A Level H2 Math

Correlation and Linear Regression Test 1

Q1

A swim school takes in both male and female primary school students for competitive swimming lessons. The school assesses its students' progress each year by recording the time, t seconds, each student takes to swim a 50-metre lap in breaststroke, and the number of months, m, that he or she has been at the school. The records for 8 randomly chosen students are shown in the following table.

m	6	7	10	12	15	19	21	24
t	92.32	87.11	66.12	59.41	53.94	43.82	42.07	41.45

(i) Labelling the axes clearly, draw a scatter diagram for the data and explain, in context, why a linear model would not be suitable to predict the time taken by a student to swim a lap of breaststroke given the number of months that he or she has been at the school.

[2]

It is desired to fit a model of the form $\ln(t-C) = a + bm$, where C is a suitable constant. The product moment correlation coefficient r between m and $\ln(t-C)$ for some possible values of C are shown in the table below.

C	36	37	38	39
r	-0.992114	EDUCA	-0.992681	-0.992192

- (ii) Calculate the value of r for C = 37, giving your answer correct to 6 decimal places. [1]
- (iii) Use the table and your answer to (ii) to choose the most appropriate value for C. Explain your choice. [2]

For the remainder of this question, use the value of C that you have chosen in (iii).

- (iv) Find the equation of the least squares regression line of ln(t-C) on m. Give an interpretation of C in the context of the question. [2]
- (v) Another student who has been swimming at the school for 9 months clocked a time of 60.33 seconds for a lap of breaststroke. Using your regression line, comment on the student's swimming ability.
 [2]
- (vi) Suggest an improvement to the data collection process so that the results could provide a fairer gauge of the expected outcome for the students in the first 2 years of lessons. [1]

A pilot records the take-off distance, S metres, for his private aircraft on runways at various altitudes of h metres. The data are shown in the table below.

h	0	300	600	900	1200	1500	1800
S	635	690	750	840	950	1080	1250

(i) Plot a scatter diagram on graph paper for these values, labelling the axes, using a scale of 2 cm to represent a take-off distance of 100 metres on the y-axis and an appropriate scale for the x-axis.

It is thought that the take-off distance S can be modelled by one of the formulae

$$S = ah + b$$
 or $S = ch^2 + d$.

where a, b, c and d are constants.

- (ii) Find, correct to 4 decimal places, the value of the product moment correlation coefficient between
 - (a) h and S.
 - **(b)** h^2 and S.

[2]

- (iii) Use your answers to parts (i) and (ii) to explain which of S = ah + b or $S = ch^2 + d$ is the better model. [2]
- (iv) Find the equation of the least-square regression line for the model you have chosen in part (iii).
- (v) Use the equation of your regression line to estimate the take-off distance for altitude of 2200 metres. Comment on the reliability of your estimate when h = 2200. [2]

In the study of how the population of a harmful bacteria varies with temperature, scientists conducted an experiment to collect the following set of data:

Temperature $(x ^{\circ}C)$	10	12	14	16	18	20	22	24	26	28
Population (y millions)	25.4	25.1	24.4	22.9	20.8	18.3	15.4	12.2	8.8	5.3

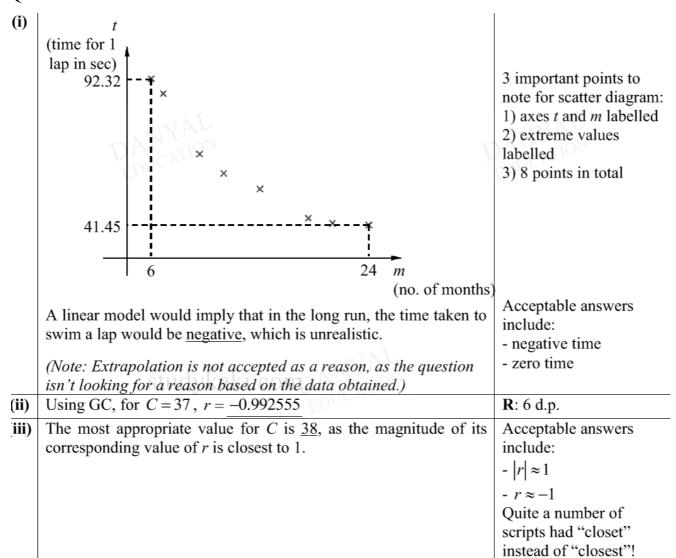
- (i) Draw a scatter diagram for the above data, labelling the axes clearly. [2]
- (ii) Calculate the value of the product moment correlation coefficient. Explain why a linear model is not appropriate. [2]

It is suggested the relationship between x and y can be modelled by one of the following formulae:

$$y = a + \frac{b}{x}$$
 or $y = a - bx^2$

where a and b are positive constants.

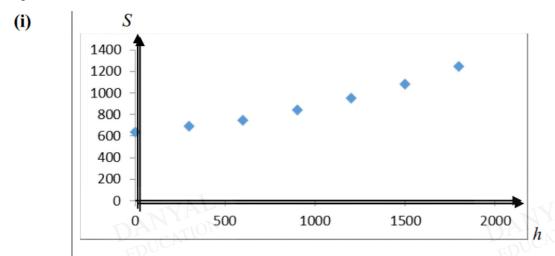
- (iii) Explain which of the above two models is the better model and calculate the values of a and b for the chosen model. [3]
- (iv) It is required to estimate the temperature when the population of the bacteria is 10 millions. By using an appropriate regression line, find an estimate of the value of x and comment on the reliability of your answer.[2]



Answers

Correlation and Linear Regression Test 1

Q1

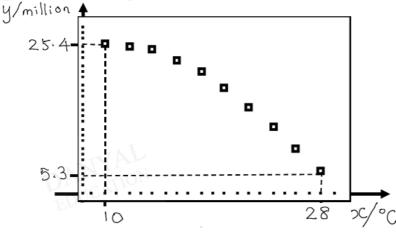


(iv)	From GC, least squares regression line of $ln(t-38)$ on m is	R : use $C = 38$
	$\ln(t-38) = 5.01236 - 0.16349m$	R : $\ln(t-38)$ on <i>m</i>
	$\Rightarrow \ln(t-38) = 5.01 - 0.163m \text{ (3 s.f.)}$	3 s.f. for final answer
		Please note that
	C=38 is the <u>fastest time</u> that a student can expect to complete a	C is NOT the gradient;
	lap of breaststroke <u>after spending a long time</u> at the swim school.	C is NOT the y-intercept
	tap of oreaststroke after spending a long time at the swim school.	Acceptable answers
	(Making t the subject in the equation of the regression line gives	include:
	us	- fastest time after a
	$t = 38 + e^{5.01 - 0.163m}$, so as $m \to \infty$, $t \to 38$.)	long period
	$t=38+c$, so as $m\to\infty$, $t\to 38$.)	- shortest time after a
		long period
(v)	When $m = 9$, $t = 38 + e^{5.01236 - 0.16349(9)}$	Acceptable answers
	$= 72.50 \ (2 \text{ d.p.})$	include:
	A timing of 60.33 seconds is well below the expected timing of	- very strong
	72.50 seconds. Therefore, we can say that the student is	- very talented
	exceptionally strong in his/her swimming ability.	- way above average
(vi)	The 8 randomly selected students might have been of different	The following may not
	genders and ages. To make the results fairer, data could be	give fairer results:
	collected separately based on genders and age ranges.	- increase sample size
		- increase frequency
	NYAI	- group by ability
	(A)	(beginner, intermediate,
	TO BOAN TION	advanced) is subjective

Q2

- (ii) (a) $r = 0.980867 \approx 0.9809 \text{ (4 d.p.)}$
 - **(b)** $r = 0.996039 \approx 0.9960 \text{ (4 d.p.)}$
- (iii) The scatter diagram shows that <u>S</u> increases at an increasing rate as h increases, and for $S = ch^2 + d$, $r \approx 0.9960$ which is closer to 1, so the model $S = ch^2 + d$ is a better model.
- (iv) The equation of regression line is $S = 0.0001822853073h^2 + 671.7261905$ i.e. $S = 0.000182h^2 + 672$ (3 s.f.)
- (v) $S = 0.00018229(2200)^2 + 671.73$ = 1554.0136 = 1550 metres (3 s.f.)

Estimate for when h = 2200 metres is <u>not</u> reliable since h = 2200 metres is outside the range of the given data and <u>extrapolation</u> is not a good practice.



Q3

(i)

The required scatter diagram is as shown below:

(ii)

From GC, the correlation coefficient r = -0.973.

Although the value of r is close to -1 and suggests a strong negative linear relationship between x and y, the scatter diagram shows a curvilinear relationship between x and y. Thus, the a linear relationship between x and y is not appropriate.

(iii)

The scatter diagram shows that when x increases, y decreases at increasing rate. Thus, the model with $y = a - bx^2$ where a, b are positive constants is more appropriate.

Using GC, we found that a = 29.98560169 = 30.0 (3 s.f.)

and
$$b = 0.0307756388 = 0.0308$$
 (3 s.f.)

(For a, b > 0, $y = a + \frac{b}{x}$ decreases at a decreasing rate when x increases)

(iv)

As x is the independent variable and y is the dependent variable, we will still use the regression line $y = 30.0 - 0.0308x^2$ to estimate the value of x.

Thus, when y = 10, x = 25.5 °C (3 s.f.)

The anwer is reliable for the following reasons:

- i) correlation coefficient r = -0.995 has absolute value close to 1
- ii) the y value of 10 is within data range of the available y values.