A Level H2 Math

Permutations, Combinations and Probability Test 1

Q1

A group of 12 students consists of 5 bowlers, 4 canoeists and 3 footballers.

- (i) The group sits at a round table with 12 seats. In how many different ways can they sit so that all the players of the same sport sit together? [2]
- (ii) The group stands in a line. In how many different ways can they stand so that *either* the bowlers are all next to one another *or* the canoeists are all next to one another *or* both?
- (iii) Find the number of ways in which a delegation of 8 can be selected from this group if it must include at least 1 student from each of the 3 sports.

Q2

The number of employees of a statutory board, classified by department and years of working experience, is shown below.

10113	5 years or less	5 to 10 years	10 years or more	Total
Human Resource	20	50	30	100
Department				
Legal Department	15	60	45	120
Finance Department	25	30	45	100
Total	60	140	120	320

The Managing Director of the statutory board wishes to select three employees to participate in an overseas conference. The Managing Director selects one employee from each department to participate in the conference.

- (i) Find the probability that two of the selected employees have years of working experience '10 years or more' and the remaining one has years of working experience '5 years or less'. [3]
- (ii) Given that exactly one of the selected employees has years of working experience '5 years or less', find the probability that one of the selected employees is from the Legal Department and has years of working experience '5 to 10 years'. [3]

[2]

1

Q3

A restaurant is setting up a spinning wheel for its customers to try and win vouchers. The wheel is split into 8 identical segments, comprising of \$0, \$5, \$10, \$15, \$20, \$25, \$30 and \$50.

Find the number of ways the segments can be arranged on the wheel if

(i)	there are no restrictions.	[1]
(ii)	the \$0 segment cannot be next to the \$5 segment	[2]
(iii)	there must be at least two segments between the \$30 and \$50 segments.	[2]
The r	restaurant decides to replace the \$30 and \$50 segments with another tw	vo \$0
segme	ents.	
(iv)	Find the number of possible arrangements of the 8 segments.	[1]
(v)	Find the number of possible arrangements if the \$0 segments must be sepa	rated.

[2]

and the second second

Answers

Permutations, Combinations and Probability Test 1

Q1

(i)	Number of ways = $(3 - 1)! \cdot 5! \cdot 4! \cdot 3! = 34560$	Generally well done
(ii)	Number of ways	Most students added the
	= N(5 bowlers together) + N(4 canoeists together)	three numbers instead of
	 N(5 bowlers together & 4 canoeists together) 	subtracting the case for
	$= 8! \cdot 5! + 9! \cdot 4! - 5! \cdot 5! \cdot 4!$	intersection:
	=4838400 + 8709120 - 345600	8!.5! + 9!.4! + 5!.5!.4!.
	= 13 201 920	If students had drawn a
	DUCAIL	venn diagram, the
		correct operation would
		have been clearer.
(iii)	Number of ways	Very badly done,
	= N(Total) - N(0 bowlers) - N(0 canoeists) - N(0 footballers)	although there is a
	$={}^{12}C_8 - 0 - {}^8C_8 - {}^9C_8 = 485$	question in Tutorial 20
		Q9.
		Many did
		${}^{5}C_{1} * {}^{4}C_{1} * {}^{3}C_{1} * {}^{9}C_{1}$
	AVAL	which is a gross
	AY IS NYAL	overcount.
	() DAI DAION	

Q2

(i)	Required probability $= \frac{30}{100} \times \frac{45}{120} \times \frac{25}{100} + \frac{30}{100} \times \frac{15}{120} \times \frac{45}{100} + \frac{20}{100} \times \frac{45}{120} \times \frac{45}{100}$ $= \frac{63}{800}$ Required probability
(ii)	
	$=\frac{(0.2)(0.5)(0.75) + (0.8)(0.5)(0.25)}{(0.25)$
	(0.2)(0.875)(0.75) + (0.8)(0.125)(0.75) + (0.8)(0.875)(0.25)
	$=\frac{28}{61} DANYAUEDUCATIONEDUCATION$
(;;;)	Number of different possible codes
(iii)	-
	$= {}^{9}C_{2} \times 2! \times {}^{7}C_{1}$
	= 504
(iv)	Method 1: Complementary Method
· · /	
	Number of possible arrangements
	Number of possible arrangements = $\begin{bmatrix} {}^{4}C_{3} \times {}^{5}C_{2} \times 5! \end{bmatrix} - \begin{bmatrix} ({}^{4}C_{3} \times 3!) \times {}^{5}C_{2} \times 3! \end{bmatrix}$
	$= \left[{}^{4}C_{3} \times {}^{5}C_{2} \times 5! \right] - \left[\left({}^{4}C_{3} \times 3! \right) \times {}^{5}C_{2} \times 3! \right]$
	$= \left[{}^{4}C_{3} \times {}^{5}C_{2} \times 5! \right] - \left[\left({}^{4}C_{3} \times 3! \right) \times {}^{5}C_{2} \times 3! \right]$
	$= \left[{}^{4}C_{3} \times {}^{5}C_{2} \times 5! \right] - \left[\left({}^{4}C_{3} \times 3! \right) \times {}^{5}C_{2} \times 3! \right]$ = 3360 studykaki.com
	$= \left[{}^{4}C_{3} \times {}^{5}C_{2} \times 5! \right] - \left[\left({}^{4}C_{3} \times 3! \right) \times {}^{5}C_{2} \times 3! \right]$
	$= \left[{}^{4}C_{3} \times {}^{5}C_{2} \times 5! \right] - \left[\left({}^{4}C_{3} \times 3! \right) \times {}^{5}C_{2} \times 3! \right]$ = 3360 studykaki.com
	$= \begin{bmatrix} {}^{4}C_{3} \times {}^{5}C_{2} \times 5! \end{bmatrix} - \begin{bmatrix} ({}^{4}C_{3} \times 3!) \times {}^{5}C_{2} \times 3! \end{bmatrix}$ = 3360 studykaki.com <u>Method 2: List by Cases</u>
	$= \begin{bmatrix} {}^{4}C_{3} \times {}^{5}C_{2} \times 5! \end{bmatrix} - \begin{bmatrix} ({}^{4}C_{3} \times 3!) \times {}^{5}C_{2} \times 3! \end{bmatrix}$ = 3360 studykaki.com <u>Method 2: List by Cases</u> <u>Case 1: All the even digits are separated</u>
	$= \begin{bmatrix} {}^{4}C_{3} \times {}^{5}C_{2} \times 5! \end{bmatrix} - \begin{bmatrix} ({}^{4}C_{3} \times 3!) \times {}^{5}C_{2} \times 3! \end{bmatrix}$ = 3360 studykaki.com <u>Method 2: List by Cases</u> <u>Case 1: All the even digits are separated</u>
	$= \begin{bmatrix} {}^{4}C_{3} \times {}^{5}C_{2} \times 5! \end{bmatrix} - \begin{bmatrix} ({}^{4}C_{3} \times 3!) \times {}^{5}C_{2} \times 3! \end{bmatrix}$ = 3360 studykaki.com <u>Method 2: List by Cases</u> $\frac{Case 1: All the even digits are separated}{{}^{4}C_{3} \times {}^{5}C_{2} \times 2! \times 3! = 480}$
	$= \begin{bmatrix} {}^{4}C_{3} \times {}^{5}C_{2} \times 5! \end{bmatrix} - \begin{bmatrix} ({}^{4}C_{3} \times 3!) \times {}^{5}C_{2} \times 3! \end{bmatrix}$ = 3360 studykaki.com <u>Method 2: List by Cases</u> $\underline{Case 1: All the even digits are separated}$ ${}^{4}C_{3} \times {}^{5}C_{2} \times 2! \times 3! = 480$ $\underline{Case 2: Exactly two even digits are next to each other (and the third even digit is separated)}$ ${}^{4}C_{3} \times ({}^{3}C_{2} \times 2!) \times {}^{5}C_{2} \times 3! \times {}^{2}C_{1} = 2880$
	$= \begin{bmatrix} {}^{4}C_{3} \times {}^{5}C_{2} \times 5! \end{bmatrix} - \begin{bmatrix} ({}^{4}C_{3} \times 3!) \times {}^{5}C_{2} \times 3! \end{bmatrix}$ = 3360 studykaki.com <u>Method 2: List by Cases</u> $\underline{Case 1: All the even digits are separated}$ ${}^{4}C_{3} \times {}^{5}C_{2} \times 2! \times 3! = 480$ $\underline{Case 2: Exactly two even digits are next to each other (and the third even digit is separated)}$ ${}^{4}C_{3} \times ({}^{3}C_{2} \times 2!) \times {}^{5}C_{2} \times 3! \times {}^{2}C_{1} = 2880$
	$= \begin{bmatrix} {}^{4}C_{3} \times {}^{5}C_{2} \times 5! \end{bmatrix} - \begin{bmatrix} ({}^{4}C_{3} \times 3!) \times {}^{5}C_{2} \times 3! \end{bmatrix}$ = 3360 studykaki.com <u>Method 2: List by Cases</u> $\underline{Case 1: All the even digits are separated}$ ${}^{4}C_{3} \times {}^{5}C_{2} \times 2! \times 3! = 480$ $\underline{Case 2: Exactly two even digits are next to each other (and the third even digit is separated)}$ ${}^{4}C_{3} \times ({}^{3}C_{2} \times 2!) \times {}^{5}C_{2} \times 3! \times {}^{2}C_{1} = 2880$
	$= \begin{bmatrix} {}^{4}C_{3} \times {}^{5}C_{2} \times 5! \end{bmatrix} - \begin{bmatrix} ({}^{4}C_{3} \times 3!) \times {}^{5}C_{2} \times 3! \end{bmatrix}$ $= 3360$ Method 2: List by Cases $\frac{Case 1: All the even digits are separated}{{}^{4}C_{3} \times {}^{5}C_{2} \times 2! \times 3! = 480}$ Case 2: Exactly two even digits are next to each other (and the third even digit is separated) ${}^{4}C_{3} \times ({}^{3}C_{2} \times 2!) \times {}^{5}C_{2} \times 3! \times {}^{2}C_{1} = 2880$ Number of possible arrangements

(i)
$$(8-1)! = 5040$$

(ii)

Q3

No. of ways with \$0 and \$5 segments adjacent

=(7-1)!2!

=1440

No. of ways without identical segments adjacent

```
= total no. of ways – no. of ways with identical segments adjacent = 5040 - 1440
```

= 3600

(iii)

Case 1: no segment separating them (7-1)!2!=1440

Case 2: exactly 1 segment separating them $\binom{6}{1}$ 2! (6-1)! = 1440

Total number of ways = 5040 - 1440 - 1440= 2160

ALT

<u>Case 1</u>: exactly 2 segments separating them $\binom{6}{2}$ 2!2!(5-1)!=1440 <u>Case 2</u>: exactly 3 segments separating them $\frac{\binom{6}{3}}{3!2!(4-1)!}$ = 720

Therefore, total number of ways = 2160

(iv)

The segments are \$0, \$0, \$0, \$5, \$10, \$15, \$20, \$25 $\frac{(8-1)!}{3!} = 840$ (v) studykaki.com

Arrange the other 5 objects in (5-1)! = 24 ways Choose 3 spaces for the \$0 in ${}^{5}C_{3} = 10$ ways Total = 240 ways

