
O Level Combined Physics Structured

Sound Test 2.0

Q1

b) The pressure variations in two sound waves, labelled A and B are as shown in Fig. 11.2.

What can you say about the loudness and the pitch of the sound wave labelled B as compared to the sound wave labelled A? [2]

Fig. 6.1 shows a man P standing a certain distance from a vertical wall. A second man Q is located 200 m behind P.

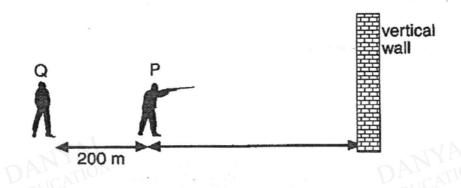


Fig. 6.1

When P fires a gun, one sound will travel directly to Q and another sound will travel forward to the vertical wall and reflects from it before reaching Q.

(a) If Q hears the first sound 0.625 s after P fires the gun, calculate the speed of sound in air.

(b) If Q hears a second sound 3.125 s after hearing the first sound, calculate how far P is standing from the wall.

Danyal Education "A commitment to teach and nurture"

		"A con	nmitment to teach and nurture"
Q3	(a)	State two differences between sou	ınd waves and light waves.
			•••••••••••••••••••••••••••••••••••••••
		······································	
	••••		
			[2]
(k	0)	pulse of ultrasound, which will be re-	their surroundings in the dark. They send out a flected when it hits an object. They listen for the educe the distance of the object from where
		Fig 8.1 shows a bat in a cave. It lets back of the cave.	out a pulse of ultrasound of 5 kHz towards the
		Fig. 8.1	ANY
		(i) Calculate the wavelength of th	e ultrasound pulse if sound travels at 330 m/s
		DANYAL EDUCATION	DANYAL EDUCATION

wavelength = m [2]

(ii) The pulse the bat sends out is reflected back 12 seconds after the pulse was sent out. Calculate the distance from the bat to the back of the cave.

DANYAL .

DANYAL

distance to back of the cave = m [2]

DANYAL

DANYAL

DANYAL

A cathode-ray oscilloscope displays three waveforms detected from a submarine under the sea shown in Fig. 7.1.

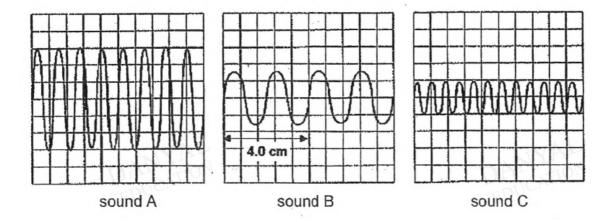


Fig. 7.1

	DAT	CATION		[2]
) State two differences in so	ounds A and B a			
		•		[2]
) If sound B has a frequency	y of 75 kHz, wh	at is its speed?		
111	* 1	speed = _	m/s	[2
State and explain how the calculated in (c).	he speed of s	ound in air w	ill differ from what y	ou l

[2]

Q5

The following figure shows the variations of a sound wave over time.

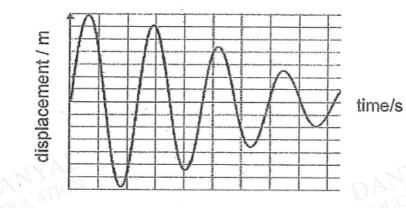


Fig 5.1

a)	Comment on the volume of the sound and explain your answer.
	[2]
b)	The frequency of the sound is 60 Hz. What is the wavelength of the sound if its speed is 330 m/s?

DANYAL

DANYAL

wavelength = m [2]

Danyal Education "A commitment to teach and nurture"

Answers

Sound Test 2.0

Q1

Sound is louder than sound A since the amplitude is higher [1]
 Sound A and B has the same pitch since the frequency is the same as the period is the same [1]

Q2	AL.		
	nce travelled/time taken n/0.625s n/s	DAN	1
(b) distance travel	led = speed x time = 320 x 3.125		1
Distance to the	= 1000 m wall = 1000 / 2 = 500 m		1

Q3

•		
(a)	Light travels at 3 x 108 m/s while sound travels at 300 m/s in air. OR	B1
	Sound waves are longitudinal while light waves are transverse. OR Sound needs a medium but light does not	B1
(b)(i)	$v = f\lambda$ $\lambda = \frac{330}{5000} = 0.066 m$	[M1] [A1]
(b)(ii)	$v = \frac{2d}{t}$ where distance between bat and back of cave $d = (v \times t)/2$ = 330 x 6	[M1]
	= 330 x 6 = 1980 m	[A1]

Danyal Education "A commitment to teach and nurture"

Q4

(8	a) Sound wave is a longitudinal wave and the particles on the sound wave vibrate parallel to the direction of wave motion. Visible light is a transverse wave and the particles vibrate perpendicular to direction of wave motion.	[1] [1]
(k) Sound B is <u>softer</u> and at <u>lower pitch</u> as compared to sound A.	[2]
(0	c) V = (75000)(0.02) = 1500 m/s	[1] [1]
(0	1) Speed of sound in air is <u>slower</u> as the air molecules are <u>spaced further</u> <u>apart</u> as compared to those in water.	[1] [1]

Q5

ia	The volume is getting softer over time.	A1
	The amplitude of the wave is decreasing over time.	A1
b	$V = f \lambda$	
	λ = 330 / 60	M1
	$\lambda = 5.5 \mathrm{m}$	A1

DANYAL

