O Level Combined Chemistry Structured

The Mole Concept and Stoichiometry Test 1.0

Q1

Chromium, Cr, is extracted from a mineral called chromite, FeCr2O4.

(a) (i) Calculate the relative molecular mass of chromite.

[1]

(ii) Calculate the percentage by mass of chromium in chromite.

[1]

(b) In industry, chromite is changed into chromium(III) oxide, Cr₂O₃. Metallic chromium is formed by heating this oxide in hydrogen gas. The balanced chemical equation for this reaction is

Calculate the mass of chromium that could be formed from 76 g of chromium(III) oxide.

[2]

The equation below shows the salts formed from the reaction between lead(II) nitrate and zinc sulfate.

$$Pb(NO_3)_2 + ZnSO_4 \rightarrow PbSO_4 + Zn(NO_3)_2$$

A student wanted to prepare one of the two products in the above reaction in the laboratory. He was told that only the following reagents are available for use.

dilute nitric acid	lead(II) hydroxide powder	aqueous lead(II) nitrate
dilute sulfuric acid	aqueous zinc chloride	zinc carbonate powder

(a) What volume (in cm³) of 0.100 mol/dm³ of lead(II) nitrate solution is required to react completely with a solution containing 0.0250 mol of zinc sulfate to produce the salts above?

(a) A solution of potassium hydroxide, KOH, has a concentration of 0.35 mol/dm³. 25 cm³ of KOH was reacted with excess ammonium sulfate as shown in the equation below.

Calculate the mass of potassium sulfate formed.

[2]

(b) Another solution of potassium hydroxide was prepared by dissolving 29.5 g of potassium hydroxide in 5 dm³ of distilled water.

Determine the concentration of the solution in mol/dm3.

[2]

Magnesium chloride, MgC/ ₂ , is present in seawater at a concentration of 1.26 g/dm ³ .			
(i) \	Write the form	ulae for the io	ons present in magnesium chloride.
			[1]
(b)	(ii) Calcula 1 dm³ c	te the number f seawater.	r of moles of chloride ions arising from the magnesium chloride in
			number of moles of C/*ions = mol [2]
(c)	The concent is added to a	ration of sulfat 1 dm³ sample	te ions in seawater is 1.24 g/dm³. Excess aqueous barium chloride e of seawater.
	Calculate the	mass of bario	um sulfate precipitated in this reaction.
			DANYAL EDUCATION
			mass = g [2]

The equation shows the decomposition of ammonium nitrite, NH₄NO₂, when heated gently.

$$NH_4NO_2(aq) \rightarrow N_2(g) + 2H_2O(g)$$

(a) A sample of 25.0 cm³ of 0.500 mol/dm³ aqueous ammonium nitrite is heated.
Calculate the volume of nitrogen formed in dm³ at room temperature and pressure.

DANYAL

DANYAL

	volume of nitrogen =dm ⁵ [2]
(b)	Name the apparatus that is used to measure the volume of the gas produced.
	[1]

DANYAL

DANYAL

Answers

The Mole Concept and Stoichiometry Test 1.0

Q1		
4ai	M_r of FeCr ₂ O ₄ = 56 + 2(52) + 4(16)	
	= 224	
ii	Percentage of Cr in FeCr ₂ O ₄ = $2(52)$ $\square 224 \times 100$	
	= 46,4 %	
b	No of moles of $Cr_2O_3 = 76 \square [2(52) + 3(16)]$ = 0.5 mol	
	From egn,	
	1 mole Cr ₂ O ₃ produces 2 moles Cr	
	0.5 mole Cr ₂ O ₃ produces 1 mole Cr	
	Mass of chromium produced = 1 x 52g =52g	

Q2

Vo = 0 = 0	ole ratio Pb(NO ₃) ₂ : ZnSO ₄ is 1:1 ence, the number of moles of Pb(NO ₃) ₂ is <u>0.0250 mol</u> . [1] lume of Pb(NO ₃) ₂ . 0.0250 / 0.1 0.25 dm ³ 250 cm ³ [1]	1m: 0.0250 of Pb(NO ₃) ₂ can be embedded within calculation 1m: Vol. of Pb(NO ₃) ₂ = 250 cm ³	
(a)	No. of moles of KOH = $0.35 \times (25/1000) = 0.00875 \text{ mol}$ Mole ratio of KOH: $K_2SO_4 = 2:1$ Thus, no. of mole of $K_2SO_4 = 0.004375 \text{ mol}$ Mass of $K_2SO_4 = 0.004375 \times (2(39) + 32 + 4(16)) = 0.76125 \text{ g}$	JON	[1]
(b)	No. of moles of KOH = 29.5 / $(39+16+1) = 0.5267857143$ mol (leave Concentration = 0.52679 / $5 = 0.1053571429$ mol/dm ³ ≈ 0.105 mol /		[1]

Danyal Education "A commitment to teach and nurture"

Q4

(b)(i)	Mg ²⁺ and Cl	[1]
(b)(ii)	Number of moles of magnesium ions = $1.26 \div (24 + 71) = 0.013263$ mol Number of moles of chloride ions = $0.013263 \times 2 = 0.0265$ mol (3s.f)	[1]
2(c)	Number of moles of SO ₄ ²⁻ =1.24 + 96 = 0.012917 mol Mass of BaSO ₄ precipitated = 0.012917 × 233 = 3.01 g (3s.f)	[1] [1]
Q5		
(a)	Moles of NH ₄ NO ₂ = 0.025 × 0.500 = 0.0125 mol	[1]
	Volume of $N_2 = 0.0125 \times 24 \text{ dm}^3 = 0.3 \text{ dm}^3$	[1]
(b)	Gas syringe	[1]

