Contact: 9855 9224

O Level Combined Chemistry Structured

Organic Chemistry Test 1.0

Q1

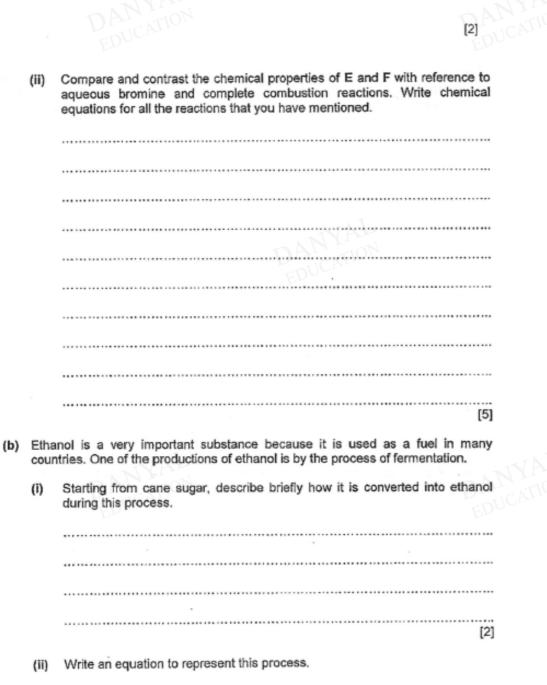
(a) Table 8.1 shows information about some organic compounds. Complete the table below with the name, structural formula and process used to manufacture each of the compound.

Table 8.1

name of compound	structural formula of compound	process used to manufacture the compound	
ethene		catalytic long hydrocarbon chain hydrocarbon	of
	$\begin{pmatrix} H & H \\ -C - C \\ H & H \end{pmatrix}_n$	ethene	of
ethanoic acid		ethanol	of

(b)	Ethe	ene will undergo complete combustion if there is sufficient oxygen. Write the chemical reaction for this reaction.		
		PALCATION		
	(ii)	When ethene undergoes incomplete combustion, it will form an air pollutant. Name the air pollutant and state its effect on human health.		
		name of air pollutant		
		effect of air pollutant	•••••••••••••••••••••••••••••••••••••••	

The table shows some information about the homologous series of organic compounds called esters. Esters are formed when a carboxylic acid reacts with an alcohol.


carboxylic acid + alcohol → ester + water

The table shows the different esters produced when different carboxylic acids react with an alcohol (ethanol).

carboxylic acid	alcohol	name of ester formed	molecular formula of ester formed
methanoic acid HCOOH	ethanol C₂H₅OH	ethyl methanoate	HCOOC₂H₅
ethanolc acid CH₃COOH	ethanol C₂H₅OH		EDUCA
propanoic acid C ₂ H ₅ COOH	ethanol C₂H₅OH	ethyl propanoate	C₂H₅COOC₂H₅
butanoic acid C ₃ H ₇ COOH	ethanol C₂H₅OH	ethyl butanoate	C₃H₁COOC₂H₅

			_
(a)		plete the table to show the name and molecular formula of the ester formed at the este	ed [2]
(b)	(i)	Explain using the formulae given in the table to show that esters are a example of a homologous series.	an
			[1]
	(ii)	Suggest one difference, in terms of their physical property, between eth methanoate and ethyl butanoate.	ıyl
		DANYAL DANYAL DANYAL	[1]

- (a) E is a hydrocarbon with the formula C₂H₈ and F is a hydrocarbon with the formula C₂H₄.
 - Draw the structural formulae of E and F.

......

[1]

Fig. 4.1 shows the structural formula of a molecule of drug called LSD. (Lysergic acid diethylamide)

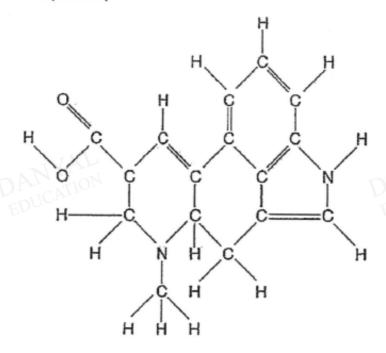
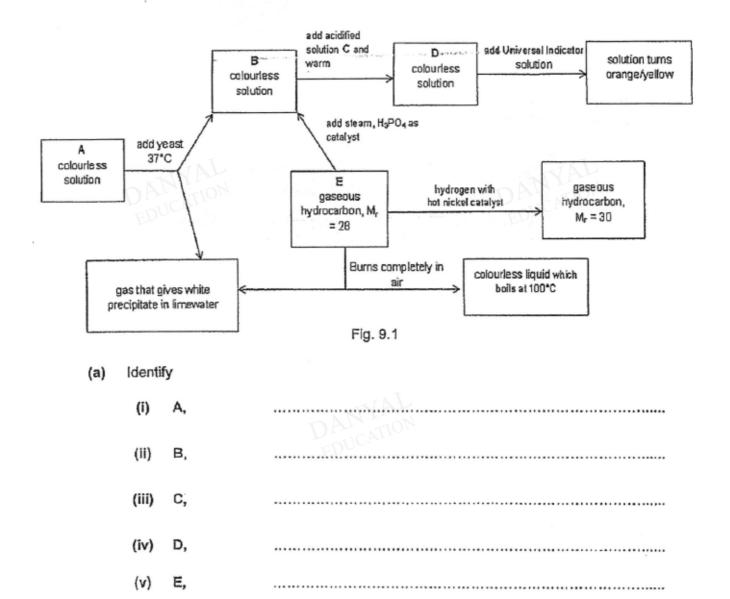



Fig. 4.1

Write down the molecular formula of LSD. (a) LSD is an unsaturated molecule. Describe a chemical test to prove that LSD is (b) an unsaturated molecule. Test Observation LSD dissolve in water to produce a weakly acidic solution with pH 4. (c) Explain why LSD produces a weakly acidic solution. (i)[1] (ii) On Fig. 4.1, circle the functional group present in the LSD molecule which is responsible for the acidic nature. [1]

9 Fig. 9.1 describes some of the reactions of an organic compound E.

DANYAL

DANYAL

Danyal Education "A commitment to teach and nurture"

(b)	Write	the balanced chemical equation to represent the reaction betweer ocarbon E with hydrogen.	1
		[1]	
(c)	Hydro form a	ocarbon E undergoes further reaction under high heat and pressure; with a catalyst, to a polymer.)
	(i)	State the name of the polymer formed.	
		[1]	
	(ii)	Draw the structure of one repeat unit of this polymer.	
		[1]	
	(iii)	State one disadvantage of using the polymer.	
		[1]	

DANYAL

DANYAL

Answers

Organic Chemistry Test 1.0

Q1

(a)				
	name of compound	structural formula of compound	process used to manufacture the compound	1/2 mark for
	ethene DANYAL EDUCATION	H	Catalytic <u>cracking</u> of long hydrocarbon chain hydrocarbon	each answer
	Poly(ethane)	(H H) (C-C-) H H)	Polymerisation of ethene	

	ethanoic acid H O H - C - C O - H H H	
(b)	C ₂ H ₄ + 3O ₂ → 2CO ₂ + 2H ₂ O ½ mark : correct fomula ½ mark : correct balancing	[1]
(c)	carbon monoxide	[1]
	Reduces ability of haemoglobin to carry oxygen to different parts of the body. ½ mark : difficulty in breathing	[1]

8a	Ethyl ethanoate	
	CH₃COOC₂H₅	
id	Each member differs from the next by a -CH ₂ - group	
	Molecular formula of ethyl propanoate C ₂ H ₅ COOC ₂ H ₅ differs from ethyl butanoate C ₃ H ₇ COOC ₂ H ₅ by a -CH ₂ - group	
II	Ethyl butanoate has a higher melting point/boiling point/density /viscosity than ethyl methanoate.	
-		

Q3 11ai H H H-C-C-H H-C=C-H E ii bromine Reacts with bromine in the Reacts with bromine presence of ultra violet water to form light to form bromoethane dibromoethane. and hydrogen bromide. $C_2H_8 + Br_2 \rightarrow C_2H_5Br + HBr \mid C_2H_4 + Br_2 \rightarrow C_2H_4Br_2$ Both react with oxygen to form carbon dioxide and complete water. F burns with a smokier flame. combustion 2C₂H₆ + 7O₂ → 6H₂O + 4CO₂ $C_2H_4 + 3O_2 \rightarrow 2H_2O + 2CO_2$ Cane sugar (glucose) solution is mixed with yeast and the mixture is kept at about bi 37°C in the absence of oxygen. Sugar is converted to ethanol and carbon dioxide. C₆H₁₂O₆ → 2C₂H₅OH + 2CO₂

Q4

(a) C ₁₆ H ₁₅ O ₂ N ₂	1m
(b) Test: Add LSD to aqueous bromine / a solution of bromine Observation: Reddish brown bromine is quickly decolourised/turns colourless	Both correct = 1m
(c)(i) When dissolved in water, LSD molecule dissociate partially, producing a low concentration of H [±] ion, resulting in a weakly acidic solution.	1m
(c)(ii) Circle –COOH functional group	1m

Q5

Ų	ω	
	(a) (i) A, glucose solution	1m
	(ii) B, ethanol	1m
	(iii) C, acidified potassium manganate (VII)	1m
	(iv) D, ethanoic acid	1m
	(v) E, ethene	1m
	(b) $C_2H_4 + H_2 \rightarrow C_2H_6$	1m
	(c)(i) poly(ethene)	
	(ii) / H H	1m
	H H / n	1m
	(iii) Poly(ethene) is non-biodegradable and will cause land pollution, as it will be difficult to dispose.	1m