
O Level Combined Physics Structured

Static Electricity Test 1.0

Q1

Fig. 9.1 shows a part of a device called a gold leaf electroscope. The plate, rod and leaf are all made of metal. Fig. 9.2 shows what happens to the gold leaf when a positively charged strip is held close to the plate.

(a)	State the nature of the charge at the plate in Fig. 9.2.		
(b)	Explain why the leaf moves away from the rod in Fig. 9.2.		[3]
		ANY AL	***************************************
	EDUCATIO	EDUCAL	

Electrostatic charges can be placed on objects by rubbing them together.

(a)	State the name of the charged particle that is transferred from one object to the other
	in this process.
	[1]

(b) Fig. 8.1 shows petrol being pumped into a container.

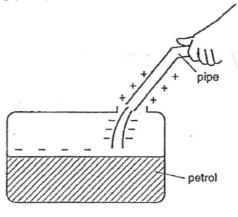
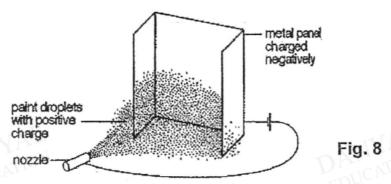



Fig. 8.1

Electrostatic charges build up on the petrol and the pipe as showr	n in Fig.8.1.
Explain why this is dangerous.	
·	[2]

Electrostatic charges can be used to paint a metal panel. A paint spray produces positively charged paint droplets and the metal panel is negatively charged, as shown in **Fig. 8**.

a)	Explain why the droplets spread out as they leave the nozzle.	
b)	State one advantage of painting the metal this way using electrostatic.	[1]

DANYAL

(a) A strip of plastic becomes positively charged after it is rubbed with a piece of dry cloth and then hung over an insulating rod as shown in Fig. 10.1.

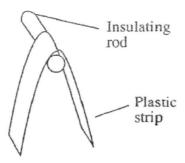


Fig. 10.1

(i)	State how the strip of plastic is charged when it is rubbed with the dry
	cloth. Explain your answer in terms of transfer of electrons.

______[1]

(ii) Why do the ends of the strip repel?

[1]

(b) Fig. 10.2 shows a conducting sphere P mounted on an insulating stand. The sphere P is positively charged. A small neutral metal sphere S, suspended on an insulating thread, is brought near to P but not touching it.

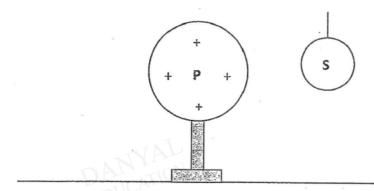
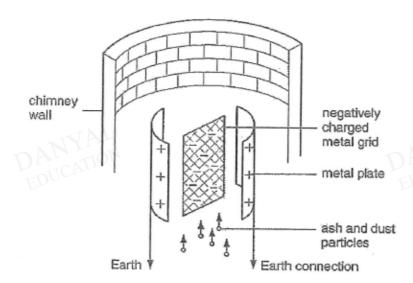


Fig. 10.2


(i) State and explain the movement of the electrons in the sphere that occurs as sphere S is brought closer to sphere P.

[2]

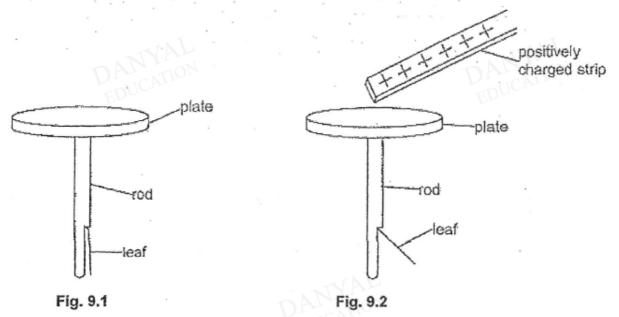
(ii) On Fig. 10.2, draw the distribution of charges on sphere S.

[1]

The figure shows an arrangement of an electrostatic precipitator in a chimney which removes ash and dust from the waste gases produced in coal-powered power stations.

The metal grid is given a very large negative charge. When the ash and dust particles pass through the metal grid, they are given a negative charge.

Describe and the chimney.	explain what happe	ens to the ash and	dust particles as	they pass up
	•••••••		•••••	



Answers

Static Electricity Test 1.0

Q1

Fig. 9.1 shows a part of a device called a gold leaf electroscope. The plate, rod and leaf are all made of metal. Fig. 9.2 shows what happens to the gold leaf when a positively charged strip is held close to the plate.

(a) State the nature of the charge at the plate in Fig. 9.2. [1]

Negative / Negatively charged [B1]

(b) Explain why the leaf moves away from the rod in Fig. 9.2. [3]

Electrons are attracted to the positively charged rod and moves to the top towards the positively charged rod [B1], leaving both the bottom end of the rod and the leaf positively charged [B1]. Since bottom end of rod and leaf are both positively charged, like charges repel [B1] and the leaf moves away from the rod.

Note: positive charges do NOT move

Danyal Education "A commitment to teach and nurture"

Q2

- 3a Electron
- The petrol will explode/ catch fire/combustion
 Opposite/ unlike charges attract
 cause movement of electrons/ current/ discharge or sparks will occur (in air)

Q3

- a) The droplets acquired positive charges. Since like charges repel, the droplets will repel from each other and spread out.
- b) Since the droplets have same charges, they will not be attracted to the same spot on the metal panel and this will ensure that the paint are evenly distributed [1] on the metal panel.

Q4

(ai) The plastic loses electrons and becomes positively charged.	[1]
(ii) Both ends of the strip are of the same charge. Since like charges repel, the ends of the strip diverge.	[1]
(bi) The <u>electrons in S will be attracted to the side that is nearer</u> to sphere P. Since <u>unlike charges attract</u> .	[1] [1]
(ii) electrons are on side nearer to P and positive charges are left on the side further away from P	[1]

Q5

The negatively charged ash and dust particles are attracted to the positively	1
charged metal plate.	
This is because unlike charges attract.	1