O Level Combined Physics Structured

Current and DC Circuits Test 3.0

Q1

Fig. 8.1 shows a circuit in which all the switches are opened.

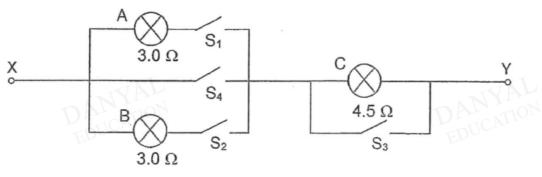
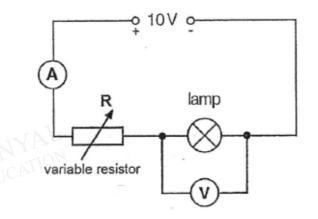


Fig. 8.1

(a) Calculate the effective resistance between X and Y when S₁ and S₂ are closed.


effective resistance = _____

(b) Suggest which light bulb(s) will light up when all switches are closed. Explain your answer.

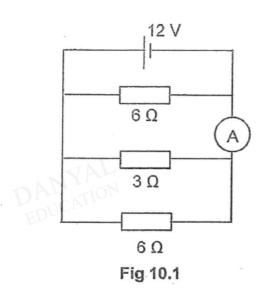
[2]

_Ω [2]

The battery in the circuit below has an e.m.f. of 10 V and negligible resistance. The variable resistor \mathbf{R} is adjusted until the voltmeter reading is 2.5 V and the ammeter reading is 0.5 A.

(a) Determine the resistance of the light bulb.

resistance = [2]


(b) Calculate the resistance of the variable resistor R.

(c) The resistance of the variable resistor R is now increased to 45 Ω .

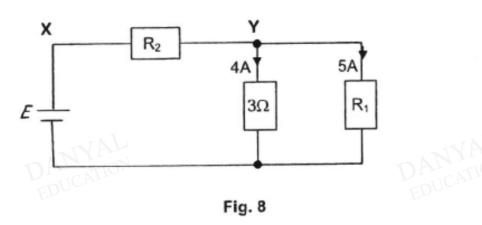
Assuming that the resistance of the light bulb in (a) remains unchanged, state and explain what happens to the brightness of the light bulb.

[2]

Three resistors are arranged in parallel as shown in the circuit in Fig. 10.1.

a) What is the total resistance of the circuit?

total resistance =Ω [2]


b) What is the total circuit current?

total current = A [2]

c) What is the reading in the ammeter?

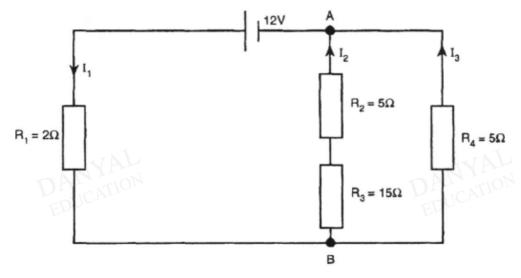
ammeter reading = A [1]

The circuit in Fig. 8 was completed with 1 e.m.f. source, *E* and 3 resistors placed as shown. Potential difference across X and Y is 18 V.

(a) What is the resistance, R1?

DANYAL

(b) What is the resistance R₂?


(c) What is the e.m.f., E?

[2]

[2]

[2]

Fig. 7.1 shows an electrical circuit containing four resistors R_1 , R_2 , R_3 and R_4 connected to a 12 V cell.

Calculate

(a) the effective resistance of the circuit,

DANYAL

effective resistance =[2]

(b) the potential difference across R1, R2 and R4,

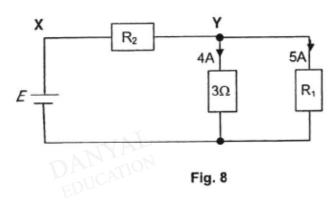
p.d.	across	R₁	=	•••	• •	 •••	•	• •	•••	•••	 	• •	•	 •••	•	•••	•••				•••		
p.d.	across	R ₂	=		•••	 	•••	•••	•••	• •	 	•••	•••	•••	•	•••			 •••	•••	••		
p.d.	across	R4	=			 					 			•••					 	•••	[3]	

Answers

Current and DC Circuits Test 2.0

Q1

(a) Effective resistance =
$$(1/3 + 1/3)^{-1} + 4.5$$
[1]= 6.0 Ω [1](b) When all switches are closed, the light bulbs will not light up as there is a[1]short circuit.[1]


Q2

(a)	$R = V/I = 2.5/0.5 = 5 \Omega$	1
(b)	P.d. across variable resistor = 7.5 V R = V/I = 7.5/0.5 = 15 Ω	1
(c)	The potential difference of the lamp will decrease / current decrease This leads to a decrease in the brightness of the lamp.	1

Q3

a	Total R = $(1/3 + 1/6 + 1/6)^{-1}$	M1
	= 1.5 Ω	A1
b	Total current = V / R	M1
	= 12/1.5	A1
	= 8 A	
	Can also use ohm's law to find individual branch	
	current and sum up.	
)c	Reading = $4A + 2A = 6A$	A1
	D' Chine D'	1CATIO

The circuit in Fig. 8 was completed with 1 e.m.f. source, E and 3 resistors placed as shown. Potential difference across X and Y is 18 V.

What is the resistance, R1? (a)

Pd across $3\Omega = pd$ across R₁ [1]₁

 $4 \times 3 = 5 \times R_1$

$$R_1 = 12/5 = 2.4 \Omega$$
 [1]

What is the resistance R₂? (b)

Total current flowing through $R_2 = 9 A$ EDUCATION

$$R_2 = 18/9 = 2\Omega[1]$$

[2]

[2]

[2]

Emf = pd across XY + pd across 3Ω

= 18 V + 3 (4)[1] = 30 V [1] EDUCATION

(a) the effective resistance of the circuit,

(b) the potential difference across R1, R2 and R4,

$$I_{1} = \frac{V_{T}}{R_{T}^{\dagger}}$$
$$= \frac{12}{6}$$
$$= 2.0 \ A \quad [1]$$

Hence p.d. across $R_1 = 2 A \times 2 \Omega = 4 V$ [1] $I_2 = 5/25 \times I_1 = 0.4 A$, hence p.d. across $R_2 = 0.4 A \times 5 \Omega = 2 V$ [1] $I_3 = 20/25 \times I_1 = 1.6 A$, hence p.d. across $R_4 = 1.6 A \times 5 \Omega = 8 V$ [1]

