<u>A Level H2 Math</u> <u>Functions Test 5</u>

Q1

The function f is defined as follows.

$$f: x \mapsto \sqrt{3} \sin x + \cos x, \quad x \in \Box, \quad 0 < x < \pi.$$

(i) Write f(x) as $R\sin(x+\alpha)$, where R and α are constants with exact values to be found.

- (ii) Sketch the graph of y = f(x), stating the axial intercepts, and find the range of f. [3]
- (iii) Hence, solve $f(x) \le 1$ exactly.

The function g is defined as follows:

$$g: x \mapsto 2\cos\left(x + \frac{\pi}{6}\right), \quad x \in \Box, \quad -\frac{\pi}{6} \le x \le b.$$

(iv) Write down the largest exact value of b, for g^{-1} to exist.

(v) Taking the value of b found in part (iv), show that the composite function $g^{-1}f$ exists and solve $g^{-1}f(x) = x$ exactly. [3]

Q2

It is given that

$$f(x) = \begin{cases} b\sqrt{1 - \frac{x^2}{a^2}} & \text{for } -a < x \le a \\ -a\sqrt{1 - \frac{(x - 2a)^2}{a^2}} & \text{for } a < x \le 3a \end{cases}$$

and that f(x+4a) = f(x) for all real values of *x*, where *a* and *b* are real constants and 0 < a < b.

(i) Sketch the graph of y = f(x) for $-a \le x \le 8a$. [3]

(ii) Use the substitution $x = a \cos \theta$ to find the exact value of $\int_{3a}^{4a} f(x) dx$ in terms of a and π . [5]

[2]

[2]

[1]

[3]

[1]

Q3

- The function f is defined by $f: x \mapsto \frac{1}{x^2 1}, x \in \mathbb{R}, x > 1$.
- (i) Find $f^{-1}(x)$ and write down the domain of f^{-1} .
- (ii) On the same diagram, sketch the graphs of y = f(x), $y = f^{-1}(x)$ and $y = f^{-1}f(x)$ stating the equations of any asymptotes and showing the relationships between the graphs clearly. [4]
- (iii) State the set of values of x such that $ff^{-1}(x) = f^{-1}f(x)$.

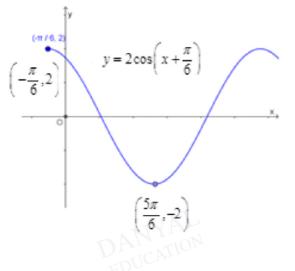
studykaki.com

Answers

Functions Test 5

(i)
$$f(x) = R \sin(x + \alpha) = R \sin x \cos \alpha + R \cos x \sin \alpha$$

compare with $f(x) = \sqrt{3} \sin x + \cos x$
 $\Rightarrow R \cos \alpha = \sqrt{3}$, $R \sin \alpha = 1$
 $\Rightarrow R = \sqrt{1^2 + \sqrt{3}^2} = 2$, $\alpha = \tan^{-1} \frac{1}{\sqrt{3}} = \frac{\pi}{6}$
 $f(x) = 2 \sin\left(x + \frac{\pi}{6}\right)$
(i)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 (1)
 $($



For g⁻¹ to exist, g has to be a 1-1 function. The largest exact value of b, is $\pi - \frac{\pi}{6} = \frac{5\pi}{6}$.

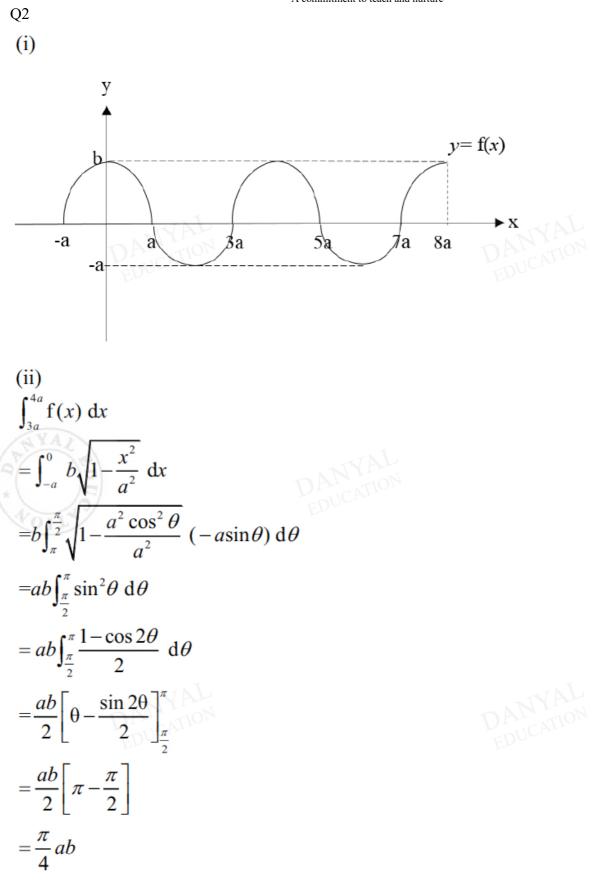
(v)

The domain of g^{-1} = the range of g = [-2, 2]. Range of $f = (-1, 2] \subseteq$ Domain of $g^{-1} = [-2, 2]$, therefore g^{-1} f exists.

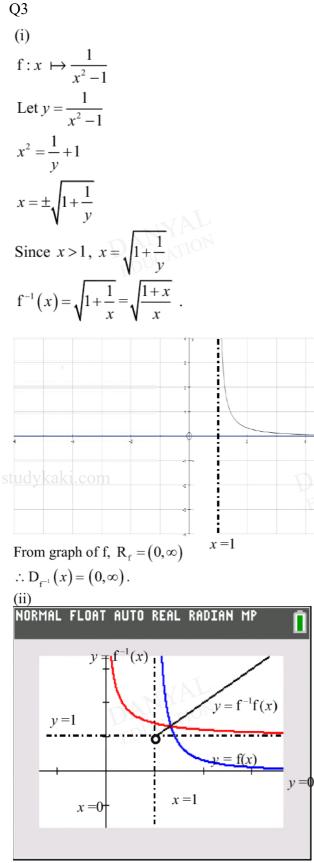
studylg⁺¹ f(x) = x,
$$0 < x < \pi$$

g(x) = f(x)
 $2\cos(x + \frac{\pi}{6}) = 2\sin(x + \frac{\pi}{6})$
 $\tan(x + \frac{\pi}{6}) = 1$
 $x + \frac{\pi}{6} = \frac{\pi}{4}$
 $x = \frac{\pi}{12}$

(Note: $0 < x \le \frac{5\pi}{6}$ considering domain of f and g)



v = 0



(iii)

Since $\text{ff}^{-1}(x) = f^{-1}f(x) = x$ have the same rule, we investigate the domain $D_{f^{-1}f} = (1,\infty) \quad D_{f^{-1}} = (0,\infty)$ Taking the intersection of these domains,

Range of values is x > 1.