains the points A, B and C with coordinates (3, 0, 2), (1, 0, 3) and (2, -3, 5) respectively. The point A is on the river. The other hillside H_2 has equation 2x - y + kz = 14, where k is a constant.

(i)	Find a vector equation of H_1 in scalar product form.	[4]
(ii)	Show that $k = 4$ and deduce that point B is also on the river.	[3]
(iii)	Write down a cartesian equation of the river.	[1]
(iv)	Show that B is the point on the river that is nearest to C . Hence find the exact dis	stance
	from C to the river.	[3]
(v)	Find the acute angle between BC and H_2 .	[2]

The position vectors of A, B and C with respect to the origin O are a, b and c respectively. It is given that $\overrightarrow{AC} = 4\overrightarrow{CB}$ and $|\mathbf{a} + \mathbf{b}|^2 = |\mathbf{a}|^2 + |\mathbf{b}|^2$.

- By considering (a+b), (a+b), show that **a** and **b** are perpendicular. (i) [2]
- Find the length of the projection of \mathbf{c} on \mathbf{a} in terms of $|\mathbf{a}|$. (ii) [3]
- Given that F is the foot of the perpendicular from C to OA and f denotes (iii) the position vector \overrightarrow{OF} , state the geometrical meaning of $|\mathbf{c} \times \mathbf{f}|$. [1]
- Two points X and Y move along line segments OA and AB respectively (iv) such that

$$\vec{OX} = (\cos 3t)\mathbf{i} + (\sin 3t)\mathbf{j} + \frac{1}{2}\mathbf{k},$$

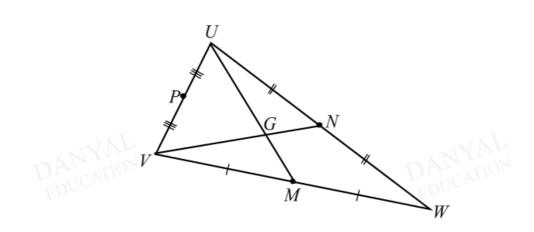
$$\vec{OY} = (\sin t)\mathbf{i} + (\cos t)\mathbf{j} - 2\mathbf{k},$$

where t is a real parameter, $0 \le t \le 2\pi$. By expressing the scalar product of studykaki. \overrightarrow{OX} and \overrightarrow{OY} in the form of $p\sin(qt) + r$ where p, q and r are real values to

be determined, find the greatest value of the angle XOY. [5]

Answers Vectors Test 6

Q1



(i)

By Ratio Theorem, $\overrightarrow{UM} = \frac{\overrightarrow{UW} + \overrightarrow{UV}}{2}$ $=\frac{\mathbf{w}-\mathbf{u}+\mathbf{v}-\mathbf{u}}{2}$ $= \frac{1}{2} (\mathbf{v} + \mathbf{w} - 2\mathbf{u})$ (Shown)

(ii) Vector equation of line *UM* is $\mathbf{r} = \mathbf{u} + \lambda (\mathbf{w} + \mathbf{v} - 2\mathbf{u}), \ \lambda \in \mathbb{R}$

$$\overrightarrow{VN} = \frac{\overrightarrow{VW} + \overrightarrow{VU}}{2}$$
$$= \frac{\mathbf{w} - \mathbf{v} + \mathbf{u} - \mathbf{v}}{2} = \frac{1}{2} (\mathbf{w} + \mathbf{u} - 2\mathbf{v})$$

Vector equation of line *VN* is $\mathbf{r} = \mathbf{v} + \mu (\mathbf{w} + \mathbf{u} - 2\mathbf{v}), \ \mu \in \mathbb{R}$ DANYAL

At point of intersection G,

$$\mathbf{u} + \lambda (\mathbf{w} + \mathbf{v} - 2\mathbf{u}) = \mathbf{v} + \mu (\mathbf{w} + \mathbf{u} - 2\mathbf{v})$$

For u: $1 - 2\lambda = \mu$
For w: $\lambda = \mu$
Solving, $\lambda = \frac{1}{3} = \mu$

Danyal Education "A commitment to teach and nurture"

$$\overrightarrow{OG} = \mathbf{u} + \frac{1}{3} (\mathbf{w} + \mathbf{v} - 2\mathbf{u})$$

= $\frac{1}{3} (\mathbf{u} + \mathbf{v} + \mathbf{w})$ (Shown)

(iii)
$$\mathbf{u} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \mathbf{v} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \mathbf{w} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

$$\overrightarrow{OG} = \frac{1}{3} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} = \begin{pmatrix} \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{pmatrix}$$
$$\left| \overrightarrow{OG} \right| = \sqrt{3} \begin{pmatrix} \frac{1}{3} \\ \frac{1}{3^2} \end{pmatrix} = \sqrt{\frac{1}{3}}$$
Direction cosines of \overrightarrow{OG} are $\frac{1}{3} , \frac{1}{\sqrt{\frac{1}{3}}}, \frac{1}{\sqrt{\frac{1}{3}$

$$A(3, 0, 2), B(1, 0, 3), C(2, -3, 5)$$

$$\overrightarrow{AB} = \begin{pmatrix} 1\\0\\3 \end{pmatrix} - \begin{pmatrix} 3\\0\\2 \end{pmatrix} = \begin{pmatrix} -2\\0\\1 \end{pmatrix} \qquad \overrightarrow{AC} = \begin{pmatrix} 2\\-3\\-3\\5 \end{pmatrix} - \begin{pmatrix} 3\\0\\2 \end{pmatrix} = \begin{pmatrix} -1\\-3\\3 \end{pmatrix}$$

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{pmatrix} -2\\0\\1 \end{pmatrix} \times \begin{pmatrix} -1\\-3\\3 \end{pmatrix} = \begin{pmatrix} 3\\5\\6 \end{pmatrix}$$

$$Take \ \mathbf{n}_{1} = \begin{pmatrix} 3\\5\\6 \end{pmatrix}, \ \mathbf{a} \cdot \mathbf{n}_{1} = \begin{pmatrix} 1\\0\\3 \end{pmatrix} \cdot \begin{pmatrix} 3\\5\\6 \end{pmatrix} = 3 + 0 + 18 = 21$$

A vector equation of H_{1} is $\mathbf{r} \cdot \begin{pmatrix} 3\\5\\6 \end{pmatrix} = 21$
Equation of H_{2} is $2x - y + kz = 14$.

(ii) Equation of
$$H_2$$
 is $2x - y + kz = 14$.
Sub. $A(3, 0, 2)$ into equation of H_2 ,
 $2(3) - 0 + k(2) = 14$
 $\therefore k = 4$ (Shown)
Sub. $B(1, 0, 3)$ into LHS of equation of H_2 ,
LHS = $2x - y + 4z = 2(1) - 0 + 4(3) = 14 = \text{RHS}$
 $\therefore B$ is also in H_2 .
Since B is in both H and H \therefore B is on the river (Deduced)

Since B is in both H_1 and H_2 , \therefore B is on the river. (Deduced)

(iii) Recall
$$\overrightarrow{AB} = \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}$$
, using $A(3, 0, 2)$ or $B(1, 0, 3)$,
a cartesian equation of the river (line AB) is
 $\frac{x-3}{-2} = z-2$, $y = 0$ or $\frac{x-1}{-2} = z-3$, $y = 0$

5

(iv) Since
$$\overrightarrow{BC} \cdot \overrightarrow{AB} = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} = 1(-2) + (-3)(0) + 2(1) = 0$$
,

BC is perpendicular to AB.

 \therefore *B* is the point on the river that is nearest to *C*. Exact distance from *C* to the river

$$= \left| \overrightarrow{BC} \right| = \left| \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} \right| = \sqrt{1+9+4} = \underline{\sqrt{14}}$$

(v) Acute angle between BC and H_2

$$\theta = \sin^{-1} \frac{\begin{vmatrix} 1 \\ -3 \\ 2 \end{vmatrix} \begin{pmatrix} 2 \\ -1 \\ 4 \end{vmatrix}}{\sqrt{14}\sqrt{21}} = \sin^{-1} \frac{13}{\sqrt{14}\sqrt{21}}$$
$$= \underline{49.3^{\circ}} \text{ or } \underline{0.861 \text{ rad}}$$

Q3
9(i)
(a+b).(a+b) = a.a + 2a.b + b.b
Since (a+b).(a+b) = |a+b|²
and given |a+b|² = |a|² + |b|²

$$\therefore$$
 a.a + 2a.b + b.b = |a|² + |b|²
 $2a.b = 0$
 $a.b = 0$
 \therefore a \perp b
ii)
Using ratio theorem, $\overrightarrow{OC} = \frac{4b+a}{5} = \frac{1}{5}a + \frac{4}{5}b$.
Length of projection of \overrightarrow{OC} onto \overrightarrow{OA}
 $= \frac{|\overrightarrow{OC} \cdot \overrightarrow{OA}|}{|\overrightarrow{OA}|}$
 $= \frac{|(\frac{1}{5}a + \frac{4}{5}b)\cdot a|}{|a|} = \frac{1}{5}|a|$ (since a \perp b)
iii)
 $|a| = \frac{1}{5}|a|^{2} + \frac{4}{5}b\cdot a|}{|a|} = \frac{1}{5}|a|$ (since a \perp b)
iii)
 $|\overrightarrow{OX} \cdot \overrightarrow{OY} = \left(\frac{\cos 3t}{|\overrightarrow{OX}|}\right) \left(\frac{\sin t}{\cos t}\right) = \cos 3t \sin t + \sin 3t \cos t - 1 = \sin(4t) - 1$
 $\cos \measuredangle XOY = \frac{\overrightarrow{OX} \cdot \overrightarrow{OY}}{|\overrightarrow{OX}||\overrightarrow{OY}|} = \frac{\sin 4t - 1}{\sqrt{\cos^{2} 3t + \sin^{2} 3t + \frac{1}{4}}\sqrt{\sin^{2} t + \cos^{2} t + 4}}$
 $= \frac{\sin 4t - 1}{\sqrt{\frac{5}{4}}\sqrt{5}}$
 $= \frac{2}{5}(\sin 4t - 1)$
Maximum $\measuredangle XOY$ occurs when is most negative.
i.e. when $\sin 4t = -1$.
At that value of t ,
 $\cos \pounds XOY = \cos^{-1}(-\frac{4}{5}) = 143.1^{\circ}$