A Level H2 Math

Permutations, Combinations and Probability Test 3

Q1

Mandy has 10 beads, of which 5 are spherical and 5 are cubical, each of different colours. She wishes to decorate a card by forming a circle using 8 of the 10 beads. Find the number of ways Mandy can arrange the beads if

(i)	there are no restrictions,	[1]
(ii)	3 particular beads are used and not all are next to one another,	[3]
(iii)	spherical beads and cubic beads must alternate.	[3]

Q2

A man wishes to buy a 4-digit number lottery. He plays by randomly choosing any number from 0000 to 9999. It is assumed that each number is equally likely to be chosen. Find the probability that a randomly chosen 4-digit number has

(i)	four different digits,														[1]				
(ii)	exactly	one	of	the	first	three	digits	is	the	same	as	the	last	digit,	and	the	last	digit	is
	even,																		[3]

(iii) four different digits with the first digit greater than 6, given that the 4-digit number has odd and even digits that alternate.

Q3

- (i) Find the number of 3-digit numbers that can be formed using the digits 1, 2 and 3 when
 (a) no repetitions are allowed.
 - (a) no repetitions are allowed, [1]
 (b) any repetitions are allowed, [1]
 (c) each digit may be used at most twice. [2]
- (ii) Find the number of 4-digit numbers that can be formed using the digits 1, 2 and 3 when each digit may be used at most twice. [5]

Answers Permutations, Combinations and Probability Test 3

(i)
No. of ways =
$${}^{10}C_s(8-1)! = 226800$$

(ii)
Method 1: (method of complementation)
No. of ways = $\frac{7}{C_5(8-1)!} - \frac{7}{C_5(3!(6-1)!} = 90720$
No. of ways = $\frac{7}{10}C_s(8-1)! - \frac{7}{10}C_5(16-1)! = 90720$
No. of ways = $\frac{7}{10}C_5(8-1)! - \frac{7}{10}C_5(16-1)! = 90720$
No. of ways = $\frac{7}{10}C_5(5-1)! \times \frac{5}{10}C_3 3! = 30240$
Solution of solutions
 $\frac{7}{10}C_5(5-1)! \times \frac{5}{10}C_3 3! = 30240$
No. of ways = $\frac{7}{10}C_5(5-1)! \times \frac{5}{10}C_2 2! \times \frac{5}{10}C_2 2! = 60480$
No. of ways = $\frac{7}{10}C_5(5-1)! \times \frac{3}{10}C_2 2! \times \frac{5}{10}C_2 2! = 60480$
 $\frac{3}{10}C_3 3! = 30240 + 60480 = 90720$
(iii)
No. of ways = $\frac{7}{10}C_5(5-1)! \times \frac{3}{10}C_2 2! \times \frac{5}{10}C_2 2! = 60480$
 $\frac{3}{10}C_3 3! = 30240 + 60480 = 90720$
(iii)
The pherical beads and cubic beads alternate, then there must be 4 spherical beads and 4 cubic beads.

No. of ways

No. of ways

$$= \underbrace{{}^{5}C_{4}(4-1)!}_{4 \text{ spherical beads and arranged in a circle}} \times {}^{5}C_{4}4! = 3600$$

$$= \underbrace{{}^{4}\text{ cubic beads, and 4! ways to arrange among themselves}} = \underbrace{{}^{4}\text{ cubic beads, and 4! ways to arrange among themselves}} = \underbrace{{}^{4}\text{ cubic beads, and 4! ways to arrange among themselves}} = \underbrace{{}^{4}\text{ cubic beads, and 4! ways to arrange among themselves}} = \underbrace{{}^{4}\text{ cubic beads, and 4! ways to arrange among themselves}} = \underbrace{{}^{4}\text{ cubic beads, and 4! ways to arrange among themselves}} = \underbrace{{}^{4}\text{ cubic beads, and 4! ways to arrange among themselves}} = \underbrace{{}^{4}\text{ cubic beads, and 4! ways to arrange among themselves}} = \underbrace{{}^{4}\text{ cubic beads, and 4! ways to arrange among themselves}} = \underbrace{{}^{4}\text{ cubic beads, and 4! ways to arrange among themselves}} = \underbrace{{}^{4}\text{ cubic beads, and 4! ways to arrange among themselves}} = \underbrace{{}^{4}\text{ cubic beads, and 4! ways to arrange among themselves}} = \underbrace{{}^{4}\text{ cubic beads, and 4! ways to arrange among themselves}} = \underbrace{{}^{4}\text{ cubic beads, and 4! ways to arrange among themselves}} = \underbrace{{}^{4}\text{ cubic beads, and 4! ways to arrange among themselves}} = \underbrace{{}^{4}\text{ cubic beads, and 4! ways to arrange among themselves}} = \underbrace{{}^{4}\text{ cubic beads, and 4! ways to arrange among themselves}} = \underbrace{{}^{4}\text{ cubic beads, and 4! ways to arrange among themselves}} = \underbrace{{}^{4}\text{ cubic beads, and 4! ways to arrange among themselves}} = \underbrace{{}^{4}\text{ cubic beads, and 4! ways to arrange among themselves}} = \underbrace{{}^{4}\text{ cubic beads, and 4! ways to arrange among themselves}} = \underbrace{{}^{4}\text{ cubic beads, and 4! ways to arrange among themselves}} = \underbrace{{}^{4}\text{ cubic beads, and 4! ways to arrange among themselves}} = \underbrace{{}^{4}\text{ cubic beads, and 4! ways to arrange among themselves}} = \underbrace{{}^{4}\text{ cubic beads, and 4! ways to arrange among themselves}} = \underbrace{{}^{4}\text{ cubic beads, and 4! ways to arrange among themselves}} = \underbrace{{}^{4}\text{ cubic beads, and 4! ways to arrange among themselves}} = \underbrace{{}^{4}\text{ cubic beads, and 4! ways to arrange among themselves}} = \underbrace{{}^{4}\text{ cubic beads, and$$

2

Q2 (i) <u>Method 1</u>: (using permutations) Probability $=\frac{10 \times 9 \times 8 \times 7}{10^4} = \frac{63}{125}$ [or 0.504]

<u>Method 2</u>: (using probability) Probability = $\frac{10}{10} \times \frac{9}{10} \times \frac{8}{10} \times \frac{7}{10} = \frac{63}{125}$ [or 0.504]

(ii)

No. of ways 9915

3 ways to arrange digit same as last even digit

Required probability
$$= \frac{[(9 \times 9 \times 1) \times 3] \times 5}{10^4}$$
$$= \frac{243}{2000} \quad \text{[or } 0.1215\text{]}$$

<u>Method 2</u>: (using permutations and combinations) Case 1: The other 2 digits are different

No. of ways
$$21$$
 21 21 5

3! ways to arrange

Probability =
$$\frac{[({}^{9}C_{2} \times 1) \times 3!] \times 5}{10^{4}} = \frac{27}{250}$$
 [or 0.108]

Case 2: The other 2 digits are the same

thousands
hundreds
tens unit
No. of ways
$$9C_{1}$$
 1 5
 $\frac{3!}{2!}$ ways to arrange

Probability =
$$\frac{\left[\binom{9}{1} \times 1\right] \times \frac{3!}{2!} \times 5}{10^4} = \frac{27}{2000}$$
 [or 0.0135]
Required probability = $\frac{27}{250} + \frac{27}{2000} = \frac{243}{2000}$ [or 0.1215]

Method 3: (using probability)

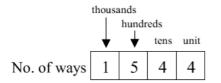
Case 1: The other 2 digits are different Probability $= \frac{9}{10} \times \frac{8}{10} \times \frac{1}{10} \times \frac{5}{10} \times \frac{3!}{2!} = \frac{27}{250}$ [or 0.108] Case 2: The other 2 digits are the same Probability $= \frac{9}{10} \times \frac{1}{10} \times \frac{1}{10} \times \frac{5}{10} \times \frac{3!}{2!} = \frac{27}{2000}$ [or 0.0135] Required probability $= \frac{27}{250} + \frac{27}{2000} = \frac{243}{2000}$ [or 0.1215]

(iii)

Let *A* be the event '4 different digits with 1^{st} digit greater than 6'. Let *B* be the event 'odd and even digits that alternate'.

Method 1: (using permutations)

Case 1: 1st digit is even, i.e. 8, and odd and even digits alternate



Probability =
$$\frac{1 \times 5 \times 4 \times 4}{10^4} = \frac{1}{125}$$
 [or 0.008]

Case 2: 1st digit is odd, i.e. 7 or 9, and odd and even digits alternate

thousands
hundreds
Probability =
$$\frac{1}{10^4}$$
 = $\frac{1}{125}$ [or 0.016]
Hence $P(A \cap B) = \frac{1}{125} + \frac{2}{125} = \frac{3}{125}$ [or 0.024]
 $P(B) = P(\text{'odd, even, odd, even' or 'even, odd, even, odd'})$
 $= \frac{2 \times (5 \times 5 \times 5 \times 5)}{10^4}$
 $= \frac{1}{8}$ [or 0.125]
 $\therefore P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{3}{125}}{\frac{1}{8}} = \frac{24}{125}$ [or 0.192]

DANYAL

Case 1: 1st digit is even, i.e. 8, and odd and even digits alternate

Probability
$$=\frac{1}{10} \times \frac{5}{10} \times \frac{4}{10} \times \frac{4}{10} = 0.008$$

Danyal Education "A commitment to teach and nurture"

Case 2: 1st digit is odd, i.e. 7 or 9, and odd and even digits alternate

Probability
$$=\frac{2}{10} \times \frac{5}{10} \times \frac{4}{10} \times \frac{4}{10} = 0.016$$

Hence $P(A \cap B) = \frac{1}{125} + \frac{2}{125} = \frac{3}{125}$ [or 0.024]
 $P(B) = P(\text{'odd, even, odd, even' or 'even, odd, even, odd'})$
 $= 2 \times \left(\frac{5}{10} \times \frac{5}{10} \times \frac{5}{10} \times \frac{5}{10}\right)$
 $= 0.125$
 $\therefore P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{3}{125}}{\frac{1}{8}} = \frac{24}{125}$ [or 0.192]

Q3 (i)

Use 1, 2 and 3 to form 3-digit numbers

(a) 3! = 6

- **(b)** $3 \times 3 \times 3 = \underline{27}$
- (c) <u>Method 1</u> Consider the complement Number of 3-digit numbers with all 3 digits the same (AAA) = 3 Required number = 27 - 3 = 24

Method 2 Consider cases

<u>Case 1 Each digit is used exactly once</u> Number of 3-digit numbers = 6 (from (i)(a))

<u>Case 2 One digit is used twice (AAB)</u> Number of 3-digit numbers = ${}^{3}P_{2} \times \frac{3!}{2!} = 18$

 $({}^{3}P_{2} = 3 \times 2:3$ ways to select a digit to be used twice; 2 ways to select another digit)

Total number of 3-digit numbers = $6 + 18 = \underline{24}$

(ii) Use 1, 2 and 3 to form 4-digit numbers

<u>Method 1</u> Consider the complement Total number of 4-digit numbers = $3^4 = 81$

Case 1 AAAB ykaki.com

Number of 4-digit numbers = ${}^{3}P_{2} \times \frac{4!}{3!} = 24$

 $({}^{3}P_{2} = 3 \times 2:3$ ways to select a digit to be used thrice; 2 ways to select another digit)

 $\frac{\text{Case 2 AAAA}}{\text{Number of 4-digit numbers}} = 3$

Total number of 4-digit numbers = 81 - (24 + 3) = 54

<u>Method 2</u> Consider cases <u>Case 1 AABC</u> Number of 4-digit numbers = $3 \times \frac{4!}{2!} = 36$

(3 ways to select the digit to be used twice)

<u>Case 2 AABB</u> Number of 4-digit numbers = ${}^{3}C_{2} \times \frac{4!}{2! \times 2!} = 18$

 $({}^{3}C_{2}$ ways to select the 2 digits each to be used twice)

Total number of 4-digit numbers = $36 + 18 = \underline{54}$

