
O Level Pure Chemistry Structured

Periodic Table Test 2.0

Q1

The diagram below shows a simplified version of the Periodic Table.

transition metals

Use the information below to place the elements in their correct position in the Periodic Table above. (The letters do **not** represent the chemical symbols of the elements.)

- (a) P has an electronic configuration of 2, 2.
- (b) Q has only two electrons.
- (c) R is a non-metal that forms a strong acid with Group VII elements.
- (d) S forms an ion, S3-, with an electronic configuration of 2, 8, 8.

[Total: 4]

The Periodic Table shows trends down each group and across each period.

(a) Which trends are only true down a group, which trends are only true across a period, which trends are true for both, and which trends are not true for both?

Put a tick (✓) in one box in each row.

trend	only true down a group	only true across a period	true for both	not true for both
The mass number increases.			DAN	YAD
The atomic radius increases.			EDUC	YII
The melting point increases.				
There is a change in the character of the oxides from basic to amphoteric to acidic.				

[2]

(b) Group I and Group VII show different trends in their properties.

Group I		Group VII
Li	AN	TIONE
Na	D^{UC}	CI
К		Br
Rb		I

(i)	Explain the trend in reactivity down each group.									
	LAIS.									
	DAME DE DE LA TION DE	[3]								

	(ii)	Hydrogen is not placed in any group of the similar properties with the elements in Grou	
		Give reasons to explain why hydrogen can VII of the Periodic Table.	be placed in either Group I or Group
		Group I	
		Group VII	
		Group VII	DANATION
			[2]
(c)	Pers	sulfate ions, S ₂ O ₈ ²⁻ oxidise iodide ions accord	ding to the following equation.
		$S_2O_8^{2-}$ (aq) + 2I ⁻ (aq) \rightarrow 2	SO ₄ ²⁻ (aq) + I ₂ (aq)
	The	reaction occurs very slowly at room temperate	ture, so a catalyst of Fe ²⁺ ions is used.
	The	reaction involving the Fe2+ catalyst takes place	ce in two steps:
		$2Fe^{2+}$ (aq) + $S_2O_8^{2-}$ (aq) $\rightarrow 2F$	e³+ (aq) + 2SO ₄ ²- (aq)
		2Fe³+ (aq) + 2l⁻ (aq) → 2l	Fe²+ (aq) + I₂(aq)
	(i)	With reference to the collision of particles, s persulfate ions and iodide ions is very slow	
			[1]
	(ii)	Using the above equations, explain how the characteristics of a catalyst.	Fe ²⁺ ion displays one of the
		DANYTON	
		EDICATION	EDUCAL!
			[1]
	(iii)	Using information from the above equations metals that allow Fe ²⁺ to act as a catalyst in	
			[1]

Q3

In the Periodic Table below, the letters ${\bf A}$ to ${\bf K}$ represent some elements but not the symbols of the respective elements.

				_					Н			K
Α							F				J	
	С		D			Ε				1		
В								G				

Use	the letter(s) to identify and answer the following questions. A metal that sinks in and reacts vigorously with water	
(a)	A metal that sinks in and reacts vigorously with water	[1]
(b)	An oxidising gas.	[1]
(c)	A monoatomic element.	[1]
(d)	An element which forms an ion with charge +2 and +3.	[1]
(e)	The formula of the compound formed between H and J .	[11]

Read the information about the oxides of elements in Period 3 of the Periodic Table.

The formulae and the chemical properties of the oxides and chlorides of the elements change across Period 3.

element	metal/non-	formula of	bonding in	formula in	bonding in
	metal	main oxide	oxide	chloride	chloride
Na	metal	Na ₂ O	ionic	NaC/	ionic
Mg	metal	MgO	ionic	MgCI ₂	ionic
AI	metal	AI ₂ O ₃	ionic	A/C/ ₃	covalent
Si	non-metal	SiO ₂	covalent	SiC/ ₄	covalent
Р	non-metal	P ₄ O ₁₀	covalent	PC/ ₃	covalent
S	non-metal	SO ₃	covalent	S ₂ CI ₂	covalent
CI	non-metal	CI ₂ O ₇	covalent	CI ₂	covalent

Electronegativity refers to the tendency of an atom to attract electrons to itself. Metals tend to have low electronegativities while non-metals have high electronegativities. The electronegativity values of Period 3 elements are shown in the table below.

element	electronegativity of each element
Na	0.9
Mg	1.2
A/	1.6
Si	1.8
Р	2.1
S	2.5
C/	3.0

Oxygen has electronegativity of 3.5.

The difference in the electronegativities between each element and oxygen can be calculated. Some examples are shown the table below.

formula of oxides	difference in electronegativities between each element and
	oxygen
Na₂O	2.6
MgO	2.3
Al ₂ O ₃	2.1

With reference to atomic structure, give reason(s) why the electronegativity of oxyge nigher than that of any element in Period 3.
DAI DAI DAI FDUCATION
A student wrote the following conclusion by studying the results.
"The bonds in the oxides and chlorides are covalent when the difference in electronegativities is less than 2.0."
Do you agree with this conclusion? Use the results to explain your reasoning.
EDUCA
The electronegativity of beryllium is 1.57. Predict the bonding in beryllium chloride
and beryllium oxide. Explain your answer.
EDUCI
Suggest with reason(s) on electronogetive value for organ
Suggest, with reason(s), an electronegative value for argon.

The positions of six elements, represented by letters, A, B, C, D, E, F and G are shown in the Periodic Table below. These letters A, B, C, D, E, F and G are not symbols of elements in the Periodic Table.

										H	
								E			G
	Α						D			F	
В						С					

Use the letters A, B, C, D, E, F and G to answer the following questions. You may use each letter once, more than once or none at all.

(a)	An element which combines with F to form a very volatile compou	ind.	[1]
(b)	An element which has an insoluble hydroxide that is soluble in exhydroxide to form a colourless solution.	cess sodium	[1]
(c)	An element which is the strongest reducing agent.		[1]
(d)	An element which is chemically unreactive.		[1]
(e)	An element that can be obtained by heating its oxide with coke.		[1

Answers

Periodic Table Test 2.0

Q1

	R						Q	with the
Р	AL						AL	
EDUC	u_{10_N}			s	7	BDUCA	1101x	
	-							
	P	Par Al mon	Par Al mon	Par Al Disconsistance of the control	P S S	P S S	P S S DUCK	P S S S

Q2

-					The same of the sa
(a)	trend	only true down a group	only true across a period	true for both	not true for both
	The mass number increases.		DA	NYTON	
	The atomic radius increases.	√			
	The melting point increases.				✓
	There is a change in the character of the oxides from basic to amphoteric to acidic.	AL	√		

8

	A communication teach and nurture	
	(i) Reactivity increases down Group I and decreases down Group VII [1]	
	For Group I: easier to remove valence electrons as they are further away from the nucleus/there are more electron shells [1]	
(b)	For Group VII: more difficult to accept/attract one electron as incoming electron is further away from the nucleus/there are more electron shells [1]	
	(ii) Group I: H atom has one valence electron / able to form singly positively charged ion (H ⁺) [1] Group VII: H atom able to gain one electron to form a singly negatively charged ion (H ⁻) / forms diatomic molecules (H ₂) [1]	
	(i) The two ions are of the same charge and repel, hence they are not able to collide with each other (frequently) [1]	
(c)	(ii) It is not (chemically) used up in the reaction / It is regenerated during the reaction [1]	
	(iii) It exhibits variable oxidation states. [1]	

Q3

- (a) B
- **(b)** J
- (c) K
- (d) D
- (e) HJ₃

Q4

(a)	The difference in electronegativity between each element and oxygen decreases from 2.6 for Na to 0.5 for CI across the period.	[2]
	Trend [1], quote data [1]	
(b)	Oxygen atom has one lesser electron shell (2 electron shells) than each element in Period 3 [1]	[2]
	Hence there is a stronger electrostatic attraction between the positively charged nucleus and the valence electrons [1]	
(c)	The student's conclusion is true for oxides. The difference in electronegativities between Si, P and Cl and O is less than 2.0 and bond character is covalent. [1]	[3]
	His conclusion does not apply for chlorides. The difference in electronegativities between Mg and CI is less than 2.0 at 1.8 and the bond is ionic. [1]	
	Data cited for both statements [1]	
(d)	Bond nature in beryllium chloride is covalent and that in beryllium oxide is ionic .[1]	[2]
	Since the electronegativity of beryllium is approximately same as aluminium. [1]	
(e)	0.0 [1] Argon is unreactive as it has a stable complete electronic configuration and Hence unlikely to attract electrons to itself.[1]	[2]

Q5			
а	E		1
b	C OR D		1
С	В		1
d	GANZATION	DANTION	1
е	С	(3)	1