<u>A Level H2 Math</u> Integration Test 9

Q1

- (a) Given that $\int_0^a x \sin x \, dx = 0.5$, where 0 < a < 2, find an equation that is satisfied by *a* and use it to find the value of *a*. [5]
- (b) Write down a definite integral that represents the area of the region bounded by the curve with equation $y = \frac{\sqrt{x}}{3-\sqrt{x}}$, the two axes and the line x = 4. Use the substitution $u = 3 - \sqrt{x}$ to find the exact value of the area. [6]

Q2

A curve C has equation $y = \ln(x^2)$, $x \neq 0$.

- (i) Sketch C.
- (ii) The part of C from the point $A(e^{-1}, -2)$ to the point $B(e^{\frac{k}{2}}, k)$, k > 4, and the line y = -2 is rotated about the y-axis to form the curved surface and the circular base of an open vase. Find the volume of the vase, giving your answer in terms of π and k, in exact form. [2]
- (iii) Water flows into the vase at a constant rate of 2 cm³ per second. By first showing that the volume of water in the vase is given by $V = \pi (x^2 e^{-2})$ when the radius of the water surface is x cm, find the rate at which x is increasing, giving your answer in terms of x. [4]
- (iv) An insect lands on the inner surface of the vase at the point (e, 2) just as the incoming water reaches the depth of 2 cm. It immediately starts to crawl along C such that the x-coordinate of its location increases by a constant value of 0.03 cm per second. Find the coordinates of the point on C at which the insect will first come into contact with water.

Q3

(i) By using the substitution
$$x-1=3\tan\theta$$
, find $\int \frac{1}{\sqrt{x^2-2x+10}} dx$. [5]

(ii) By expressing
$$x + 3 = A(2x - 2) + B$$
, find $\int \frac{x + 3}{\sqrt{x^2 - 2x + 10}} dx$. [3]

[2]

1

Integration Test 9

Answers

Q1
a

$$\int_{0}^{a} x \sin x dx = 0.5$$

$$[-x \cos x]_{0}^{a} + \int_{0}^{a} \cos x dx = 0.5$$

$$[-a \cos a + 0] + [\sin x]_{0}^{a} = 0.5$$

$$-a \cos a + \sin a = 0.5 \quad \dots (1)$$
b

$$\int \frac{y = 0.5}{y = \sin a} - a \cos a$$
Using GC, $a = 1.20249 = 1.20$ (3 s.f.)
b
Area $= \int_{0}^{4} \frac{\sqrt{x}}{3 - \sqrt{x}} dx$
Let $u = 3 - \sqrt{x}$ Studykaki.com
 $\frac{du}{dx} = -\frac{1}{2\sqrt{x}} \Rightarrow \frac{dx}{du} = -2(3 - u)$
When $x = 0, u = 3$
When $x = 4, u = 1$

$$\int_{0}^{4} \frac{\sqrt{x}}{3 - \sqrt{x}} dx = \int_{3}^{3} (\frac{3 - u}{u}) [(-2)(3 - u)] du$$

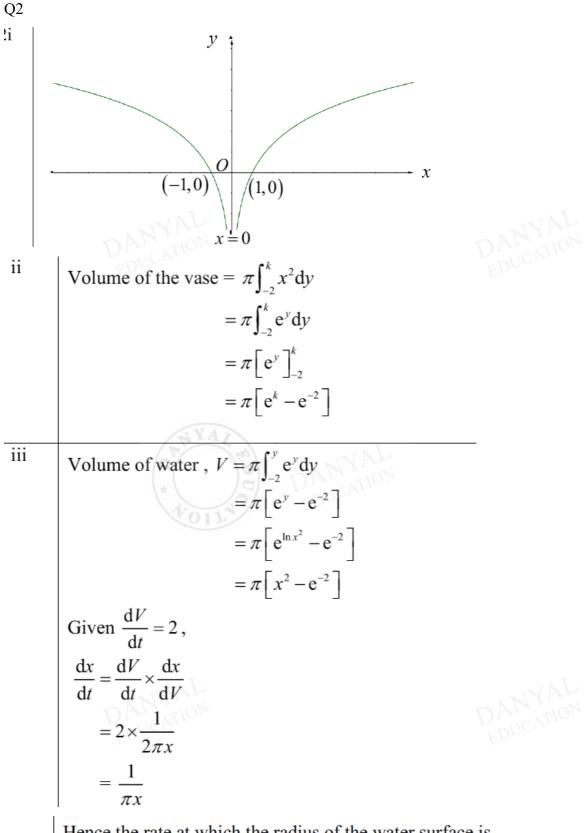
$$= \int_{1}^{3} \frac{2(3 - u)^{2}}{u} du$$

$$= 2 \int_{1}^{3} \frac{9 - 6u + u^{2}}{u} du$$

$$= 2 \int_{1}^{3} (\frac{9}{u} - 6 + u) du$$

$$= 2 \left[9 \ln u - 6u + \frac{u^{2}}{2} \right]_{1}^{3}$$

$$= 2 \left(9 \ln 3 - 18 + \frac{9}{2} \right) - 2 \left(-6 + \frac{1}{2} \right)$$



Hence the rate at which the radius of the water surface is increasing is $\frac{1}{\pi x}$ cm per second.

iv

For the insect, $\frac{dx}{dt} = 0.03$. t seconds later, the location of the insect is at x = 0.03t + eFor the movement of the water, $\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{\pi x}$ $\int \pi x \, \mathrm{d}x = \int 1 \, \mathrm{d}t$ $\frac{\pi x^2}{2} = t + C$ When t = 0, x = 1 $C = \frac{\pi}{2}$ $\frac{\pi x^2}{2} = t + \frac{\pi}{2}$ When the insect first comes into contact with water, $\frac{\pi (0.03t+e)^2}{\text{stu}_2 \text{lykak} - \frac{\pi}{2} = t}$ $\pi (0.03t + e)^2 - \pi = 2t$ $\left(0.03t+\mathrm{e}\right)^2 = \frac{2t+\pi}{-1}$ NORMAL FLOAT AUTO REAL RADIAN MP Calc intersect п Y∋=(2X+π)≠(π) $y = (0.03t + e)^2$ Intersection X=13.85759 Y=9.8220157 Using GC, t = 13.858x = 0.03(13.858) + e = 3.1340 $y = \ln(3.1340)^2 = 2.28$

Hence coordinates of the point = (3.13, 2.28)

