
O Level Combined Physics Structured

Practical Electricity Test 2.0

Q1

The figure below shows an electric kettle connected to the mains supply.

(d) Given that the potential difference of the mains supply is 240 V and the current in the heating element of the kettle is 8.0 A, calculate the resistance of the heating element.

(e) The kettle is switched on for a period of 20 min per day. Calculate the cost of using this kettle for 25 days if the cost of electricity is 30¢ per kWh.

Q2

Fig. 8.1 shows an electric iron, which has a label '220 V, 1100 W' marked on it. The electric iron is connected to a 220 V mains supply by the live, neutral and earth wires.

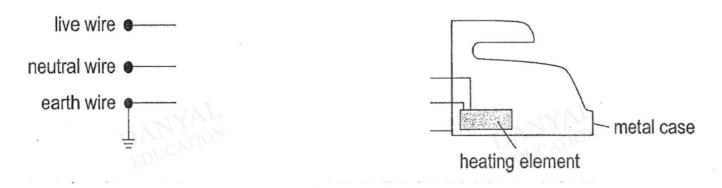
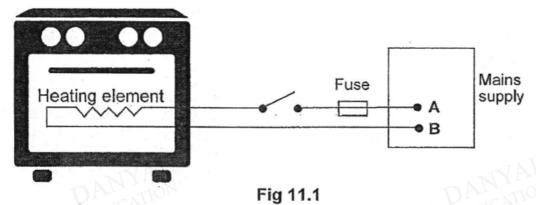


Fig. 8.1


[3]

- (a) In Fig. 8.1, draw suitable wires to connect the electric iron to the mains supply, including a fuse and a switch for the electric iron. Label them.
- (b) If the electric iron is used for 2 hours daily, calculate the total cost of using the electric iron for a month of 30 days, if 1 unit of electricity costs 30 cents.

An electric oven, connected to the mains supply, is shown in Fig.11.1.

i)	State which wire, A or B , is the live wire of the mains supply. Explain your answer
	[2]
(i)	The oven works at 2000 W and the mains supply is 240 V. Fuse ratings available are 8 A, 10 A and 13 A. What would be a suitable rating for a fuse to be used? With aid of calculation, explain your answer.
	••••••
	[2]
(ii)	The oven has a metal casing. It has a third wire which is an added safety feature. Draw, on Fig. 11.1 how this third wire should be connected to the

oven, and label the name of this wire.

[1]

-	_	
•	`	1
	- 1	/I

An electric kettle with power rating of 2.5 kW is connected to a 240 V mains supply by a flexible cable to a 3-pin plug.

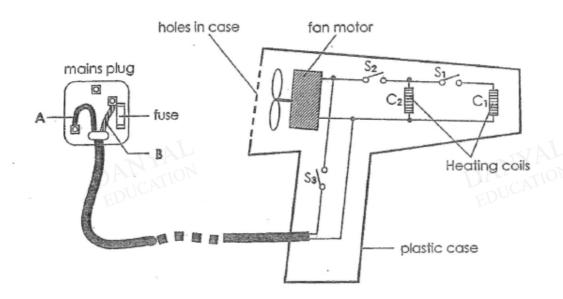
(a) State the names of the 3 wires found in the 3-pin plug and their respective colours.

Name of wire	Colour	

[3]

(b) Calculate the current flowing in the circuit when the electric kettle is operating under normal condition.

	current =A	[2]
(c)	Suggest a suitable fuse rating for this circuit. Explain your answer.	
	DANYAN	
	EDUCA	[2]
		_


(d) If the cost of electricity is \$0.23 per kWh, calculate the total cost of using the electric kettle for 1 hour every day for 1 week.

cost = \$	[2]

(e)	Suggest where a	neating	element	snoula	рę	placed	ın	tne	electric	Kettle	SO
	that the water can	be heate	ed efficie	ntly.							
				,							
											-

[1]

The figure shows a 240 V electric hairdryer with a plastic case.

(a) Label the wires A and B and their respective colours in a mains plug.

wire	name	colour
Α	DAL	10 _N
В		

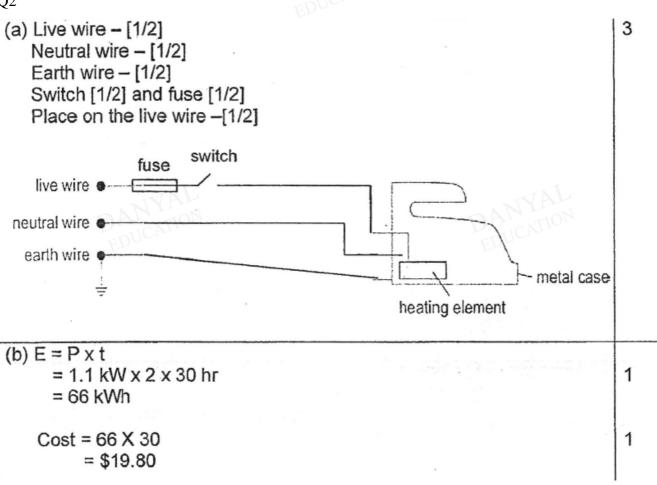
				[4]	
(b)	One dang	pin in the plug is not used. Explain whether this we erous when it is switched on.			•
		DANYAL		10N	
		EDUCALI		[1]	
(c)	State (i)	the switch(es) that need to be closed to turn on the follothe fan alone	owing:		
	(ii)	the fan and only one of the heating coils			
				[2]	

- (d) When the hair dryer is working at full power, the voltage is 240 V. The current in each heating coil is 2 A and the fan motor takes a current of 0.5 A.
 - (i) What is the total current from the supply when both heating coils and the fan are in use?

	total current =	[1]
(ii)	Which is the most suitable fuse, 1 A, 3 A, 7 A or 10 A, when both heat coils and fan are in use?	ng
		[1]
(iii)	Why is it dangerous to use a 13 A fuse in the plug?	
		[1]

DANYAL

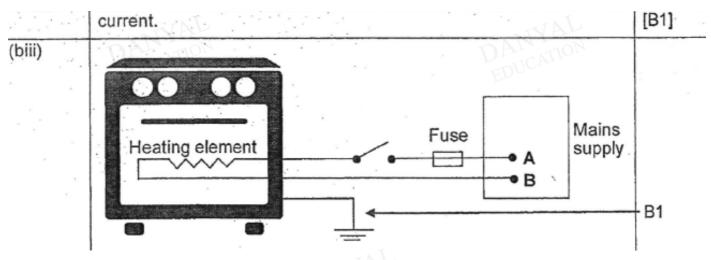
DANYAL


Answers

Practical Electricity Test 2.0

Q1

(d)	Resistance, R = V/I = 240 / 8 = 30 Ω	[1]	
(e)	Power, P = V I = 240 x 8 = 1920 W = 1.92 kW	DANYAL	[1]
9	Energy, E = P t		
	= 1.92 $\underline{kW} \times \frac{20}{60} \underline{h} \times 25$		[1]
	= 16 kWh		
	$Cost = 16 \times 0.30 = 4.80		[1]


Q2

Danyal Education "A commitment to teach and nurture"

Q3

(bi)	Wire A The Live wire is connected to the fuse / switch	[B1] [B1]
(bii)	$I = \frac{P}{V} = \frac{2000}{240}$ = 8.33 A	[A1]
	Fuse rating is 10 A as it has to be slighly higher than the operating	

Q4

(a)	DA	"ICATION	[3]
(α)	ED		[3]
	Name of wire	Colour	
	Live wire	Brown	
	Neutral wire	Blue	
	Earth wire	Green and Yellow	
(b) I = 2500 = 10.4 A			[1]
The fuse ra	e fuse rating = 13 A ating should be slightly hig to work under normal worl	her than the current flowing in the circuit king conditions of the electric kettle.	[1] [1]
	ost = \$(0.23 x 2.5 x 7) = \$4.03		[1] [1]
(e) The hea	ating element should be pla	aced at the bottom of the electric kettle.	[1]

(a)	a) cable A		name	colour		1
` '			neutral	blue		
	В		live	brown	1	
(b)	No, as the hairdryer is having double insulation. Or the hairdryer is made of plastic and no risk of electric shock.					
(c)	(i)	S ₃				
	(ii)	S ₂	and S ₃		·	
(d)	(i)	Total current = 2 X 2 + 0.5 = 4.5 A			DAN FION 1	i
	(ii)	7 A			1	1
	(iii)	A 13A fuse will not able to prevent the hairdryer from overheating.				

