
Contact: 9855 9224

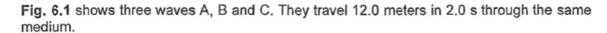
O Level Combined Physics Structured

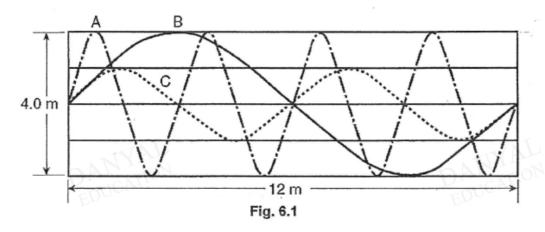
General Wave Properties Test 1.0

Q1

Fig. 5.1 shows sea waves approaching a beach at a speed of 1.5 m/s. Two complete waves hit the sand every $10 \, \text{s}$.

(a) Determine the frequency of the wave.


frequency = [1]


(b) Calculate the wavelength of the wave between P and Q.

wavelength = [2]

(c) Determine the distance between P and Q.

distance =

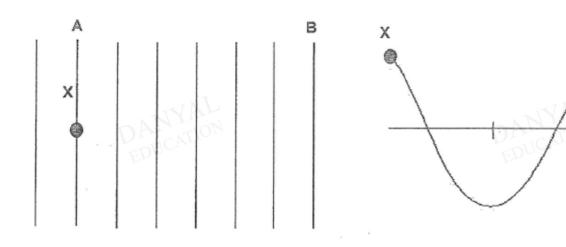
(a) Calculate the wavelength of wave A.

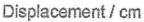
(b) Determine the period of wave B.

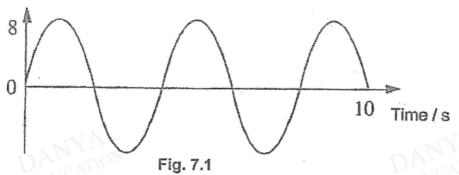
(c) Calculate the speed of wave C.

Fig 6.1 shows the top view of a transverse water wave that travels a distance 22 m from A to B in 1.5 s. A particle X is on the wavefront A.

Fig 6.2 shows the front view of particle X.




Fig 6.1 Fig 6.2

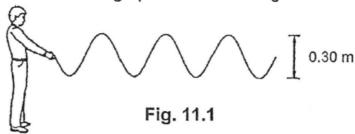

(a)	State what is meant by the term wavefront.
	· DAN ATION
(b)	Explain why the water wave is considered a transverse wave.
	[1
(c)	Calculate the velocity, wavelength and frequency of the wave.

DANYAL

DANYAL

Determine

(a) the frequency of the wave, and



(b) the speed of the wave if the wavelength is 6.0 m.

a) Fig. 11.1 shows a student setting up waves on a long elastic cord.

The student's hand makes one complete up-and-down movement in 0.40 s. In each up-and-down movement, the hand moves through a height of 0.30 m. The wavelength of the waves on the string is 0.80 m.

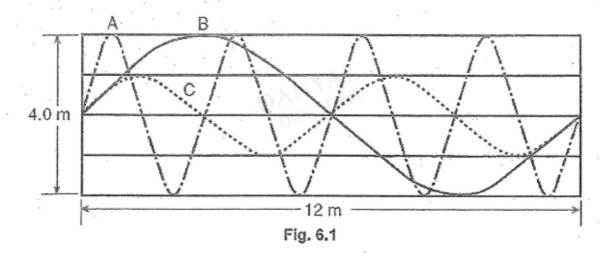
For each wave, determine

i)	the amplitude,	[1]
ii)	the frequency,	[2]
iii)	the speed.	[2

Answers

General Wave Properties Test 1.0

Q1


(a) Frequency =
$$2/10$$
 = $0.20 \, \text{Hz}$

(b)
$$\lambda = \frac{V}{f} = 1.5/0.2$$
 Allow ECF from (a) C1 = 7.5 m

(c)
$$d = 2 \times 7.5 = 15 \text{ m}$$
 Allow ECF from (b) A1

Q2

Fig. 6.1 shows three waves A, B and C. They travel 12.0 meters in 2.0 s through the same medium.

(a) Calculate the wavelength of wave A.

wavelength of A = 12 / 4

= 3.0 m [A1]

Danyal Education "A commitment to teach and nurture"

(b)	Determine the period	of wave B.	
	Period of B = 2.0 s	[A1]

Calculate the speed of wave C. (c) Speed of C =d/t= 12.0 / 2.0= 6.0 m/s[A1]

Q3

3a	The imaginary line through all points on a wave that are in phase	
b	The water particle moves in a direction perpendicular to the direction of wave motion	1
С	v = d/ t = 22/1.5 = 14.7 m/s wavelength = 22/6 = 3.67 m	1
	frequency = velocity / wavelength = 14.7/3.67 = 4.0 Hz	1

Q4

Q4
$$f = 1/T$$
 $= 1/4.0$
 $= 0.25 Hz$

$$v = fλ$$

= 0.25 Hz × 6.0 m
= 1.5 ms⁻¹

- a) i) 0.15m
 - ii) $f = 1/T \implies f = 1/0.4 = 2.5 \text{ Hz}$
 - iii) $V = f\lambda \implies V = 2.5 \times 0.8 = 2 \text{ m/s}$

DANYAL

DANYAL

DANYAL

DANYAL

DANYAL