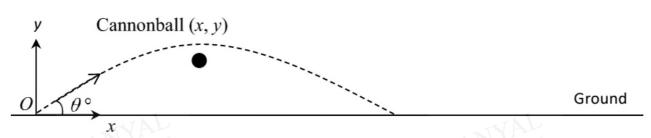
A Level H2 Math

Differentiation and its Applications Test 4

Q1



The diagram shows the trajectory of a cannonball fired off from an origin O with an initial speed of v ms⁻¹ and at an angle of θ° above the ground. At time *t* seconds, the position of the cannonball can be modelled by the parametric equations

$$x = (v\cos\theta)t, y = (v\sin\theta)t - 5t^2,$$

where x m is the horizontal distance of the cannonball with respect to O and y m is the vertical distance of the cannonball with respect to ground level.

(i) Find the horizontal distance, d m, that a cannonball would have travelled by the time it hits the ground. Leave your answer in terms of v and θ . [4]

Use v = 200 to answer the remaining parts of the question.

An approaching target is travelling at a constant speed of 10 ms⁻¹ along the ground. A cannonball is fired towards the target when it is 3000 m away. You may assume the height of the moving target is negligible.

- (ii) Show that in order to hit the target, the possible angles at which the cannonball should be fired are 22.7° and 69.5°.
- (iii) Explain at which angle the cannonball should be fired in order to hit the target earlier. [2]
- (iv) Given that $\theta = 22.7$, find the angle that the tangent to the trajectory makes with the horizontal when x = 370. [4]

Q2

The variables y and x satisfy the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1 - \ln x}{x \ln x + 2x^2} \, \cdot \,$$

(i) Show that the substitution $u = \frac{\ln x}{x}$ reduces the differential equation to $\frac{du}{dy} = u + 2.$ Given that y = 0 when x = 1, show that $y = \ln\left(\frac{\ln x}{2x} + 1\right).$ [6]

The curve C has equation $y = \ln\left(\frac{\ln x}{2x} + 1\right)$. It is given that C has a maximum point and two asymptotes y = a and x = b.

- (ii) Find the exact coordinates of the maximum point. [2]
- (iii) Explain why a = 0. [You may assume that as $x \to \infty$, $\frac{\ln x}{x} \to 0$.] [1]
- (iv) Determine the value of b, giving your answer correct to 4 decimal places. [2]
- (v) Sketch C. [2]

Q3

A particle moving along a path at time t, where $0 < t < \frac{\pi}{3}$, is defined parametrically by

$$x = \cot 3t$$
 and $y = 2 \csc 3t + 1$.

- (a) The tangent to the path at the point $P(\cot 3p, 2\csc 3p+1)$ meets the y-axis at the point Q. Show that the coordinates of Q is $(0, 2\sin 3p+1)$. [4]
- (b) The distance of the particle from the point R(0, 1) is denoted by s, where $s^2 = x^2 + (y-1)^2$. Find the exact rate of change of the particle's distance from R at time $t = \frac{\pi}{4}$. [4]

Answers

Differentiation and its Applications Test 4

Q1

(i) To determine range of cannonball, we consider y = 0: $0 = (v\sin\theta)t - 5t^2$ $0 = t \left[v \sin \theta - 5t \right]$ $\therefore t = 0$ (rejected) or $v \sin \theta - 5t = 0$ $\therefore t = \frac{v\sin\theta}{5}$ When $t = \frac{v \sin \theta}{5}$, $x = (v \cos \theta)$ $x = (v \cos \theta) t$ $=(v\cos\theta)\frac{v\sin\theta}{5}$ $=\frac{v^2\sin\theta\cos\theta}{5}\qquad \therefore d=\frac{v^2\sin\theta\cos\theta}{5}$ (ii) Trajectory of cannonball Target (10m/s) 0 3000 m Ground

DANYAL

Time taken for cannonball to hit the ground = time taken for the target to reach the point of impact of the cannonball.

 $\frac{v\sin\theta}{5} = \frac{3000 - d}{10}$ $2v\sin\theta = 3000 - \frac{v^2\sin\theta\cos\theta}{5}$ $\frac{(200)^2\sin\theta\cos\theta}{5} + 400\sin\theta = 3000$

Possible angles are 22.7° (to 1 dp) or 69.5° (to 1 dp). (shown)

(iii) Since $t = \frac{v \sin \theta}{5}$ when cannon hits target and $\frac{v \sin 22.7^{\circ}}{5} < \frac{v \sin 69.5^{\circ}}{5}$ Therefore to hit target earlier, cannonball should be fired at 22.7°.

(iv) $x = (200 \cos 22.7^{\circ})t$ $y = (200 \sin 22.7^{\circ})t - 5t^{2}$ $\frac{dx}{dt} = 184.51$ $\frac{dy}{dt} = 77.181 - 10t$ $\therefore \frac{dy}{dx} = \frac{77.181 - 10t}{184.51}$ When x = 370, $184.51t = 370 \Rightarrow t = 2.0053$ $\therefore \frac{dy}{dx} = \frac{77.181 - 10(2.0053)}{184.51} = 0.30962$

Let the required angle be α . tan $\alpha = 0.30962 \Rightarrow \alpha = 17.2^{\circ}$ (to 1dp)

(i)
$$u = \frac{\ln x}{x} \Rightarrow \frac{du}{dx} = \frac{1 - \ln x}{x^2}$$

 $\frac{du}{dy} = \frac{du}{dx} \times \frac{dx}{dy} = \frac{1 - \ln x}{x^2} \times \frac{x \ln x + 2x^2}{1 - \ln x} = \frac{\ln x + 2x}{x}$
 $\frac{du}{dy} = u + 2$ (shown)

 $\frac{1}{u+2}\frac{du}{dy} = 1 \Rightarrow \ln|u+2| = y+c, \ c \text{ is an arbitrary constant}$ $|u+2| = e^{y+c} = e^c e^y$ $u+2 = Ae^y, \ A \text{ is an arbitrary constant}$ $\frac{\ln x}{x} + 2 = Ae^y$

$$y = 0, x = 1: \quad A = 2$$

$$stu \frac{\ln x}{2x} + 1 = e^{y}$$

$$y = \ln\left(\frac{\ln x}{2x} + 1\right) \quad \text{(shown)}$$

Alternative

Q2

 $\frac{1}{u+2}\frac{du}{dy} = 1 \Rightarrow \ln|u+2| = y+c, c \text{ is an arbitrary constant}$ With the boundary condition u = 0, y = 0, we see that u+2 > 0Thus $\ln|u+2| = y+c$ and $c = \ln 2$

(ii)
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1 - \ln x}{x \ln x + 2x^2}$$

4

Danyal Education "A commitment to teach and nurture"

When $\frac{dy}{dx} = 0$, $1 - \ln x = 0 \implies x = e$, $y = \ln\left(\frac{1}{2e} + 1\right)$

Therefore the maximum point is $\left(e, \ln\left(\frac{1}{2e}+1\right)\right)$.

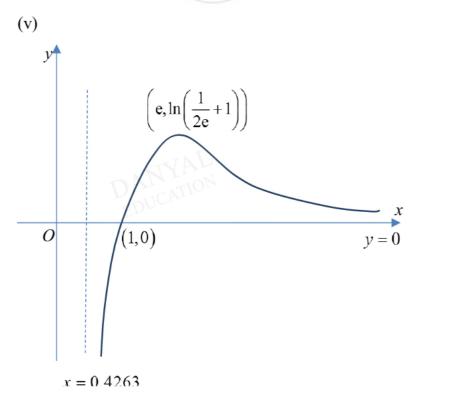
(iii)
$$y = \ln\left(\frac{\ln x}{2x} + 1\right)$$

When $x \to \infty$, $\frac{\ln x}{2x} \to 0$.
 $y = \ln\left(\frac{\ln x}{2x} + 1\right) \to \ln 1 = 0$.
Thus $a = 0$ (shown)

(iv) For
$$y \to -\infty$$
, $\frac{\ln x}{2x} + 1 \to 0$
 $\ln x + 2x \to 0$
 $x \to 0.4263$
 $\therefore b = 0.4263$

Alternative

When y is undefined, $\frac{dy}{dx} = \frac{1 - \ln x}{x \ln x + 2x^2}$ is undefined. Thus $x \ln x + 2x^2 = 0$. Since x > 0 for $\ln x$ to be defined, $\ln x + 2x = 0$.



Q3
(a)

$$x = \cot 3t \Rightarrow \frac{dx}{dt} = -3\csc^2 3t$$

 $y = 2\csc 3t + 1 \Rightarrow \frac{dy}{dt} = -6\csc 3t \cot 3t$
 $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dt}{dt}} = \frac{-6\csc 3t \cot 3t}{-3\csc^2 3t}$
 $= \frac{2\cot 3t}{-3\csc^2 3t}$
 $= 2\cos 3t$
At point P, $\frac{dy}{dx}|_{t=p} = 2\cos 3p$
Equation of tangent at P:
 $y - (2\csc 3p+1) = 2\cos 3p(x - \cot 3p)$
When tangent meets y-axis, $x = 0$.
Hence $y = -(2\cos 3p)(\cot 3p) + (2\csc 3p+1)$
 $y = \frac{-2(\cos^2 3p)}{\sin 3p} + \frac{2}{\sin 3p} + 1$

DANYAL

$$y = \frac{-2(\cos^2 3p - 1)}{\sin 3p} + 1$$
$$y = \frac{-2(-\sin^2 3p)}{\sin 3p} + 1$$
$$y = 2\sin 3p + 1$$

 $y = 2\sin 3p + 1$ Hence the coordinates of Q is $(0, 2\sin 3p + 1)$. (shown)

(b)

$$\underbrace{Method 1}_{g^2 = x^2 + (y-1)^2}$$

$$= \cot^2 3t + (2\csc 3t + 1 - 1)^2$$

$$= (\csc^2 3t - 1) + 4\csc^2 3t$$

$$= 5\csc^2 3t - 1$$
Differentiate w.r.t. t,

$$2s \frac{ds}{dt} = 10\csc 3t(-\csc 3t \cot 3t)(3)$$

$$= -30\csc^2 3t \cot 3t$$
When $t = \frac{\pi}{4}$, $s^2 = (2\sqrt{2} + 1 - 1)^2 + (-1)^2 = 9$
 $\therefore s = 3$ (since $s > 0$)
 $\therefore \frac{ds}{dt} = -5\csc^2 3(\frac{\pi}{4})\cot 3(\frac{\pi}{4})$

$$= -5(2)(-1)$$

$$= 10 \text{ unit/s}$$

$$\underbrace{Method 2}{s^2 = x^2 + (y-1)^2}$$

$$= \cot^2 3t + (2\csc 3t + 1 - 1)^2$$

$$= \cot^2 3t + 4\csc^2 3t$$
Differentiate w.r.t. t,

$$2s \frac{ds}{dt} = 2 \cot 3t(-\csc^2 3t)(3) + 8\csc 3t(-\csc 3t \cot 3t)(3)$$

$$= -6\csc^2 3t \cot 3t - 24\csc^2 3t \cot 3t$$

$$= -30\csc^2 3t \cot 3t$$

When
$$t = \frac{\pi}{4}$$
, $s^2 = (2\sqrt{2} + 1 - 1)^2 + (-1)^2 = 9$
 $\therefore s = 3$ (since $s > 0$)
 $\therefore \frac{ds}{dt} = -5 \csc^2 3\left(\frac{\pi}{4}\right) \cot 3\left(\frac{\pi}{4}\right)$
 $= -5(2)(-1)$
 $= 10$ unit/s

$$\frac{\text{Method } 3}{s^2 = x^2 + (y-1)^2}$$
Differentiate w.r.t. t ,

$$2s\frac{ds}{dt} = 2x\frac{dx}{dt} + 2(y-1)\frac{dy}{dt}$$

$$s\frac{ds}{dt} = x\frac{dx}{dt} + (y-1)\frac{dy}{dt}$$
When $t = \frac{\pi}{4}$,

$$x = \frac{1}{\tan\left(\frac{3\pi}{4}\right)} = -1, \quad y = \frac{2}{\sin\left(\frac{3\pi}{4}\right)} + 1 = 2\sqrt{2} + 1$$

$$\frac{dx}{dt} = -3\csc^2 3t = \frac{-3}{\sin^2\left(\frac{3\pi}{4}\right)} = -6$$

$$\frac{dy}{dt} = -6\cot 3t\csc 3t = \frac{-6}{\tan\left(\frac{3\pi}{4}\right)} \times \frac{1}{\sin\left(\frac{3\pi}{4}\right)} = 6\sqrt{2}$$

$$s^2 = (2\sqrt{2} + 1 - 1)^2 + (-1)^2 = 9$$

$$\therefore s = 3 \quad (\text{since } s > 0)$$
Hence $\frac{ds}{dt} = \frac{1}{s} \left[x\frac{dx}{dt} + (y-1)\frac{dy}{dt} \right]$

$$= \frac{1}{3} \left[(-1)(-6) + (2\sqrt{2})(6\sqrt{2}) \right]$$

$$= 10 \text{ unit/s}$$