

CANDIDATE NAME			
CLASS		INDEX NUMBER	
MATHEMA	TICS		4048/1
Paper 1			05 September 2019
			2 hours
Candidates ansv	wer on the Question Paper.		

READ THESE INSTRUCTIONS FIRST

Write your index number, and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

Calculators should be used where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answers in terms of π .

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 80.

ANSWERS TO QUESTIONS 1 TO 15 MUST BE HANDED IN SEPARATELY FROM ANSWERS TO QUESTIONS 16 TO 24.

This document consists of 17 printed pages.

Answer all the questions.

1 Solve	$\frac{x}{4}+13=6.$
---------	---------------------

Answer	x =	 Γ1	
		L	-

Peter boards a bus at bus stop A at 6.50 am. The bus travels to bus stop B at an average speed of 60 km/h to school. He reaches bus stop B at 7.15 am.

What is the distance between the 2 bus stops?

Answer		km	[2]
--------	--	----	-----

3 John wrote down five numbers.

The mean of these numbers is 8, the median is 6 and the mode is 5.

The largest number is three times the smallest number.

Find the five numbers.

4 A field which has an area of 1800 m², is used to plant sunflowers.

It is known that an acre of land, which is about 4047 m², can grow an average of 20 000 sunflower plants.

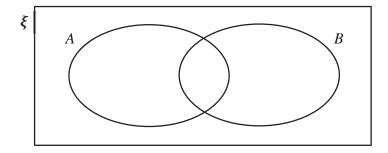
Each sunflower plant has an average seeding rate of 1500 seeds.

Calculate an estimate of the total number of seeds that can be harvested from the field, leaving your answer in standard form, correct to 3 significant figures.

[2]

5	Simplify $\frac{3x}{5}$ –	4(2-3x)
3	$\frac{\text{Simplify}}{5}$	7

6 $\xi = \{x : x \text{ is a positive integer and } x < 25\}$


 $A = \{x : x \text{ is a perfect square}\}$

 $B = \{x : x \text{ is an odd number}\}$

(a) Find $n(A \cap B)$.

(b) On the Venn diagram, shade the region which represents $(A \cap B')'$.

[1]

Factorise fully 6ac + 9ad - 12bd - 8bc.

Answer [2]

8	A is the point $(-2, 5)$ and B	$\overrightarrow{BA} = \left(\begin{array}{c} A & A \\ A & A \end{array} \right)$	$\begin{pmatrix} -4 \\ 8 \end{pmatrix}$	
	, ,	(8)	

(a) Find the coordinates of point B.

Answer	B	(,)	Г1	1

(b) Calculate $\begin{vmatrix} \rightarrow \\ BA \end{vmatrix}$.

<i>Answer</i>	1	
---------------	---	--

9 Andrew weighed ten large watermelons from his farm.

The mean mass of the watermelons was 9070 grams.

The standard deviation of the masses of the watermelons was 362.8 grams.

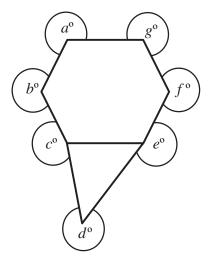
The scales used by Andrew were found to be inaccurate.

The correct mass of each watermelon turns out to be 1650 grams more than Andrew recorded.

Write down the correct values for the mean and standard deviation (SD).

10		rease of 20% as compared to 2017. of the cost of the painting in 2018.	
			Answer % [3]
11	(a)	David makes a mocktail drink for his kids. He uses apple juice, lime juice and sparkling water. He uses 2.1 litres of sparkling water.	r in the ratio 3:2:7 respectively.
		(i) How much apple juice does he use?	
		(ii) How much mocktail drink does he make alto	Answer litres [1] ogether?
			Answer litres [1]
	(b)	Wen Ni makes a mocktail drink using lemon juice. The ratio lemon juice: syrup is $\frac{1}{2}:\frac{1}{3}$. The ratio syrup: coconut water is 1:8. Find the ratio lemon juice: syrup: coconut water	
		Answer	[2]

CHIJ ST. THERESA'S CONVENT SECONDARY FOUR EXPRESS / FIVE NORMAL(ACADEMIC) 2019 PRELIMINARY EXAMINATION MATHEMATICS PAPER 1

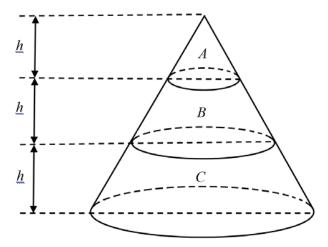

12	Jane draws a triangle. The first angle is 20° bigger than the so The third angle is three times the size of		
	Form an equation and solve it to find t	he angles of the triangle.	
		Answer°,°,°	[3]
13	It is given that <i>x</i> and <i>y</i> are in direct pro The difference in the value of <i>y</i> , when		
	(a) Find an equation connecting x are	nd y.	
		Answer	[3]
	(b) Find the value of x when $y = 84$.		
		Answer	[1]

CHIJ ST. THERESA'S CONVENT SECONDARY FOUR EXPRESS / FIVE NORMAL(ACADEMIC) 2019 PRELIMINARY EXAMINATION MATHEMATICS PAPER 1

14	Whe	en written as the product of their prime factors,	
		<i>m</i> is $2^2 \times 5^2 \times 11$ <i>n</i> is $2^3 \times 3 \times 5 \times 7$	
	Find		
	(a)	the largest integer which is a factor of m and n ,	
	(c)	the smallest integer p such that mp is a perfect cub	Answer [1]
	(d)	the smallest positive integer value of q such that	Answer
			Answer [1]
15	(a)	Solve the inequalities $-15 \le 8 - 3x < 2$.	
	(b)	Write down all the integers that satisfy $-15 \le 8-3$	Answer[2]
			Answer [1]

Name:	(Class:

16 The diagram shows a regular hexagon and a triangle.


(a) Calculate the sum of the interior angles of the regular hexagon.

Answer	·····° [[1]	
--------	----------	-----	--

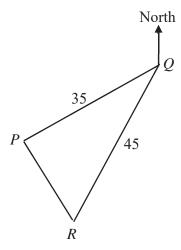
(b) Calculate the sum of the angles a, b, c, d, e, f and g.

Answer° [2]

17 The diagram shows a right circular cone which is divided into 3 parts A, B and C by planes parallel to the base as shown. B and C are frustums of a cone. The height of each part is h cm.

The curved surface area of A is 200 cm²

(a) Show that $A_A : A_{A+B}$ is 1 : 4, where A_A is the curved surface area of A and A_{A+B} is the combined curved surface areas of A and B.

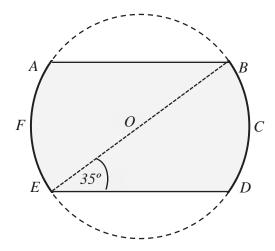

[1]

(b) Find A_B , the curved surface area of B.

Answer cm² [1]

(c) Find the ratio of the volume of B to the volume of C.

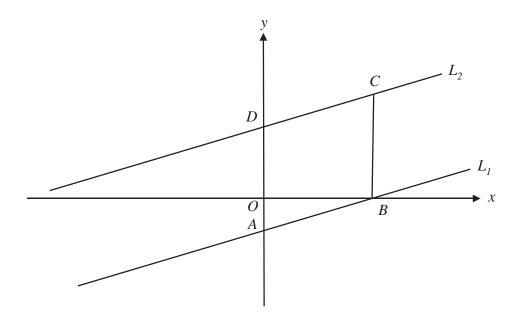
The diagram shows the positions of three towns P, Q and R. PQ = 35 km and QR = 45 km. The bearing of P from Q is 235° and the bearing of R from Q is 205° .



Calculate the distance between towns P and R.

Answer km [3]

19 The diagram shows six points A, B, C, D, E and F on the circumference of a circle with centre at O.


It is given that the diameter BE of the circle is 14 cm, $\angle BED = 35^{\circ}$ and AB = ED.

Calculate the area of the shaded region.

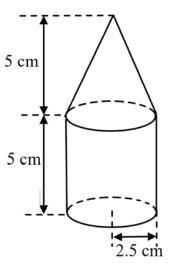
Answer		cm^2	[5]
--------	--	--------	-----

20 In the diagram, the equation of the line L_1 is 2y = 3x - 5. The line L_2 has the same gradient as the line L_1 . A and D lie on the y-axis. BC is parallel to the y-axis and BC = 8 units.

(a) Find the equation of the line L_2 .

Answer		[2]
--------	--	-----

(b) What is the area of quadrilateral *ABCD*?


Answer units² [1]

(c) Find the value of $\tan \angle ABO$.

21 (a) The period of oscillation of a pendulum is given by $T = 2\pi \sqrt{\frac{l}{g}}$. Rearrange the formula to make l the subject.

Answer	 . [2]

(b) A solid is made from a cylinder and a cone. Both the cylinder and cone have radius 2.5 cm and height 5 cm.

Calculate the total surface area of the solid.

Answer cm² [3]

A gift company sells three hamper packages containing packets of biscuits, bars of chocolates and bottles of wine.

The cost of one packet of biscuit, one bar of chocolate and one bottle of wine are \$7.20, \$10.80 and \$32.00 respectively.

	Biscuit	Chocolate	Wine
Hamper A	6 packets	5 bars	3 bottles
Hamper B	9 packets	7 bars	4 bottles
Hamper C	10 packets	8 bars	2 bottles

The quantity of the items packed into each of the three types of hamper packages is shown in the table above.

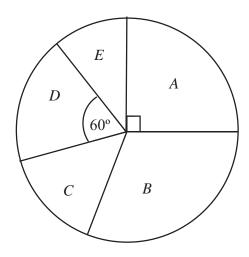
These information can be represented by the matrices $\mathbf{H} = \begin{pmatrix} 6 & 5 & 3 \\ 9 & 7 & 4 \\ 10 & 8 & 2 \end{pmatrix}$ and $\mathbf{P} = \begin{pmatrix} 7.20 \\ 10.80 \\ 32.00 \end{pmatrix}$.

(a) Evaluate the matrix $\mathbf{R} = \mathbf{HP}$.

Answer
$$\mathbf{R} = \dots$$
 [2]

(b) State what the elements of **R** represent.

Γ	1.7
	1


(c) A total of 20 Hamper A, 25 Hamper B and 30 Hamper C are sold. Represent the total number of hamper packages sold in a 1×3 matrix T.

Answer
$$T = \dots$$
 [1]

(d) Using matrix multiplication, find the total amount of money obtained by the gift company from the sales of the hamper packages A, B and C.

Some boys are placed into five groups, A, B, C, D and E, based on their heights. The pie chart shows the proportion of boys in each group.
 Group A comprises ¹/₄ of the boys, Group B 30% of the boys and Group C has 18 boys.

Group D is represented by a 60° sector.

(a) Find the percentage of the boys who are in Group D.

Answer		%	[1]
--------	--	---	-----

(b) Given that the number of boys in group B is 36, find the total number of boys.

Answer boys [2]

(c) Calculate the number of boys in group E.

Answer boys [2]

24			ntains 20 marbles, n of which are red and the resist is chosen at random and not replaced.	rest are yellow.
	(a)	Writ	te down, in terms of n , the probability that the	marble is yellow.
				Answer [1]
	A so	econd	marble is chosen at random.	
	(b)	Find	d, in terms of n , the probability that both marb	les are yellow.
				Answer[1]
	(c)	(i)	The probability that both marbles are yellow Show that $n^2 - 39n + 224 = 0$	$v ext{ is } \frac{39}{95}.$
				[2]
		(ii)	Solve the equation $n^2 - 39n + 224 = 0$ to fin	nd the number of yellow marbles in the bag.
				<i>Answer</i> [3]
			~~ End of Paper 1 ~	~~

CHIJ ST. THERESA'S CONVENT SECONDARY FOUR EXPRESS / FIVE NORMAL(ACADEMIC) 2019 PRELIMINARY EXAMINATION MATHEMATICS PAPER 1

CHIJ ST. THERESA'S CONVENT PRELIMINARY EXAMINATION 2019 SECONDARY 4 EXPRESS / 5 NORMAL (ACADEMIC)

CANDIDATE NAME			
CLASS		INDEX NUMBER	
MATHEMATICS		4048/02	
Paper 2 Additional Material: Graph paper (1 sheet)		29 Aug 2019	
		2 hours 30 minutes	
Candidates ansv	ver on the Question Pap	per.	

READ THESE INSTRUCTIONS FIRST

Write your index number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use paper clips, glue or correction fluid.

Answer **all** questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 100.

Answers to Questions 1 to 6 must be handed in separately from answers to Questions 7 to 10.

This document consists of 23 printed pages.

Answer all the questions.

1	(a)	Factorise	$27a^4 - 3$	
	(a)	1 actorise	2101 3	

Answer	·	. 2	1
11113WE1		4	ı

(b) Express as a single fraction in its simplest form

(i)
$$\frac{2(x-1)^2}{4y^3} \div \frac{6y(x-1)}{8y^2}$$
,

(ii)
$$\frac{3}{m-2} - \frac{2}{3m-1}$$
.

(c) Solve the equation
$$2^{2-x} = \frac{1}{\sqrt[3]{2^{5x+1}}}$$
.

(d)	(i)	Express $x^2 - 8x - 6$ in the form	$(x-b)^2-c$
-----	-----	------------------------------------	-------------

Answer[1]

(ii) Hence solve the equation $x^2 - 8x - 6 = 0$, giving your answers correct to one decimal place.

In the diagram below, OB = BC and AF = FB. It is given that OA : AE = 2:1 and ED : DC = 4:3. $\overrightarrow{OA} = 2\mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$.

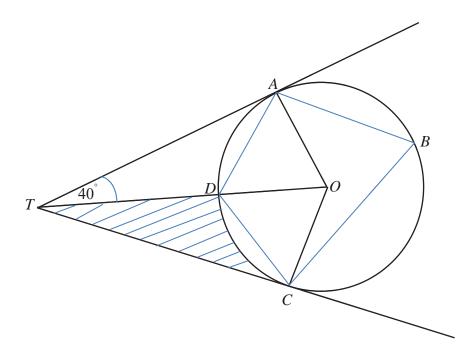
- (a) Express, as simply as possible, in terms of a and/or b,
 - (i) \overrightarrow{CE} ,

Answer.	 F11
11.00,, 0.	 1 1

(ii) \overrightarrow{CD} ,

Answer[1]

(iii) \overrightarrow{BA} ,


Answer [1]

	(iv)	\overrightarrow{OF} ,	
	(v)	\overrightarrow{FD} .	Answer [2]
			Answer[2]
(b)	Find		
	(i)	$\frac{\text{Area of } \Delta OBA}{\text{Area of } \Delta OBE} ,$	
			<i>Answer</i> [1]
			Answer[1]
	(ii)	$\frac{\text{Area of }\Delta OBA}{\text{Area of }\Delta OCE}$.	
			<i>Answer</i> [2]

3 ((a)	Celine	wishes to buy a new car. The price of the car is \$98 000.
		(i)	The car dealer requires Celine to make a downpayment of \$19 600. Express this amount as a percentage of the price of the car.
			<i>Answer</i> %[1]
		(ii)	After making the downpayment, Celine decides to take a bank loan for the rest of the money to be paid to the car dealer. Bank OCC charges an interest rate of 2.78% per annum compounded half yearly. Bank DBB charges a simple interest rate of 2.99% per annum. If Celine decides to take a seven year loan, which bank should she loan from? Justify your answer.
			<i>Answer</i> [4]
((b)	petrol	e visits the petrol station weekly to refill petrol, refilling 51 litres of each and every time. In order to save on petrol costs, she decides to o Johor Bahru, Malaysia, weekly to refill the petrol.
		(i)	How much does she need to pay weekly to refill petrol in Singapore if the price of petrol is \$2.25 per litre?
			Answer S\$[1]

(ii)	How much does she need to pay to refill petrol weekly in Johor Bahru if the price of petrol is RM 2.08 per litre?				
	Answer RM[
(iii) (a) How much is Celine able to save weekly if she refills the petrol in Malaysia? Give your answer in terms of Singapore dollars. (Given the exchange rate is S\$1 = RM 3.05)				
	Answer S\$[
((b) Express the amount of savings as a percentage of the cost of refilling petrol weekly in Singapore.				
	Answer% [

The diagram below shows a circle *ABCD* with centre *O*. *AT* and *CT* are tangents to the circle and angle $ATO = 40^{\circ}$.

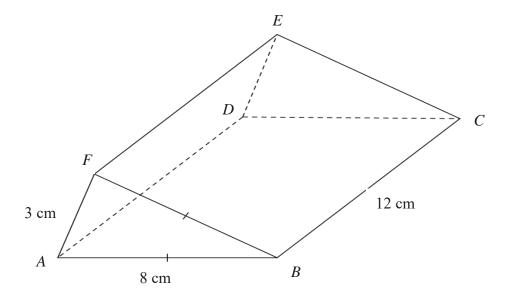
- (a) Find, giving reasons for each answer,
 - (i) angle AOD,

Answer° [2]

(ii) angle ABC,

Answer° [2]

(iii) angle *ADC*,


Answer° [1]

(iv) angle OCD.

Answer° [1]

(b)	Calculate the area of the shaded region, given that the radius of the circle is 5 cm.
	Answer cm^2 [4]

5

The diagram above shows a prism *ABCDEF* whose cross section is an isosceles triangle.

It is given that AB = 8 cm, BC = 12 cm, and AF = 3 cm.

(a) Show that
$$\angle ABF = 21.6^{\circ}$$
, correct to 1 decimal place. [3]

(b) Find the angle of elevation of E from B.

Answer° [3]

(c)	(1)	Calculate the volume of the prism ABCDEF.
		Answercm ³ [2]
	(ii)	The prism is melted and moulded into a hemisphere. Calculate the radius of the hemisphere.
		Answercm [2]

6 Answer the whole of this question on the sheet of graph paper.

The variables x and y are connected by the equation

$$y = \frac{x^2}{3} + \frac{2}{x} - 3.$$

Some corresponding values of x and y, correct to two decimal places, are given in the table below.

х	0.5	1	1.5	2	2.5	3	4	5
у	p	-0.67	-0.92	-0.67	-0.12	0.67	2.83	q

(a) Find the values of p and q.

Answer	<i>p</i> =	
	<i>q</i> =	[2]

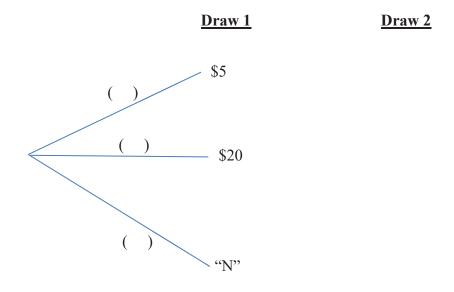
- Using a scale of 2 cm to represent 1 unit on each axis, draw a horizontal x-axis for $0 \le x \le 5$ and a vertical y-axis for $-2 \le y \le 6$.

 On your axes, plot the points given in the table and join them with a smooth curve.
- (c) Use your graph to find the solutions to the equation $\frac{x^2}{3} + \frac{2}{x} = 3$.

(d) 1	By drawing a tangent, find the gradient of the curve at (3, 0.67) .
-------	---	---------	-----

(e) By drawing a suitable line on the graph, solve the equation

$$\frac{x^2}{3} + \frac{2}{x} + 2x - 6 = 0$$


Answer Equation of line
$$y = \dots [1]$$

$$x =$$
 [1]

Name:(()	Class:

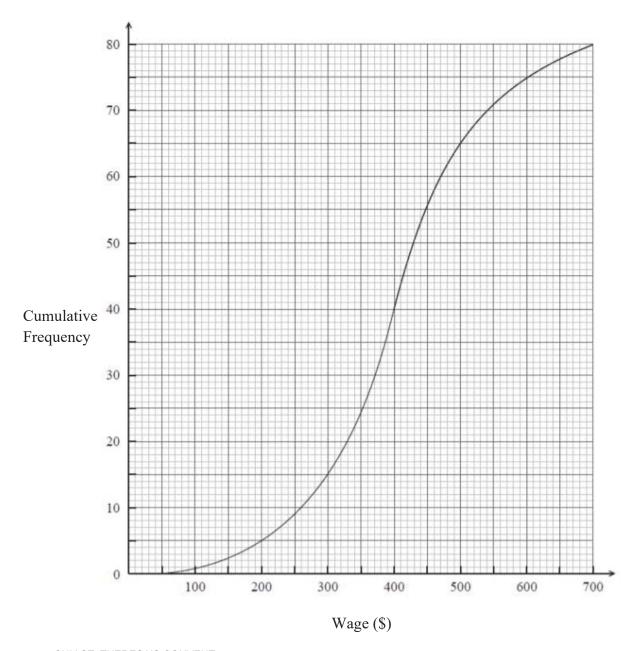
7 (a) In the lucky draw, there are 3 types of tickets to be drawn from a box: \$5 tickets, \$20 tickets and "N" tickets. If a customer draws a \$5 or a \$20 ticket, the ticket will be exchanged for a \$5 or \$20 shopping voucher respectively. However, if the customer draws an "N" ticket in the first draw, the "N" ticket will be placed back into the box and the customer will draw a ticket a second time. The second draw is the final one.

Given $\frac{3}{5}$ of the tickets are \$5 tickets, $\frac{1}{10}$ of the tickets are \$20 tickets and the rest are "N" tickets, complete the tree diagram below.

[2]

(i) Find the probability that a customer will draw an "N" ticket.

Answer [1]


(ii) Find the probability that a customer will win a cash voucher.

Answer [2]

(iii) If both Mary and Peter take part in the lucky draw, what is the probability that at least one of them will win a cash voucher?

Angwar																		ſ	-)	-
Answer							 											ı	4	۷	

(b) The cumulative frequency curve below shows the distribution of the weekly wages of 80 employees.

CHIJ ST. THERESA'S CONVENT SECONDARY FOUR EXPRESS / FIVE NORMAL (ACADEMIC) 2019 MATHEMATICS PRELIMINARY EXAMINATION PAPER 2

Use th	ne curve to estimate	
(i)	the median wage,	
(ii)	the interquartile range of the wages,	Answer \$[1]
(iii)	the percentage of the employees who	Answer \$ [1] o earned at least \$500.
		<i>Answer</i> % [2]

8	(a)	The first four terms in a sequence are	$\frac{1}{3}$,	$-\frac{1}{6}$,	$\frac{1}{12}$,	$-\frac{1}{24}$
		Find the 5 th term.				

	-4-
Answer	 [1]

(b) The *n*th term of a sequence is given by $T_n = \frac{1}{n^2 + 1}$. Find the sum of the 4th and 5th terms.

(c) The first four terms in a sequence of numbers are given below

$$T_1 = 1^3 + 5 = 6$$

 $T_2 = 2^3 + 7 = 15$

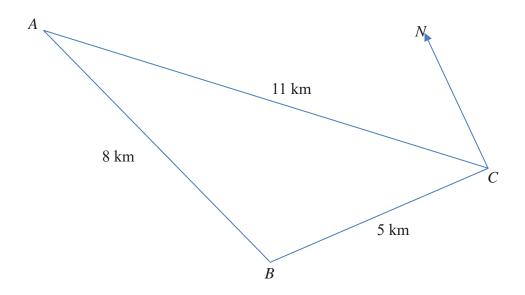
$$T_3 = 3^3 + 9 = 36$$

$$T_4 = 4^3 + 11 = 75$$

(2)	E: . 1	T
(i)	Find	I_5 .

Answer	•••••	[1]
111151101		[+]

(ii) Express T_n in the form of $an^3 + bn^2 + cn + d$, where a, b, c and d are integers to be determined.


Answer $a = \dots$

b =

c =

 $d = \dots [2]$

9 ABC represents a triangular plot of land on horizontal ground. AB = 8 km, BC = 5 km, AC = 11 km and B is due west of C.

- (a) Calculate
 - (i) the bearing of A from C,

Answer	••••	0	[3]
11.00			L

(ii) the bearing of C from A,

Answer° [2]

	(iii)	the reflex angle ABC ,
		<i>Answer</i> ° [2]
	(iv)	the area of the triangular plot of land ABC.
		<i>Answer</i> km ² [2]
(b)		tical lamp post is erected at point A . State with a reason, whether the of depression of B or of C is larger from the top of the lamp post.
	Answe	er
		[2]

Mr Wong is thinking of applying for a credit card that gives the most savings in terms of dining, grocery and petrol. His gross monthly expenses (before any discounts) are listed in the table below:

Type of Expenses	Amount (\$)
Petrol	350
Grocery	100
Dining	400

After doing some research, he decided to narrow his options to the three cards listed below:

Credit Card	Savings on Petrol	Savings on Dining	Savings on Grocery
CBSH Card	• 14% upfront discount plus 5% cash rebate (on monthly petrol expenses) with monthly minimum spending of \$600 on the CBSH card	• 5% cash rebate on dining expenses with monthly minimum spending of \$600 on the CBSH card	• 5% cash rebate on grocery expenses with monthly minimum spending of \$600 on the CBSH card
BSOP Card	• 15% upfront discount plus 6% cash rebate (on monthly petrol expenses) with minimum spending of \$1000 on BSOP Card	• 5% cash rebate on all dining expenses with minimum monthly spending of \$1000 on the BSOP Card	• 5% cash rebate on grocery expenses
CBCO Card	• 14% upfront discount plus 4.3% cash rebate (on monthly petrol expenses) with monthly minimum spending of \$800 on the CBCO Card plus 2.1% cash rebate (on monthly petrol expenses) with monthly minimum spending of \$400 on petrol	• 5% cash rebate on all dining expenses with monthly minimum spending of \$800 on the CBCO Card	• 5% cash rebate on grocery expenses with monthly minimum spending of \$800 on the CBCO Card

Which credit card should Mr Wong apply for so as to maximise his savings, given that he can only apply for one card and this card is to be used only for these three types of expenses? Show your working clearly.

[9]

~ End of Paper 2~ Remember to check your work carefully

CHIJ ST. THERESA'S CONVENT SECONDARY FOUR EXPRESS / FIVE NORMAL (ACADEMIC) 2019 MATHEMATICS PRELIMINARY EXAMINATION PAPER 2

On	Solutions	Marks
Qn 1		
	$\frac{x}{4} + 13 = 6$	
	$\frac{x}{4} = -7$	
	$\begin{vmatrix} 4 \\ x = -28 \end{vmatrix}$	B1
	x - 20	
2	$25 \min = \frac{25}{60} = \frac{5}{12} hrs$	M1
	$D = S \times T$	
	$D = 60 \times \frac{5}{12} = 25km$	A1
3	5, 5, 6, 9, 15	B1 (1st 3
		numbers), B1 (last 2
		numbers)
4	4047 m ² = 1 Acre grows 20 000 sunflower plants	
	$= 20000 \times 1500 \text{ seeds}$	M1
	$= 3 \times 10^7 \text{ seeds}$	3
	3×10^7	
	$1 \text{ m}^2 = \frac{3 \times 10^7}{4047} \text{ seeds}$	
	$1800 \mathrm{m}^2 = \frac{3 \times 10^7}{4047} \times 1800 \mathrm{seeds}$	
	4047 4047	
	$= \frac{1 \text{ Acre grows } 20 \text{ 000 sunflower plants}}{20000 \times 1500 \text{ seeds}}$ $= \frac{3 \times 10^7}{4047} \text{ seeds}$ $1 \text{ m}^2 = \frac{3 \times 10^7}{4047} \text{ seeds}$ $1800 \text{ m}^2 = \frac{3 \times 10^7}{4047} \times 1800 \text{ seeds}$ $= 1.33 \times 10^7$ $= 3x \times 4(2-3x) \times 21x \times 20(2-3x)$	A1
5	$3x \ 4(2-3x) \ 21x \ 20(2-3x)$	
	21x-20(2-3x)	M1
	$ \begin{array}{r} 35 \\ 35 \\ 35 \\ 35 \\ 35 \\ 35 \\ = \frac{21x - 40 + 60x}{35} \end{array} $	1V1 1
	$=\frac{21x-40+60x}{35}$	
		Λ 1
	$=\frac{81x-40}{35}$	A1
6a	2	B1
6b	ξ	
	AB	
		B1

7	(, 0 1 121 1 01	
7	6ac + 9ad - 12bd - 8bc $= 3a(2c + 3d) - 4b(3d + 2c)$	M1
		A1
	= (3a-4b)(2c+3d)	711
8a	$\overrightarrow{OB} = \overrightarrow{OA} - \overrightarrow{BA}$	
	\rightarrow (-2) (-4) (2)	
	$\overrightarrow{OB} = \begin{pmatrix} -2 \\ 5 \end{pmatrix} - \begin{pmatrix} -4 \\ 8 \end{pmatrix} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$	
	B = (2, -3)	B1
		Di
8b	$ \overrightarrow{AB} = \sqrt{(-4)^2 + (8)^2} = 8.94$	B1
9	Mean = 10 720 g	B1
	SD = 362.8 g	B1
10	73288 8	M1
	Cost of painting in $2017 = \frac{73288.8}{1.2} = \61074	
	1.2	
	Cost of pointing in 2016 = 61704 _ \$56550	
	Cost of painting in $2016 = \frac{61704}{1.08} = 56550	M1
	Percentage = $\frac{56550}{73288.8} \times 100\% = 77.2\%$	7) Al
	73288.8	0031
11a	Percentage = ${73288.8} \times 100\% = 77.2\%$ 7 units represent 2.1 <i>l</i> 1 units represent 0.3 <i>l</i> 3 units represent 0.3 <i>l</i> 12 units represent 3.6 <i>l</i>	2660
	1 units represent 0.31	80
	3 units represent 0.91	B1
11b	Tunits represent 0.31	
110	12 units represent 3.61	B1
11c	Lemon: Simply Syrup: Coconnet water $\frac{1}{2}$ $\frac{1}{3}$	
	1 2000	
	2 Wide	
	Islamo : 8	
	1 1	
	$\frac{1}{2} \times 6 : \frac{1}{3} \times 6$	M1
	1 ×2 : 8×2	
	3 : 2 : 16	A1
		111
12	x + (x-20) + 3x = 180 $(x+20) + x + 3(x+20) =$	=180 M1
	5x - 20 = 180 $5x + 80 = 180$	
	5x = 200 $5x = 100$	
	$x = 40^{\circ}$ $x = 20^{\circ}$	M1
	x - 20	1411
	40°, 20°, 120° 40°, 20°, 120°	A1

12	T ,	7	
13a	y = kx or	x = ky	
	y = 5k(1)	5 = ky(1)	
	y = 3k (1) y = 17k(2)	17 = ky (2)	
	$y = 17\pi$ (2)	$17 - ky \tag{2}$	
	(2) - (1); 17k - 5k = 54	$\frac{17}{k} - \frac{5}{k} = 54$	M1
	12k = 54	17 - 5 = 54k	
	k = 4.5	$k = \frac{2}{9}$	M1
		9	
	4.5	2	A1
	y = 4.5x	$x = \frac{2}{9}y$	Al
13b	y = 4.5x		
	84 = 4.5x		B1
	$x = 18\frac{2}{3}$		
	3		
14a	20		B1
			3 ^{\(\)} B1
14b	1210	3560	B1
14c	924	880	B1
140		JONNY ONNY	
15a	15 ≤ 8 - 3x 8 - 3x <	15366	M1
	$3x \le 23$ and $6 < 3x$	Whats	(Either 1)
	23 $2 < x_0$	1/4.	
	$x \leq \frac{1}{3}$	3	
	ide De		
	$2 < x \le \frac{23}{3}$		
	3/5/21/2		A1
15b	1210 924 -15 \(\begin{array}{cccccccccccccccccccccccccccccccccccc		B1
150	, r, J, V, /		
16a	Sum of interior angles = $(6-2) \times 180$	= 720°	B1
1.61			
16b	Sum of angles = $7 \times$ angles at a point have gen + sum of interior angle of tr		
	hexagon + sum of interior angle of tr = $7 \times 360 - [720 + 180]$		M1
	=1620°	~1	A1
	1320		
	Or $\angle a + \angle g + \angle f + \angle b = 4 \times (360)$		M1
	$\angle d + \angle c + \angle e = (3 \times 360) - 2($	$120) - 180 = 660^{\circ}$	M1
		1.6200	A1
	Sum of angles = $960^{\circ} + 660^{\circ}$	= 1620°	

1.7		
17a	$\frac{A_A}{A_{A+B}} = \left(\frac{l_A}{l_{A+B}}\right)^2$	
	$= \left(\frac{h}{2h}\right)^2$ $= \left(\frac{1}{4}\right)$	
	$=\left(\frac{1}{4}\right)$	B1
17b	$\frac{200}{200+B} = (\frac{1}{4})$	
	B = 600	B1
17c	$\frac{V_A}{V_{A+B+C}} = \left(\frac{l_A}{l_{A+B+C}}\right)^3$	
	$=\left(\frac{h}{3h}\right)^3$	M1
	$=(\frac{1}{27})$	
	$ \frac{V_A}{V_{A+B}} = (\frac{l_A}{l_{A+B}})^3 \\ = (\frac{h}{2h})^3 \\ = (\frac{1}{8}) $ Volvof B: Vol of C = 7:19	31
	$= \frac{1}{8}$	M1
	VolorB: VolorC=7:19 Whatsapr	A1
18	∠PQR = 235 - 205 = 30° Delivery	M1
	$PR^2 = 35^2 + 45^2 - 2(35)(45)\cos 30^\circ$	M1
	= 522.0199781	
	$PR = \sqrt{522.0199781}$	
	= 22.8 km	A1

19	$\angle DOE = 180 - 35 - 35 = 110^{\circ}$	M1
	Area of segment = area of sector DOC – area of triangle DOC $= \frac{110}{360} \times \pi \times (7)^2 - \frac{1}{2}(7)(7) \sin 110^\circ$ $= 24.01415413$	M1, M1
	Area of section of circle = area of circle – 2 x area of segment = $\pi(7)^2 - 2(24.01415413)$	M1
	$=106cm^2$	A1
	OR	
	$\angle DOE = 180 - 35 - 35 = 110^{\circ}$	M1
	2 x (Area of sector BOD + Area of triangle DOE)	M1
	$= 2 \times \left(\frac{180 - 110}{360} \times \pi \times (7)^2 + \frac{1}{2}(7)(7)\sin 110^\circ\right)$ $= 2 \left(20.932396 + 23.224692\right)$	M1,M1
	= 2 (29.932396 + 23.224692) = $106cm^2$	A1
20a	Line L_I : $2y = 3x + 5$	3
	Line L_1 : $2y = 3x - 5$ Gradient = 1.5 Line L_2 : $y = 1.5x + 5.5$ or $2y = 3x + 11$ $area = \frac{5}{3} \times 8 = 13\frac{1}{3}$ units?	B1 B1
	Line L_2 : $y = 1.5x + 5.5$ or $2y = 3x + 11$	ы
20b	$area = \frac{5}{3} \times 8 = 13\frac{1}{3} \text{ units}^2$	B1
20c	$area = \frac{5}{3} \times 8 = 13\frac{1}{3} \text{ units}^2$ $tan \angle ABO = \frac{5}{2} = 1.5$	B1
	$\frac{\sqrt{3}}{3}$	
21a	$T = 2\pi \sqrt{\frac{l}{g}}$	
	$T = 2\pi \sqrt{\frac{l}{g}}$ $\frac{T}{2\pi} = \sqrt{\frac{l}{g}}$	
	$\left(\frac{T}{2\pi}\right)^2 = \frac{l}{g}$ $l = \frac{T^2 g}{4\pi^2}$	M1
	$l = \frac{T^2 g}{4\pi^2}$	A1

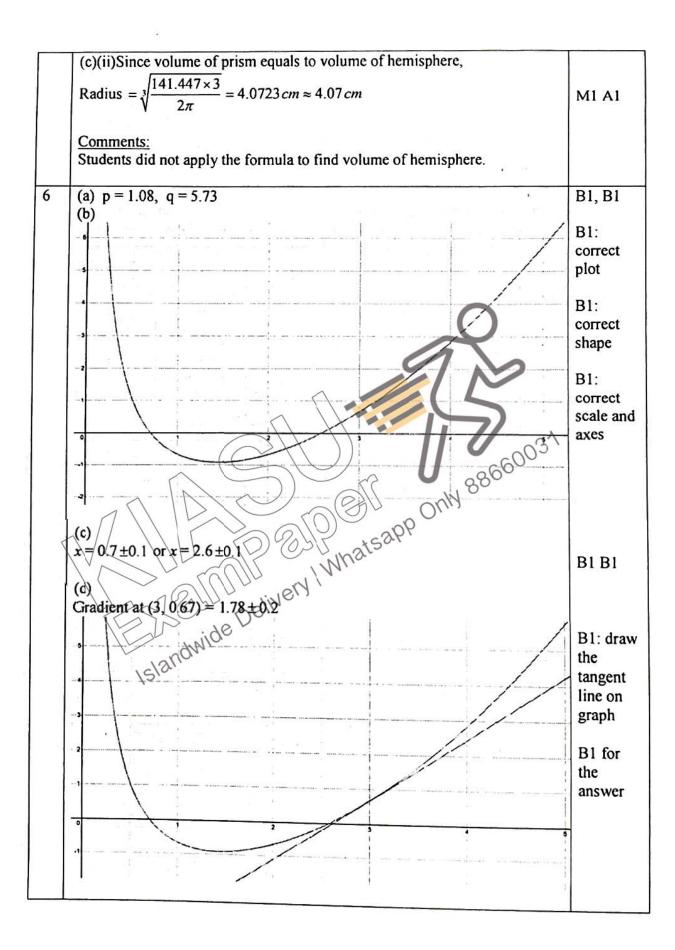
$21b l = \sqrt{5^2 + 2.5^2} = 5.59016994$	
Total surface area = curved SA of cone + curved surface area of	
cylinder + base area	
$= \pi(2.5)(\sqrt{31.25}) + 2\pi(2.5)(5) + \pi(2.5)^{2}$	M1, M1
	(any 2)
142 2 (2.0	
$= 142 \text{ cm}^2 (3\text{sf})$	A1
22a (6 5 3)(7.20)	M1
$R = \begin{pmatrix} 6 & 5 & 3 \\ 9 & 7 & 4 \\ 10 & 8 & 2 \end{pmatrix} \begin{pmatrix} 7.20 \\ 10.80 \\ 32 \end{pmatrix}$	
$ \mathbf{K} = 9 7 4 10.80 $	
(193.20)	A1
= 268.40	AI
(222.40)	
22b R represent the cost of each hamper.	B1
$T = (20 \ 25 \ 30)$	B1
22c $T = (20 \ 25 \ 30)$ 22d $(20 \ 25 \ 30)$ (268.40) = \$17246 23a $\frac{60}{200} \times 100\% = 16.7\%$))
22d 193.20 0 38660	M1
(20 25 30) 268.40	1,11
222.40	
=\$17246\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	A1
What	
23a $\frac{60}{360} \times 100\% = 16.7\%$	B1
360	
23b 30% rep 108° represent 36 boys	
1° represent $\frac{36}{100}$ boys	M1
s 108	1411
360° represent $\frac{36}{108} \times 360 = 120$ boys	A1
100	
No of boys in group $E = \text{Total boys} - \text{boys in } (A + B + C + D)$	
= 120 - 30 - 36 - 18 - 20	M1
= 16 boys	A1
	D.1
$24a \qquad 20-n$	B1
20	
$24b$ $\frac{20-n}{2} \times \frac{19-n}{2}$	
20 19	
$=\frac{(20-n)(19-n)}{200}$ or $=\frac{380-39n+n^2}{200}$	B1
380 380	12.

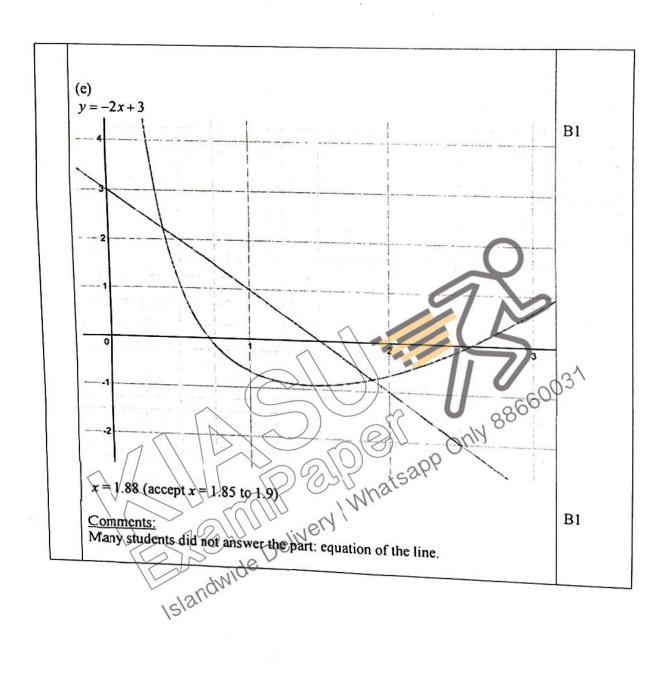
24c	$\frac{(20-n)(19-n)}{380} = \frac{39}{95}$ $(20-n)(19-n) = 156$ $380 - 20n - 19n + n^2 = 156$ $n^2 - 39n + 224 = 0 \text{ (Shown)}$	M1 A1
24d	$n^{2} - 39n + 224 = 0$ (n-32)(n-7) = 0	M1
	Either $n = 32$ or $n = 7$	M1
	No of yellow marbles = $20 - 7$ = 13	A1

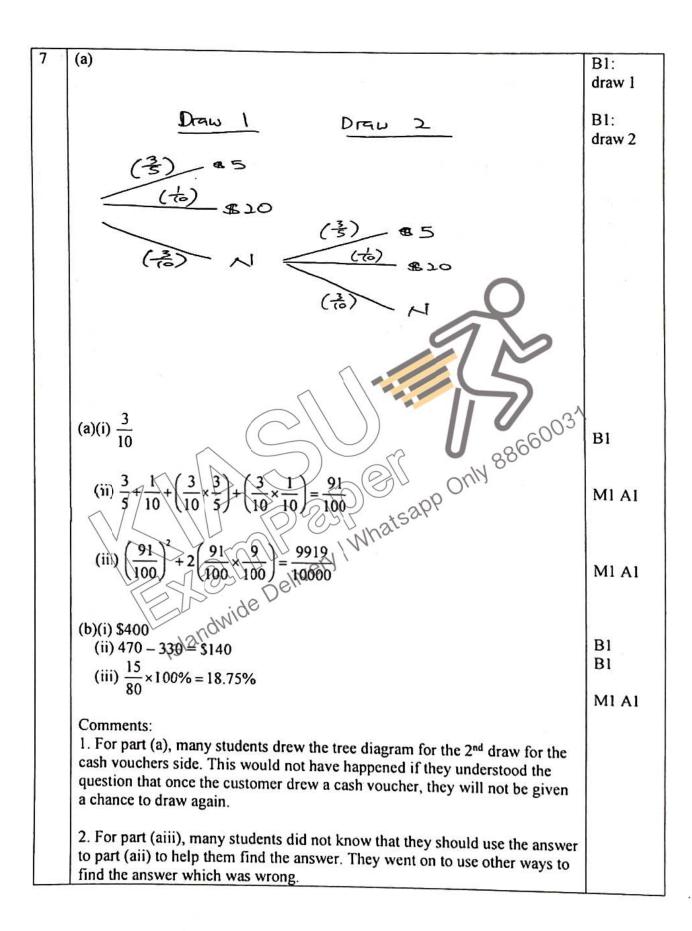
	2019 4E5N Prelims EMath P2 Mark Scheme	
Qn	Solution	Marks
la	$27a^4 - 3 = 3(9a^4 - 1)$	M1
	$=3\left[\left(3a^2\right)^2-1\right]$	
	$= 3(3a^2 - 1)(3a^2 + 1)$	Al
	Comments:	
	Students did not factorise $(9a^4 - 1)$	
1b	(i) $\frac{2(x-1)^2}{4y^3} \div \frac{6y(x-1)}{8y^2} = \frac{2(x-1)^2}{4y^3} \times \frac{8y^2}{6y(x-1)}$ $= \frac{2(x-1)}{3y^2}$ Comments: Students made careless mistake as they cancelled the powers instead of applying the indices rules (ii) $3 \times 3(3m-1) = 2(m-2)$	B1
	(ii) () (iii) (iii)	MI
	$\frac{3}{m-2} \frac{3(3m-1) - 2(m-2)}{3m-1} = \frac{3(3m-1) - 2(m-2)}{(m-2)(3m-1)}$ $= \frac{7m+1}{(m-2)(3m-1)}$	Al
	$=\frac{7m+1}{(m-2)(3m-1)}$	
	Comments:	
	Students made mistake when they expand $-2(m-2)$.	ı

lc		
110	$2^{2-x} = \frac{1}{\sqrt{5 x_0 1}}$	
	\(\frac{\sqrt{2^{2^{3}}}}{2^{3}}\)	
	$2^{2-x} = \frac{1}{\sqrt[3]{2^{5x+1}}}$ $2^{2-x} = 2^{-\frac{1}{3}(5x+1)}$	
	$2-x=-\frac{5}{3}x-\frac{1}{3}$	M1
	$\frac{2}{3}x = -\frac{7}{3}$	
	$x = -\frac{7}{2}$	Al
	Comments:	
	Students did not apply the indices rules $\frac{1}{a^{-m}} = a^m$, $\sqrt[3]{a} = a^{\frac{n}{2}}$ and $1 = a^{\frac{n}{2}}$	
	arm - a , va - a a 1 - a	
		
ld	(i)	
1	$x^2-8x-6=(x-4)^2-16-6$	1
	Comments: Majority of the students did it correctly. (ii) $(x-4)^2 - 22 = 0$ $(x-$	BI
	1,1880	
	Comments:	
	Majority of the students did it correctly.	
	Mind \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	() () () () () () () () () ()	MI
	(124) -22-0	IVII
	(x-4)=22 COS Delly	
	$x = 4 \pm \sqrt{22}$	A1, A1
	$x = -0.7 \text{ or } x \neq 8.7 \text{ (to 1 dp)}$	
	15/0	
	Comments:	
	Many students did not follow the instruction and use the requested method.	
	Some of them did not correct the answers to one decimal place.	
2	(a)(i) 3a - 2b	B1
	(ii) $\frac{3}{7}$ (3a - 2b)	
		B1
	(iii) 2a - b	Bl
	(iv) $a + \frac{1}{2}b$	MIAI
	2	15440 F08 640 F0F6

$\frac{(\mathbf{v})}{FD} = \overline{FB} + \overline{BC} + \overline{CD}$	
$= -\frac{1}{2}(2a-b) + \frac{1}{2}(2b) + \frac{3}{7}(3a-2b)$	MI
$=\frac{2}{7}\mathbf{a}+\frac{9}{14}\mathbf{b}$	Al
(b)(i) $\frac{2}{3}$	В1
(ii) $\frac{\text{Area of }\triangle \text{OBA}}{\text{Area of }\triangle \text{OCE}} = \frac{\frac{1}{2} \times OB \times OA \times \sin BOA}{\frac{1}{2} \times OC \times OE \times \sin BOA}$	=
2 XOC XOE XSIII BOA	M1
$= \frac{\frac{1}{2} \times 1 \times 2 \times \sin BOA}{\frac{1}{2} \times 2 \times 3 \times \sin BOA}$ Comments: Badly done. Students did not consider the direction of the vectors, answers	Al
without vector notation. Could not find the ratio of areas answers given with	E
units. 3a (i) $ \frac{19600}{98000} \times 100\% = 20\% $ (ii)	В1
Bank OCC	
$A = 78400 \left(1 + \frac{\frac{2.78}{2}}{100} \right)^{14} = \95114.73	В1
Interest paid = 95114.73 - 78400 = \$16714.73	В1


	$I = 78400 \times \frac{2.99}{100} \times 7 = \16409.12	BI	
	100	В1	2
	Choose Bank DBB as lesser interest charged.		
	Comments:		
	Students thought that the bank with more interest is to be chosen. Forgot that		8
	this is a loan.	=	(d
3b	(i) $2.25 \times 51 = \$114.75$	Bl	
	(ii)		
95	$2.08 \times 51 = RM106.08$	В1	
	(iii)(a)		
	Converting to Singapore dollars, Celine paid 106.08	M1	
	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Δ1	
	\bigcirc		
	(iii)(b) 286600	l Au	
	79.97 ×100% = 69.691% ≈ 69.7%	BI	
	She saves S\$79.97 weekly (iii)(b) 79.97 114.75 Comments: Students did not give answers correct to 2 decimal places. (a) (i) Angle DAT = 90° (tangent perpendicular to radius Angle AOD = 90° 740° = 50° (sum of angles in a triangle)		
	Comments:		
	Students did not give answers correct to 2 decimal places.		
4	(a) 20 Della	Di	
	(i) Angle DAT = 90° (tangent perpendicular to radius	BI	
	Angle AOD = 90 (Sum of angles in a arrange)		
	(ii) Angle $AOC = 50^{\circ} \times 2 = 100^{\circ}$	M1 A1	
	Angle ABC = $100^{\circ} \div 2 = 50^{\circ}$ (angle at centre = 2 times angle at Circumference)		
	The state of the s	1000	
	(iii) Angle ADC = $180^{\circ} - 50^{\circ} = 130^{\circ}$ (angles in opp segments)	ВІ	
	(iv) Angle OCD = $\frac{180^{\circ} - 50^{\circ}}{2}$ = 65° (Base angles of isosceles triangle)	ВІ	
	Comments: Students did not write the angle properties properly.		
1			


		T	
	$I = 78400 \times \frac{2.99}{100} \times 7 = \16409.12	BI	
	100	BI	
	Choose Bank DBB as lesser interest charged.		
	Comments:		
	Students thought that the bank with more interest is to be chosen. Forgot that this is a loan.		
1	tins is a toan.		
3b	(i)		
	$2.25 \times 51 = \$114.75$	B1	
1			
	(ii)	ВІ	
	$2.08 \times 51 = RM106.08$	ы	
1	(iii)(a)		
	Converting to Singapore dollars, Celine paid 106.08		
	\3.05	MI	
	She saves S\$79.97 weekly	Al	
		3	
	(iii)(b)	0	
	79.97		
	114.75 ×100% = 69.691% ≈ 69.7%	BI	
	1 / / Leapl		
	Comments:		
- 1	Students did not give answers correct to 2 decimal places.		
4	(iii)(b) 79.97 114.75 Comments: Students did not give answers correct to 2 decimal places. (a) (i) Angle DAT = 90° (tangent perpendicular to radius Angle AOD = 90° - 40° → 50° (sum of angles in a triangle)		
'	(i) Angle DAT = 901 (tangent perpendicular to radius	Bl	
	Angle AOD = $90^{\circ} - 40^{\circ} + 50^{\circ}$ (sum of angles in a triangle) (ii) Angle AOC = $50^{\circ} \times 2 = 100^{\circ}$	BI	
-	Island		
	(ii) Angle AOC $\stackrel{\checkmark}{=}$ 50° × 2 = 100°	M1 A1	
	Angle ABC = $100^{\circ} \div 2 = 50^{\circ}$ (angle at centre = 2 times angle at	A1	
	Circumference)		
		Control out and	
	(iii) Angle ADC = 180° – 50° = 130° (angles in opp segments)	BI	
	, and the second		
	(iv) Angle OCD = $\frac{180^{\circ} - 50^{\circ}}{2}$ = 65° (Base angles of isosceles triangle)	BI	
	2 (Dase angles of isosceles triangle)		
	Comments: Students did not write the angle properties properly		
	Students did not write the angle properties properly.		


2010 45 (2) 12 17 17 17 17 17 17 17 17 17 17 17 17 17			
Qn	2019 4E5N Prelims EMath P2 Mark Scheme Solution	Marks	
la	$27a^4 - 3 = 3(9a^4 - 1)$	M1	
	$= 3[(3a^{2})^{2} - 1]$ $= 3(3a^{2} - 1)(3a^{2} + 1)$	Al	
	Comments: Students did not factorise $(9a^4 - 1)$		
16	(i) $ \frac{2(x-1)^2}{4y^3} \div \frac{6y(x-1)}{8y^2} = \frac{2(x-1)^2}{4y^3} \times \frac{8y^2}{6y(x-1)} $ $ = \frac{2(x-1)}{3y^2} $ Comments: Students made careless mistake as they cancelled the powers instead of applying the indices rules (ii) $ \frac{3}{m-2} \times \frac{2}{3m-1} = \frac{3(3m-1)-2(m-2)}{(m-2)(3m-1)} $ $ 7m+1 $	B1	
	(1) Solivers	M1	
	$\frac{3}{m-2} - \frac{2}{3m-1} = \frac{3(3m-1)-2(m-2)}{(m-2)(3m-1)}$ $= \frac{7m+1}{(m-2)(3m-1)}$	Al	
	Comments: Students made mistake when they expand $-2(m-2)$.		

lc	$2^{2-x} = \frac{1}{\sqrt[3]{2^{5x+1}}}$ $2^{2-x} = 2^{-\frac{1}{3}(5x+1)}$	
		241
	$2 - x = -\frac{5}{3}x - \frac{1}{3}$	MI
	$\frac{2}{3}x = -\frac{7}{3}$	
	$x = -\frac{7}{2}$	Al
	Comments:	
	Students did not apply the indices rules $\frac{1}{a^{-m}} = a^m$, $\sqrt[3]{a} = a^{\frac{1}{3}}$ and $1 = a^0$.	et l
1d	(i) $x^2 - 8x - 6 = (x - 4)^2 - 16 - 6$	3^
	$=(x-4)^2-22$	Bl
	Comments: Majority of the students did it correctly.	
	(ii) $(x-4)^2 - 22 = 0$ (iii) $(x-4)^2 = 22$	M1
	$x = 4 \pm \sqrt{22}$ $x = -0.7 \text{ or } x = 8.7 \text{ (to 1 dp)}$	A1, A1
	(i) $x^2 - 8x - 6 = (x - 4)^2 - 16 - 6$ $= (x - 4)^2 - 22$ Comments: Majority of the students did it correctly: What 5×200 (ii) $(x - 4)^2 - 22 = 0$ ($x - 4$) $= 22$ $x = 4 \pm \sqrt{22}$ $x = -0.7$ or $x = 8.7$ (to 1 dp) Comments: Many students did not follow the instruction and use the requested method. Some of them did not correct the answers to one decimal place.	
2	(a)(i) 3a - 2b	
	86 (2009)25	B1
	(ii) $\frac{3}{7}$ (3a - 2b) (iii) 2a - b	Bl
		BI
	$(iv) a + \frac{1}{2}b$	MIAI

- 1		
	(b) $\tan 40^{\circ} = \frac{5}{3}$	MI
	$\tan 40^{\circ} = \frac{5}{TC}$ $TC = 5.9588 cm$	
	Area of $\triangle OTC = \frac{1}{2} \times 5.9588 \times 5 = 14.897 cm^2$	M1
	Area of sector ODC = $\frac{1}{2} \times (5)^2 \times \frac{50\pi}{180} = 10.908 \text{ cm}^2$	M1
	Area of shaded region = $14.897 - 10.908 = 3.989 \approx 3.99 \text{ cm}^2$	Al
	Comments: Some students could not find the area of sector correctly. Did not convert the angle from degrees to radians correctly or choose the right formula for area	
	of sector.	
5	(a) $3^2 = 8^2 + 8^2 - 2(8)(8)\cos ABF$	∧B1, B1
	(a) $3^{2} = 8^{2} + 8^{2} - 2(8)(8)\cos ABF$ $\angle ABF = \cos^{-1}\left(\frac{119}{128}\right)$ $= 21.6 \cdot (\text{shown})$ (b) Length of BE = $\sqrt{12^{2} + 8^{2}} = 14.422cm$ Area of triangle DCE = $\frac{1}{2} \times 8 \times 8 \times \sin 21.614^{\circ} = 11.787 cm^{2}$ Perpendicular height from E to CD = $\frac{2 \times 11.787}{8} = 2.94675 cm$	B1
	Length of BE = $\sqrt{12^2 + 8^2} = 14.422$ cm Area of triangle DCE = $\sqrt{1.88 \times 8 \times 8} \times 1.614^{\circ} = 11.787$ cm ²	MI
	Perpendicular height from E to CD = $\frac{2 \times 11.787}{8}$ = 2.94675 cm	мі
Į.	Angle of elevation = $\sin^{-1} \left(\frac{2.94675}{14.422} \right) = 11.8^{\circ}$	Al
	Comments: Students used the wrong triangle EDB to find angle of elevation of E from B and assumed that $\angle EDB = 90^{\circ}$.	
	(c)(i) Volume of prism = $11.787 \times 12 = 141.447 cm^3 \approx 141 cm^3$	MI AI

	3. For part (biii), many left their answers as 18.8 (correct to 3 sf), which is not right as the answer is 18.75 which is an exact answer, hence had to penalize students who rounded their answers to 3 sf.	
8	(a) $T_5 = \frac{1}{48}$	B1
	$T_4 = \frac{1}{17}$	
	$T_5 = \frac{1}{26}$	В1
	$Sum = \frac{1}{17} + \frac{1}{26} = \frac{43}{442}$	В1
	(c)(i) $T_5 = 5^3 + 13 = 138$	В1
	(ii) $T_n = n^3 + 2n + 3$	BI
	(ii) $T_n = n^3 + 2n + 3$ $a = 1, b = 0, c = 2, d = 3$ Comments: This question is ok and most students are able to get full marks. Those who did not made mistakes/gave up the last part which they should not have as it	B2: all correct B1: any 1
	did not made mistakes/gave up the last part which they should not have as it	correct
9	(a)(i) 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	was just an expansion of algebraic expression. (a)(i) Bearing = $270^{\circ} + \cos^{-1}\left(\frac{11^{2} + 5^{2} - 8^{2}}{2 \times 11 \times 5}\right) = 270^{\circ} + 41.801^{\circ} \approx 311.8^{\circ}$ (ii)	M2 A1
	(ii) Shearing = $180^{\circ} - (90^{\circ} - 41.8^{\circ}) = 131.8^{\circ}$	Ml Al
	(iii)	
	$\frac{8}{\sin 41.8} = \frac{11}{\sin ABC}$	Ml
	$\angle ABC$ (acute) = 66.4°	Al
	However, angle ABC is obtuse (seen from the diagram),	Al
	hence actual angle ABC = $180^{\circ} - 66.4^{\circ} = 113.6^{\circ}$	121 A I
	Reflex $\angle ABC = 360^{\circ} - 113.6^{\circ} = 246.4^{\circ}$	M1 A1
	OR	B1 B1

	$\cos ABC = \frac{8^2 + 5^2 - 11^2}{2 \times 5 \times 8}$ Angle $ABC = 113.5782^\circ$ Reflex $\angle ABC = 360^\circ - 113.5782^\circ = 246.4^\circ$ (to 1 dp) (iv) Area = $\frac{1}{2} \times 11 \times 5 \times \sin 41.8 = 18.3 km^2$	
	 (b) Point B. Point B is nearer to point A than point C Comments: Students lost marks in part (iii), especially those who used sine rule to get the angle ABC. Many did not find the obtuse angle ABC and used the acute angle ABC instead as they have forgotten that sin θ sin 180° -θ). Many students leave their answers to 3 sf for angles which is incorrect as it should be to 1 dp. Pls take note of this small but important detail 	
10	2. Many students leave their answers to 3 sf for angles which is incorrect as it should be to 1 dp. Pls take note of this small but important detail CBSH Card Petrol savings = 0.14 × 350 + 0.05 × 350 = \$66.50 Dining Savings = 0.05 × 400 = 20 Grocery savings = 0.05 × 100 = 5 Total savings = \$91.50 BSOP Card Petrol savings = 0 (asymmimum monthly spending on the card is less than \$1000) Grocery savings = 0.05 × 100 = 5 Total savings = \$57.50	B1 B1 B1 B1 B1 B1
	CBCO Card Petrol savings = $0.14 \times 350 + 0.043 \times 350 = \64.05 Dining Savings = $0.05 \times 400 = 20$ Grocery savings = $0.05 \times 100 = 5$ Total savings = $\$89.05$ He should apply for the CBSH card	B1 B1 B1

1. Some students use the amount that was listed in the criteria for the rebates/discount to be used: example, students used \$1,000 for calculation of savings for BSOP card rather than the expenses of Mr Wong which was given in the question. This is a result of misinterpreting the question.

88660031

2. Students cannot understand the term 'upfront discount' which means regardless of the amount spent, the discount will be given the moment the customer presents the card. Quite a number of students lost marks here.

www.KiasuExamPaper.com 444