<u>A Level H2 Math</u>

Q1

The independent random variables X and Y are normally distributed with the same mean 7 but different variances Var(X) and Var(Y), respectively. It is given that P(X < 10) = P(Y > 6).

(i) Show that $\operatorname{Var}(X) = 9\operatorname{Var}(Y)$. [3]

(ii) If Var(Y) = 1, find P(X < 9).

EDUCATION

Q2

In this question you should state clearly the values of the parameters of any normal distribution you use.

The mass of a tomato of variety *A* has normal distribution with mean 80 g and standard deviation 11 g.

(i) Two tomatoes of variety A are randomly chosen. Find the probability that one of the tomatoes has mass more than 90 g and the other has mass less than 90 g.
 [3]

The mass of a tomato of variety B has normal distribution with mean 70 g. These tomatoes are packed in sixes using packaging that weighs 15 g.

- (ii) The probability that a randomly chosen pack of 6 tomatoes of variety B including packaging, weighs less than 450 g is 0.8463. Show that the standard deviation of the mass of a tomato of variety B is 6 g, correct to the nearest gram. [4]
- (iii) Tomatoes of variety A are packed in fives using packaging that weighs 25 g. Find the probability that the total mass of a randomly chosen pack of variety A is greater than the total mass of a randomly chosen pack of variety B, using 6 g as the standard deviation of the mass of a tomato of variety B.
 [5]

[2]

1

Q3

Males and females visiting an amusement park have heights, in centimetres, which are normally distributed with means and standard deviations as shown in the following table:

	Mean (cm) Standard deviation (
Male	165	12
Female	155	σ

It is found that 38.29% of the females have heights between 150 cm and 160 cm.

- (i) Show that $\sigma = 10.0$ cm, correct to 3 significant figures. [2]
- (ii) Find the probability that the height of a randomly chosen female is within 20 cm of three-quarter the height of a randomly chosen male. State an assumption that is necessary for the calculation to be valid. [4]

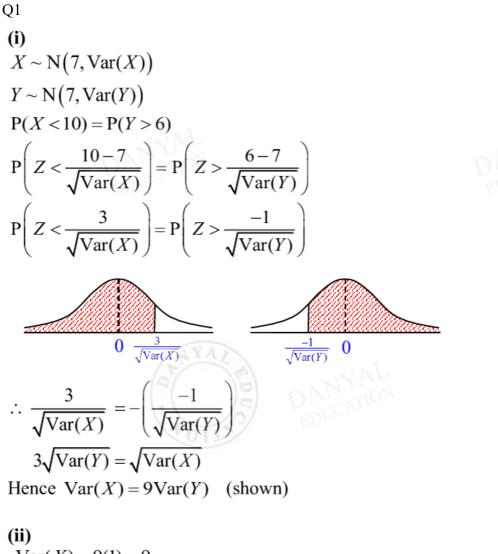
The amount, X, a visitor has to pay for a popular ride in the park is \$10 if the visitor's height is at least 120 cm but less than 150 cm, and m if the visitor's height is 150 cm and above. If the visitor's height is less than 120 cm, he/she does not need to pay for the ride.

(iii) Assuming that a visitor purchasing a ticket for the ride is equally likely to be a male or female, find in terms of *m*, the probability distribution of *X*. [3]

Given that the expected amount a visitor will pay for a ride is \$17.93, show that m = 20.00, correct to 2 decimal places. [1]

(iv) Three visitors were randomly chosen. Find the probability that the total amount they paid for a ride together is more than \$40. [3] Answers

Normal Distribution Test 3



Var(X) = 9(1) = 9 X ~ N(7,9) ∴ P(X < 9) = 0.748

Q2

Let A g be the mass of a tomato of variety A and B g be the mass of a tomato of variety B.

$$A \sim N(80, 11^{2})$$
(i) $P(A > 90) = 0.18165$
P(one greater than 90 g and one less than 90 g)
 $= 2 \times P(A > 90) \times P(A < 90)$
 $= 2(0.18165)(1-0.18165)$
 $= 0.297(3 \text{ sf})$
Let $B \sim N(70, \sigma^{2})$.
(ii) Let $S_{B} = B_{1} + B_{2} + ... + B_{6} + 15$
 $S_{B} \sim N(6 \times 70 + 15, 6\sigma^{2})$ i.e., $N(435, 6\sigma^{2})$
 $P(S_{B} < 450) = 0.8463$
 $P(Z < \frac{450 - 435}{\sqrt{6}\sigma}) = 0.8463$
 $SULY 15 \text{ ki. com}$
 $\sqrt{6\sigma} = 1.0207$
 $\sigma = \frac{15}{1.0207\sqrt{6}} = 6 \text{ (nearest g)}$ (Shown)
(iii) $S_{B} \sim N(435, 216)$
Let $S_{A} = A_{1} + A_{2} + ... + A_{5} + 25$

Let
$$S_{A} = A_{1} + A_{2} + ... + A_{5} + 25$$

 $S_{A} \sim N(5 \times 80 + 25, 5 \times 11^{2})$ i.e., N(425, 605)
 $S_{A} - S_{B} \sim N(425 - 435, 605 + 216) = N(-10, 821)$
 $P(S_{A} > S_{B}) = P(S_{A} - S_{B} > 0)$
 $= 0.364$ (3 sf)

Q3	"A commitment to teach and nurture"			
10(i)	Let <i>M</i> denote the random variable: Height of a male visitor in cm. $M \sim N(165, 12^2)$			
	Let F denote the random variable: Height of a female visitor in cm.			
	P(150 < F < 160) = 0.3829			
	$P(-\frac{5}{\sigma} < Z < \frac{5}{\sigma}) = 0.3829$			
	$P(Z < -\frac{5}{\sigma}) = \frac{1 - 0.3829}{2} = 0.30855$			
	From G.C. $-\frac{5}{\sigma} = -0.4999646$			
	$\Rightarrow \sigma = 10.0 \text{ cm} (3 \text{ sig. fig.})$			
(ii)	$\Rightarrow \sigma = 10.0 \text{ cm } (3 \text{ sig. fig.})$ $\frac{3}{4}M - F \sim N(\frac{3}{4} \times 165 - 155, \frac{9}{16} \times 12^2 + 10^2) = N(-31.25, 181)$			
	$P(\left \frac{3}{4}M - F\right \le 20) = P(-20 \le \frac{3}{4}M - F \le 20)$			
	= 0.201 (3 sig. fig.)			
	Assumption: The heights of all male and female visitors are independent	ndent of one another.		
(iii)	Probability Distribution of <i>X</i> :			
	x (in \$) $P(X = x)$			
	$0 \qquad \frac{1}{2}P(M < 120) + \frac{1}{2}P(F < 120) = 0.00016056$			
	$\frac{10}{2}P(120 \le M < 150) + \frac{1}{2}P(120 \le F < 150) = 0.20693$			
	$\frac{m}{2} P(M \ge 150) + \frac{1}{2} P(F \ge 150) = 0.79291$			
	Given $E(X) = 17.93 = 0 (0.00016056) + 10(0.20693) + m(0.79291)$			
	$\Rightarrow m = 20.00$ (shown)	AL		
(iv)	$P(X_1+X_2+X_3>40) = P(20, 20, 20) + 3. P(20, 20, 10)$			
	= 0.889			