1

A Level H2 Math

Correlation and Linear Regression Test 4

Q1

In a medical study, researchers investigated the effect of varying amounts of calcium intake on the bone density of Singaporean women of age 50 years. A random sample of eighty 50-year-old Singaporean women was taken.

(i) Explain, in the context of this question, the meaning of the phrase 'random sample'. [1]

The daily calcium intake (x mg) of the women was varied and the average percentage increase in bone density (y%) was measured. The data is as shown in the table below.

x (in mg)	700	800	900	1000	1050	1100
y (%)	0.13	0.78	1.38	1.88	2.07	2.10

(ii) Calculate the product moment correlation coefficient and suggest why its value does not necessarily mean that the best model for the relationship between x and y is y = a + bx. [2]

(iii) Draw a scatter diagram representing the data above. [2]The researchers suggest that the change in bone density can instead be modelled by the equation

 $\ln(P-y) = a + bx.$

The product moment correlation coefficient between x and $\ln(P-y)$ is denoted by r. The following table gives values of r for some possible values of P.

P 3		5	10		
r		-0.993803	-0.991142		

(iv) Calculate the value of r for P = 3, giving your answer correct to 6 decimal places. Use the table and your answer to suggest with reason, which of 3, 5 or 10 is the most appropriate value of P. [2]

The Healthy Society wants to recommend a daily calcium intake that would ensure an average of 1.8% increase in bone density.

- (v) Using the value of P found in part (iv), calculate the values of a and b and use your answer to estimate the daily calcium intake that the Health Society should recommend. Comment on the reliability of the estimate obtained. [4]
- (vi) Give an interpretation, in the context of the question, of the meaning of the value of *P*.

The following table shows the mass (m) of a foetus, in grams, taken at various weeks (t).

t	12	16	20	24	28	32	36
m	14	100	300	600	1005	1702	2622

- (i) Draw a scatter diagram to illustrate the data, labelling the axes clearly. [1]
- (ii) Calculate the product moment correlation coefficient between t and m, giving your answer correct to 5 decimal places. Explain why this value does not necessarily mean that the linear model is the best model for the relationship between t and m.

It is proposed that the mass of the foetus at week t can be modelled by

$$m = at^{b}$$
,

where a and b are positive constants.

Q2

- (iii) By using logarithm to transform $m = at^{b}$ into a linear equation, calculate the value of the product moment correlation coefficient and give two reasons why this model may be a better model. [4]
- (iv) Calculate the values of a and b. [2]
- (v) Using the equation of a suitable regression line, estimate the mass of the foetus at 26 weeks, giving your answer to the nearest grams. Comment on the reliability of the estimate.

[2]

- Q3
- (i) Sketch a scatter diagram that might be expected when x and y are related approximately as given in each of the cases (A) and (B) below. In each case, your diagram should include 6 points, approximately equally spaced with respect to x, and with all x- and y-values positive. The letters a, b, c and d represent constants.
 - (A) $y = a + bx^2$, where a is positive and b is negative,
 - (B) $y = c + d \ln x$, where c is positive and d is negative.

The following table shows the Gross Domestic Product (GDP) per capita, x, and infant mortality rate, *y*, for a sample of 9 countries.

<i>x</i> (\$)	1375	2502	10569	2966	11539	2036	4260	1433	7427
у	115	69	18	65	17	83	44	112	27

- (ii) Draw a scatter diagram for these values, labelling the axes clearly. [2]
- (iii) Calculate the product moment correlation coefficient, and explain why its value does not necessarily mean that a linear model is the best model for the relationship between *x* and *y*.
- (iv) State which of the two cases in part (i) is more appropriate for modelling the relationship between x and y. Calculate the product moment correlation coefficient and the equation of the appropriate regression line for this case. [3]
- (v) Use the regression line in part (iv) to find an estimate of the infant mortality rate for a country with GDP per capita of \$723. Comment on the reliability of your estimate. [3]

Answers

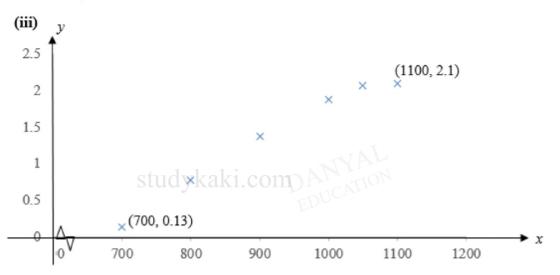
Correlation and Linear Regression Test 4

- Q1
- (i) The phrase 'random sample' means that every 50-year-old Singaporean woman has an <u>equal probability of being included in the sample</u>.

(ii) r = 0.988 (to 3 s.f.)

Although the *r*-value = 0.988 is close to 1, the value is not 1 so there may be another model with |r| closer to 1.

Hence a linear model may not be the best model for the relationship between *x* and *y*.



(iv) Using the GC, when P = 3, r = -0.995337 (to 6 d.p.) When P = 3, |r| is closest to 1 and thus, P = 3 is the most appropriate value.

(v) When
$$P = 3$$
, using the GC, $a = 3.2446 = 3.24$ (to 3 s.f.)

b = -0.0030988 = -0.00310 (to 3 s.f.)

When y = 1.8, and P = 3,

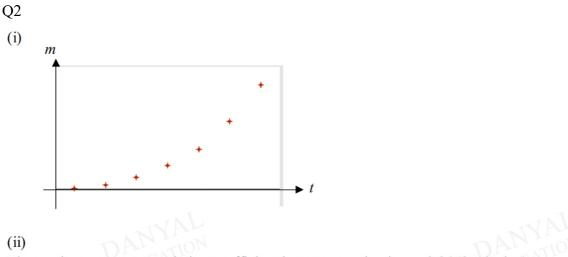
 $\ln(3-1.8) = 3.2446 - 0.0030988x$

```
x = 988
```

Thus, the recommended daily calcium intake is 988 mg.

Since the *r* value is -0.995 is close to -1, there is a strong negative linear correlation between $\ln(P-y)$ and *x*. Also since the value of y = 1.8 is within the data range, thus, the estimate obtained is reliable.

(vi) The value of *P* is the maximum percentage increase in bone density achievable as the daily calcium intake increases.



The product moment correlation coefficient between t and m is r = 0.94597 (5 d.p.).

A value of 0.94597 for r suggests that there is a strong positive linear correlation between t and m. However, the points on the scatter diagram **show a curvilinear relationship**. Therefore this value of r does not necessarily mean that the linear model is best model for the relationship between t and m.

(iii) $m = at^{b}$ $\ln m = \ln \left(at^{b} \right)$ $\ln m = b \ln t + \ln a$ moment The product correlation coefficient between is ln and ln m r = 0.98967 = 0.990 (3 sig fig)

Reason 1: From the scatter diagram, as t increases, the weight of the foetus increases at an increasing rate.

Reason 2: The value of r between $\ln t$ and $\ln m$ is 0.98967, which is closer to 1 as compared to that between t and m, hence indicating a **stronger positive linear correlation** between $\ln t$ and $\ln m$.

Hence $m = at^b$ is a better model.

(iv) From GC, $\ln m = -8.3764 + 4.5938 \ln t$ (5 sig fig)

$$\ln a = -8.3764$$

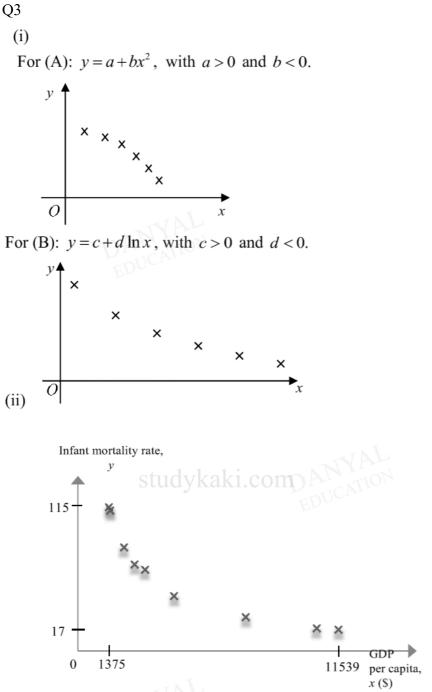
 $a = 2.30 \times 10^{-4}$ and $b = 4.59$

(v)

When t = 26, $\ln m = -8.3764 + 4.5938 \ln 26$

m = 728 (nearest grams)

Since the value of 26 is within the range of values of t and the value of r is close to 1, this estimate is reliable.



DANYAL

(iii)

From GC, the product moment correlation coefficient is -0.898 (3s.f.). Since -0.898 is close to -1, it suggests a strong negative linear correlation between *X* and *Y*. However, it can be observed from the scatter plot that the values of *y* are decreasing at a decreasing rate with increasing values of *x*, which will not be the case if the data follows a linear model (the decrease in *y* should be approximately constant for a linear model).

(iv)

(B) is the appropriate model.

Using model (B), the product moment correlation coefficient is -0.978 (3s.f.).

From GC, $y = 430.30 - 45.010(\ln x)$.

 $\therefore y = 430 - 45.0 \ln x$ (to 3s.f.)

(v) At a GDP per capita of \$723, the infant mortality rate is estimated to be $y = 430.30 - 45.010(\ln 723) = 133.98 (5 \text{ s.f.}) = 134 (3 \text{ s.f.})$ Since x = 723 is outside the range of the data values, the estimation is not reliable.

