A Level H2 Math

Integration Test 7

Q1

(i) Find
$$\int n \cos^{-1}(nx) dx$$
, where *n* is a positive constant. [3]

(ii) Hence find the exact value of
$$\int_0^{\frac{1}{2n}} n \cos^{-1}(nx) dx$$
. [2]

Q2

Given that $f(x) = \sin 2x + \cos 2x$, express f(x) as $R\sin(2x + \alpha)$, where R > 0,

$$0 < \alpha < \frac{\pi}{2}$$
 and R and α are constants to be found. [2]

- (i) Describe a sequence of transformations involved that transformed $y = \sin x$ to y = f(x).
- (ii) Sketch the graph of y = f(x) for $0 \le x \le \frac{3\pi}{8}$, indicating clearly the exact coordinates of the maximum point and the end points of the graph. [3]
- (iii) The region bounded by the curve y = f(x), the line $x = \frac{\pi}{8}$ and both axes is rotated about the y-axis through 2π radians. Find the volume of the solid of revolution correct to 4 decimal places. [4]

Q3

(a) Find
$$\int \frac{x+2}{\sqrt{(1-8x-4x^2)}} dx$$
. [4]

(b) Use the substitution $x = 2 \sec \theta$ to find the exact value of $\int_{2}^{4} \frac{1}{x} \sqrt{(x^2 - 4)} dx$. [4]

Integration Test 7

Answers

Q1

(i)
$$\int n \cos^{-1}(nx) dx$$

$$= (nx) \cos^{-1}(nx) - \int (nx) \left(-\frac{n}{\sqrt{1 - (nx)^2}} \right) dx$$

$$= (nx) \cos^{-1}(nx) - \frac{1}{2} \int (-2n^2x) (1 - n^2x^2)^{-1/2} dx$$

$$= (nx) \cos^{-1}(nx) - \frac{1}{2} \times \frac{(1 - n^2x^2)^{1/2}}{\frac{1}{2}} + C$$

$$= (nx) \cos^{-1}(nx) - \sqrt{(1 - n^2x^2)} + C$$

(ii) studykaki.com
$$\int_{0}^{\frac{1}{2n}} n \cos^{-1}(nx) dx$$

$$= \left[(nx) \cos^{-1}(nx) - \sqrt{(1 - n^{2}x^{2})} \right]_{0}^{\frac{1}{2n}}$$

$$= \left[\frac{1}{2} \cos^{-1} \frac{1}{2} - \sqrt{1 - \frac{1}{4}} \right] - (0 - 1)$$

$$= \frac{\pi}{6} - \frac{\sqrt{3}}{2} + 1 \quad or \quad \frac{\pi}{6} + \frac{2 - \sqrt{3}}{2}$$

Q2

$$f(x) = \sin 2x + \cos 2x$$

$$R = \sqrt{1^2 + 1^2} = \sqrt{2}$$

$$\tan \alpha = 1 \implies \alpha = \frac{\pi}{4}$$

$$f(x) = \sin 2x + \cos 2x = \sqrt{2} \sin \left(2x + \frac{\pi}{4}\right)$$

(i)

Transforming
$$y = \sin x$$
 to $y = \sqrt{2} \sin \left(2x + \frac{\pi}{4} \right)$

Sequence of Transformation:

Either

A: A translation of $\frac{\pi}{4}$ units in the negative x-direction

B: A scaling/stretch with scale factor $\frac{1}{2}$ parallel to the *x*-axis.

C: A scaling/stretch with scale factor $\sqrt{2}$ parallel to the *y*-axis. *Acceptable sequence: ABC, ACB, CAB.*

OR
$$y = \sqrt{2} \sin \left[2 \left(x + \frac{\pi}{8} \right) \right]$$

D: A scaling/stretch with scale factor $\frac{1}{2}$ parallel to the x-axis.

E: A translation of $\frac{\pi}{8}$ units in the negative x-direction.

F: A scaling/stretch with scale factor $\sqrt{2}$ parallel to the y-axis.

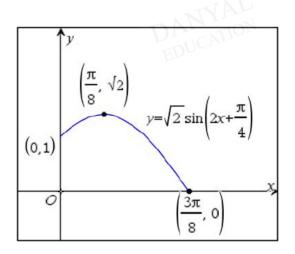
Acceptable sequence: DEF, DFE, FDE

(ii)

Max point occurs when $\sin\left(2x + \frac{\pi}{4}\right) = 1$

$$\Rightarrow \left(2x + \frac{\pi}{4}\right) = \frac{\pi}{2}$$

$$\Rightarrow x = \frac{\pi}{8}, y = \sqrt{2}$$



(iii)

$$y = \sqrt{2}\sin\left(2x + \frac{\pi}{4}\right)$$

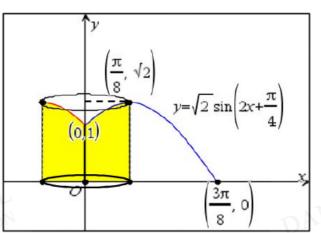
The curve is one-one

thus inverse function

$$\sin\left(2x + \frac{\pi}{4}\right) = \frac{y}{\sqrt{2}}$$

$$2x + \frac{\pi}{4} = \sin^{-1}\frac{y}{\sqrt{2}}$$

$$x = \frac{1}{2} \left[\sin^{-1} \left(\frac{y}{\sqrt{2}} \right) - \frac{\pi}{4} \right]$$



for $0 \le x \le \frac{\pi}{8}$, exists.

Volume = Volume of cylinder - $\pi \int_{1}^{\sqrt{2}} x^2 dy$

$$= \pi \left(\frac{\pi}{8}\right)^2 \sqrt{2} - \pi \int_{1}^{\sqrt{2}} \frac{1}{4} \left[\sin^{-1}\left(\frac{y}{\sqrt{2}}\right) - \frac{\pi}{4}\right]^2 dy$$

=0.6506458

 ≈ 0.6506 (4 d.p.)

DANYAL

(a)
$$\int \frac{x+2}{\sqrt{1-8x-4x^2}} dx$$

$$= -\frac{1}{8} \int \frac{-8x-8}{\sqrt{1-8x-4x^2}} dx + \int \frac{1}{\sqrt{1-8x-4x^2}} dx$$

$$= -\frac{1}{8} \int \frac{-8x-8}{\sqrt{1-8x-4x^2}} dx + \int \frac{1}{\sqrt{5-4(x+1)^2}} dx$$

$$= -\frac{1}{4} \sqrt{1-8x-4x^2} + \frac{1}{2} \sin^{-1} \frac{2\sqrt{5}(x+1)}{5} + C$$
(b) $x = 2 \sec \theta \Rightarrow \frac{dx}{d\theta} = 2 \sec \theta \tan \theta$
When $x = 2$, $\sec \theta = 1 \Rightarrow \cos \theta = 1 \Rightarrow \theta = 0$
When $x = 4$, $\sec \theta = 2 \Rightarrow \cos \theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{3}$

$$\int_{0}^{4} \frac{1}{x} \sqrt{(x^2-4)} dx$$

$$= \int_{0}^{\frac{\pi}{3}} \frac{2 \tan \theta}{2 \sec \theta} (2 \sec \theta \tan \theta) d\theta$$
since $\sqrt{4 \sec^2 \theta - 4} = 2\sqrt{\tan^2 \theta} = 2 \tan \theta$ for $0 \le \theta \le \frac{\pi}{3} = \int_{0}^{\frac{\pi}{3}} 2 \tan^2 \theta d\theta$

$$= 2 \int_{0}^{\frac{\pi}{3}} \sec^2 \theta - 1 d\theta$$

$$= 2 [\tan \theta - \theta]_{0}^{\frac{\pi}{3}}$$

$$= 2 [\sqrt{3} - \frac{\pi}{3}]$$