Danyal Education "A commitment to teach and nurture"

O Level Combined Chemistry Structured

Acids and Bases Test 1.0

Q1 Complete the table below.

	solution	approximate pH	colour of Universal Indicator
(a)	0.1 mol/dm3 hydrochloric acid		
(b)	0.1 mol/dm ³ sodium hydroxide solution		DANYA
(c)	A mixture of 20 cm ³ of (a) and 20 cm ³ of (b)		EDV

[3]

Q2

Some companies make products to sell to farmers as soil improvers. Some compounds in the products neutralise acidity The table shows information about some substances that companies use to make these products.

substance	chemical composition	effectiveness at neutralising acidity	other points
limestone	CaCO ₃	fair	Insoluble in water. Needs to be ground to very fine powder
quicklime	CaO	very high	Made by heating limestone to a high temperature Reacts exothermically with water to make an alkaline solution
slaked lime	Ca(OH) ₂	very high	Made by adding water to quicklime. Slaked lime is an alkali
blast furnace slag	mixture of CaSiO ₃ with CaCO ₃ and other impurities	fair	Insoluble in water. Impurities include silicon oxides and other non-metal compounds

(a)	Use the information in the table to suggest why limestone is less effective at neutralising acidity than quicklime and slaked lime.	
		[2]

Danyal Education "A commitment to teach and nurture"

(b)	Slaked lime is made by adding water to quicklime. Write a balanced chemical equation for the reaction. State a test to show that slaked lime is alkaline in nature.	
		[2]
(c)	The calcium content of the substances is important as it adds to the mineral content of the soil.	
	Show by calculation that quicklime has a higher percentage by mass of calcium than both limestone and slaked lime.	
	•	
		[2]
(d)	Explain how blast furnace slag, CaSiO ₃ , is produced during the extraction of iron from haematite.	
		[2]
(e)	Heating limestone produces quicklime and carbon dioxide according to the equation below.	
	DALATION	
	CaCO ₃ → CaO + CO ₂	
	Calculate the volume of carbon dioxide produced at r.t.p. when 25 tonnes of limestone are heated. (1 tonne = 1000000 g)	

(a) Acid J has a relative molecular mass of 63. A 500 cm³ aqueous sample contains 196 g of J.

Calculate the concentration of J in mol/dm 3 .

				ISI KATION
				[2]
(b)	Name all the products for to acid J. State the test ar			added
				[3]
Q4 A lis	t of oxides is given below.			
	carbon dioxide	carbon monoxide	iron(II) oxide	
	lead(II) oxide	nitrogen dioxide	sulfur dioxide	
Each	n word can be used once, m	nore than once, or not at	all.	
Nam	e an oxide which	•		
(a)	reacts with both dilute hy	drochloric acid and dilute	potassium hydroxide,	
				[1]
(b)	reacts with dilute hydroch	lloric acid to form a gree	n solution,	
		•••••••••••••	·····	[1]
(c)	dissolves in water to form	a solution of pH 5,		
				[1]
(d)	is used as a reducing age			
			••••••	[1]
(e)	is formed by lightning acti	vity.		
	***************************************			[1]

The following substances were tested using the purple cabbage indicator and the resulting colour of the solution is shown in Table 3,3.

Table 3,3

substance	colour of solution
hydrochloric acid	pink
ethanoic acid	violet
distilled water	violet PAUCA
baking soda	blue
sodium hydroxide	yellow

(i)	Using the information from Table 3.3. determine the colour of the solution when the purple cabbage indicator is added to aqueous ammonia.
	[1]
(ii)	Name the limitation of using the purple cabbage indicator to determine the pH of solutions. Suggest another indicator that can be used instead.

DANYAL

Danyal Education "A commitment to teach and nurture"

Answers

Acids and Bases Test 1.0

Q1

	solution	approximate pH	colour of Universal Indicator
(a)	0.1M HCI	1	red
(b)	0.1M NaOH	14-	violet
(c)	20cm ³ of (a) and 20cm ³ of (b)	7	green

Q2

. (a)	Insoluble in water must be finely powdered	1 1
(b)	CaO + H ₂ O → Ca(OH ₎₂	1
	Add litmus paper. It turns from red to blue	1
(c)	% Ca in CaO = 40/56 x 100 = 71.4	2
	% Ca in CaCO ₃ = 40/100 x 100 = 40	
	% Ca in Ca(OH) ₂ = 40/76 x 100= 52.6	
(d)	Limestone decomposes to lime Lime neutralises acidic impurities to form slag	1
(e)	25 tonnes = 25000000 g	1
	Moles of CaCO₃= 250000	
	Moles of CO ₂ = 250000	
	Volume of CO ₂ = 250000 x 24 = 6000000 dm ³	1

Q3

(a)	Moles of J = 196/63 = 3.11 mols	1
	Concentration = 6.22 mols/dm ³	1
(b)	Magnesium nitrate, carbon dioxide and water	1
	Pass gas into limewater	1
	White precipitate seen	1

Danyal Education "A commitment to teach and nurture"

Q4

(a)	lead(II) oxide	[1]
(b)	iron(II) oxide	[1]
(c)	carbon dioxide	[1]
(d)	carbon monoxide	[1]
(e)	nitrogen dioxide	[1]

Q5

)(i)	blue	[1]
(ii)	It cannot differentiate between weakly acidic and neutral (uric acid and distilled water).	[1]
	Use universal indicator instead.	[1]
	[Note: litmus paper not accepted]	

