A Level H2 Math

Vectors Test 5

- Referred to the origin O, the points A and B have position vectors \mathbf{a} and \mathbf{b} , where \mathbf{a} and \mathbf{b} are non-zero and non-parallel. The point C lies on OB produced such that 3OC = 5OB. It is given that $|\mathbf{a}| = 2|\mathbf{b}|$ and $\cos \angle AOB = -\frac{1}{4}$.
 - (a) (i) Show that a vector equation of the line AC is $\mathbf{r} = \mathbf{a} + \lambda (3\mathbf{a} 5\mathbf{b})$, where λ is a real parameter. [2]

The line l lies in the plane containing O, A and B.

(ii) Explain why the direction vector of l can be expressed as $s\mathbf{a}+t\mathbf{b}$, where s and t are real numbers. [1]

Given that l is perpendicular to AB, show that t = 3s. [4]

Given further that l passes through B, write down a vector equation of l, in a similar form as part (i).

- (iii) Find the position vector of the point of intersection of line AC and l, in terms of a and b. [2]
- (b) Explain why, for any constant k, $|(\mathbf{a} + k \mathbf{b}) \times \mathbf{b}|$ gives the area of the parallelogram with sides OA and OB. Find the area of the parallelogram, leaving your answer in terms of $|\mathbf{a}|$. [4]

1

- (a) It is given that three non-zero vectors \mathbf{a} , \mathbf{b} and \mathbf{c} satisfy the equation $(\mathbf{a} + \mathbf{b}) \times (\mathbf{a} + \mathbf{c}) = \mathbf{b} \times \mathbf{c}$, where $\mathbf{b} \neq \mathbf{c}$. Find a linear relationship between \mathbf{a} , \mathbf{b} an \mathbf{c} .
- (b) A point A with position vector $\overrightarrow{OA} = \alpha \mathbf{i} + \beta \mathbf{j} + \gamma \mathbf{k}$, where α , β and γ are real constants, has direction cosines $\cos \theta$, $\cos \phi$ and $\cos \omega$, where θ , ϕ and ω are the angles \overrightarrow{OA} make with the positive x, y and z-axes respectively.
- (i) Express the direction cosines $\cos \theta$, $\cos \phi$ and $\cos \omega$ in terms of α , β and γ .

 Hence find the value of $\cos^2 \theta + \cos^2 \phi + \cos^2 \omega$. [3]
- (ii) Hence show that $\cos 2\theta + \cos 2\phi + \cos 2\omega = -1$. [2]

Q3

Referred to the origin O, the position vector of a point A is $-\mathbf{i} + 2\mathbf{j} + 4\mathbf{k}$. A plane p contains A and is parallel to the vectors $4\mathbf{i} - 2\mathbf{j} + \mathbf{k}$ and $2\mathbf{i} + \mathbf{k}$.

- (i) Find a cartesian equation of p. [2]
- (ii) A plane q has equation x 2y + z = 2. Find a vector equation of the line l where p and q meet. [1]

A point B lies on l such that AB is perpendicular to l.

- (iii) Find the position vector of B.
- (iv) Find the length of projection of AB on q. [2]
- (v) A point C lies on q such that AC is perpendicular to q. Find the position vector of C. Hence find a cartesian equation of the line of reflection of AB in q. [6]

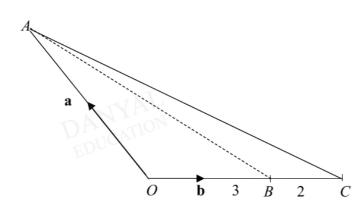
[3]

Answers

Vectors Test 5

Q1

(a)



- (i) $\overrightarrow{OC} = \frac{5}{3}\mathbf{b} \quad \therefore \overrightarrow{AC} = \frac{5}{3}\mathbf{b} \mathbf{a} = \frac{1}{3}(5\mathbf{b} 3\mathbf{a}) / / 5\mathbf{b} 3\mathbf{a}$ Equation of line AC: $\mathbf{r} = \mathbf{a} + \lambda(3\mathbf{a} 5\mathbf{b}), \quad \lambda \in \mathbb{R}$
- (ii) Since l lies on the plane containing O, A and B, its direction vector is coplanar with a and b, thus it will be a linear combination of a and b, i.e. $s\mathbf{a} + t\mathbf{b}$ is a direction vector for l.
- (iii) Let intersection point be D.

At D,

$$\mathbf{a} + \lambda (3\mathbf{a} - 5\mathbf{b}) = \mathbf{b} + \mu (\mathbf{a} + 3\mathbf{b})$$

Since a and b are non-zero, non-parallel vectors,

$$1+3\lambda = \mu ----(1)$$

$$-5\lambda = 1 + 3\mu - - - - (2)$$

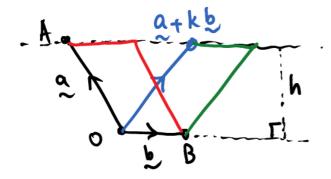
Solving,

$$-5\lambda = 1 + 3(1 + 3\lambda)$$

 $14\lambda = -4$

$$\therefore \lambda = -\frac{2}{7}, \mu = \frac{1}{7} \qquad \therefore \overrightarrow{OD} = \frac{1}{7}\mathbf{a} + \frac{10}{7}\mathbf{b}$$

(b)



Method 1

Since the base length (OB) and perpendicular height remain the same, the area of parallelograms formed by different k remains the same as the area of the parallelogram with sides OA and OB.

Method 2

$$|(\mathbf{a} + k\mathbf{b}) \times \mathbf{b}| = |\mathbf{a} \times \mathbf{b} + k\mathbf{b} \times \mathbf{b}| = |\mathbf{a} \times \mathbf{b} + \mathbf{0}| = |\mathbf{a} \times \mathbf{b}|$$

Area of parallelogram

$$= |\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \theta$$

$$= |\mathbf{a}| \left(\frac{1}{2}|\mathbf{a}|\right) \sqrt{1 - \left(-\frac{1}{4}\right)^2}$$

$$=\frac{\sqrt{15}}{8}\big|\mathbf{a}\big|^2$$

studykaki.com

$$(\underline{a} + \underline{b}) \times (\underline{a} + \underline{c}) = \underline{b} \times \underline{c}$$

$$(\underline{a} \times \underline{a}) + (\underline{a} \times \underline{c}) + (\underline{b} \times \underline{a}) + (\underline{b} \times \underline{c}) = \underline{b} \times \underline{c}$$

$$(\underline{a} \times \underline{c}) + (\underline{b} \times \underline{a}) = \underline{0}$$

$$(\underline{a} \times \underline{c}) - (\underline{a} \times \underline{b}) = \underline{0}$$

$$\underline{a} \times (\underline{c} - \underline{b}) = \underline{0}$$

Since \underline{a} is non-zero and $\underline{b} \neq \underline{c}$,

 \therefore a is parallel to (c-b).

$$\therefore a = k(c-b), k \in \mathbb{R}$$
.

$$|\overrightarrow{OA}| = \sqrt{\alpha^2 + \beta^2 + \gamma^2}$$

$$\therefore \cos \theta = \frac{\alpha}{\sqrt{\alpha^2 + \beta^2 + \gamma^2}}$$

$$\cos\phi = \frac{\beta}{\sqrt{\alpha^2 + \beta^2 + \gamma^2}}$$

$$\cos\omega = \frac{\gamma}{\sqrt{\alpha^2 + \beta^2 + \gamma^2}}$$

$$\cos^2\theta + \cos^2\phi + \cos^2\omega$$

$$= \left(\frac{\alpha}{\sqrt{\alpha^2 + \beta^2 + \gamma^2}}\right)^2 + \left(\frac{\beta}{\sqrt{\alpha^2 + \beta^2 + \gamma^2}}\right)^2 + \left(\frac{\gamma}{\sqrt{\alpha^2 + \beta^2 + \gamma^2}}\right)^2$$

$$= \frac{\alpha^2 + \beta^2 + \gamma^2}{\alpha^2 + \beta^2 + \gamma^2}$$

$$= 1$$

(b)(ii)

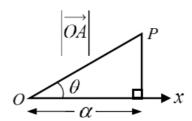
$$\cos 2\theta + \cos 2\phi + \cos 2\omega$$

$$=2\cos^2\theta-1+2\cos^2\phi-1+2\cos^2\omega-1$$

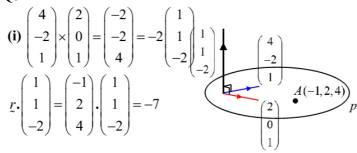
$$= 2(\cos^2\theta + \cos^2\phi + \cos^2\omega) - 3$$

$$=2(1)-3$$

$$=-1$$
 (shown)



Q3



 \therefore Cartesian equation of p is x + y - 2z = -7.

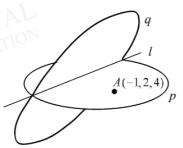
(ii)
$$x+y-2z = -7$$

 $x-2y+z = 2$

Using GC,

a vector equation of l is

$$\underline{r} = \begin{pmatrix} -4 \\ -3 \\ 0 \end{pmatrix} + \alpha \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \alpha \in \mathbb{R}.$$

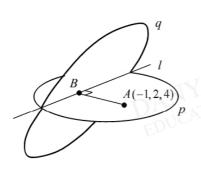


(iii)

$$\overrightarrow{OB} = \begin{pmatrix} -4 + \alpha \\ -3 + \alpha \\ \alpha \end{pmatrix}$$

$$\overrightarrow{AB} = \begin{pmatrix} -4 + \alpha \\ -3 + \alpha \\ -3 + \alpha \\ \alpha \end{pmatrix} - \begin{pmatrix} -1 \\ 2 \\ 4 \end{pmatrix}$$

$$= \begin{pmatrix} \alpha - 3 \\ \alpha - 5 \\ \alpha - 4 \end{pmatrix}$$



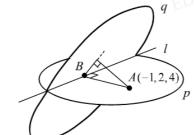
$$\begin{pmatrix} \alpha - 3 \\ \alpha - 5 \\ \alpha - 4 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 0$$

$$\alpha - 3 + \alpha - 5 + \alpha - 4 = 0 \implies \alpha = 4$$

$$\therefore \overrightarrow{OB} = \begin{pmatrix} 0 \\ 1 \\ 4 \end{pmatrix} = \underbrace{j + 4k}_{2}$$

(iv) Equation of
$$q: r \cdot \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = 2$$

$$\overrightarrow{AB} = \begin{pmatrix} 4-3 \\ 4-5 \\ 4-4 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$



 \therefore length of projection of AB on q is

$$\begin{vmatrix} \overrightarrow{AB} \times \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \times \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{6}} \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix} = \frac{1}{\sqrt{6}} \left(\sqrt{3}\right) = \frac{\sqrt{2}}{2}$$