Class	Full Name	Index Number

MATHEMATICS

Paper 1
Secondary 4 Express/ 4A1/ 5 Normal Academic
30 August 2019
2 hours
Additional Materials: Nil

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on all the work you hand in.
Write in dark blue or black pen on both sides of the paper.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all questions.
If working is needed for any questions it must be shown with the answer.
Omission of essential working will result in loss of marks.
Calculators should be used where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question. The total marks for this paper is 80 .

DO NOT OPEN THIS PAPER UNTIL YOU ARE TOLD TO DO SO

Setter: Mr Alvis Mazon Tan

For Examiner's use
80

This document consists of $\underline{\mathbf{2}}$ printed pages, including this cover page.

Answer all the questions.

1 Write down the following in ascending order.

$$
\begin{array}{llll}
\frac{25}{38} & \sqrt{0.49} & 0.60^{\frac{2}{3}} & 0.701
\end{array}
$$

Answer

2 (a) Expand and simplify $(2 x-1)(2-3 x)-3 x(2 x-5)$.

Answer (a)
(b) Factorise completely $24 a b-4 a c+p c-6 p b$.

Answer (b)

3 Calculate $\frac{13.5^{3}}{6.48-2.57}$, giving your answers corrected to 2 significant figures.

Answer

If the radius of a sphere increases by 10%, find the percentage increase in its volume.
\qquad

On a certain day the exchange rate between the pounds (£) and the Singapore dollars was $\mathrm{S} \$ 1.684=$ £ 1 .
(a) Calculate the amount of pounds that Renee can buy with $\mathrm{S} \$ 1263$.

Answer (a) $£=$
(b) After four weeks, she realized she has too much pounds and she now wants to change $£ 200$ back to Singapore dollars.
If the loss by this transaction is $\mathrm{S} \$ 6$, what is the current exchange rate? Leave your answers corrected to 4 decimal places.

$$
\text { Answer (b) } £ 1=\mathrm{S} \$ \text {. }
$$

Integers P and Q, written as products of their prime factors, are $P=2^{2} \times 3 \times k^{2}$ and $Q=2^{3} \times 7 \times k$, where k is a prime number.
(a) Express, in terms of k and as a product of its prime factors, the smallest possible integer which is exactly divisible by both P and Q.

> Answer (a)
(b) Find the smallest integer, n, such that 27 kn is a multiple of P. Give your answer in terms of k if necessary.

Kai Xuan has written down seven numbers.
The mean of these numbers is 8 , the median is 7 and the mode is 11 .
The smallest number is an even prime number and the largest number is eight times the smallest number.
The second and third numbers are consecutive numbers.
Find the seven numbers.
Answer =
\qquad

8
Rearrange the formula $v=\frac{-u^{2}+5}{u^{2}-a}$ and make u the subject of the formula.

Answer $u=$

The graph shows the total revenue, in billion dollars, of three different fast food chain.

State one aspect of the graph that may be misleading and explain how this may lead to a misinterpretation of the graph.

Answer

10 (a) Solve the inequalities $8+x<10+\frac{3}{2} x \leq 15.5-2 x$.

$$
\text { Answer (a) } x=
$$

(b) Hence, write down the largest rational number that satisfies

$$
8+x<10+\frac{3}{2} x \leq 15.5-2 x
$$

$$
\begin{gathered}
T_{1}=\frac{2}{1}-\frac{3}{2} \\
T_{2}=\frac{3}{2}-\frac{4}{2^{2}} \\
T_{3}=\frac{4}{2^{2}}-\frac{5}{2^{3}} \\
T_{4}=\frac{5}{2^{3}}-\frac{6}{2^{4}} \\
\vdots
\end{gathered}
$$

(a) Write down the $n^{\text {th }}$ line and show that it can be expressed as $T_{n}=\frac{n}{2^{n}}$.
Answer(a)
(b) Hence or otherwise, evaluate the following sum and leave your answer as a fraction.

$$
T_{1}+T_{2}+T_{3}+\ldots \ldots \ldots \ldots \ldots \ldots . T_{11}
$$

$A=\{$ points lying on the line $2 \mathrm{x}+\mathrm{y}=8\}$
$B=\{$ points lying on the line $3 \mathrm{x}-4 \mathrm{y}=12\}$
$C=\{$ points lying on the line $\mathrm{m}-4 \mathrm{y}=\mathrm{c}\}$
(a) Is $(-1,6) \in A$? Explain your answer clearly.
(b) Find the element p such that $p \in(A \cap B)$.

Answer (b) $p=$
(c) Write down a possible value of m and of c such that $B \cap C=\emptyset$.

13 The diagram below shows an irregular hexagon .
Calculate the value of $a+b+c+d+e+f$.

Answer -

Jia Lung invested some money in the savings account for 4 years. The rate of compound interest was fixed at 4% per annum compounded anually.
At the end of 4 years, there was $\$ 8436.48$ in her account.
How much did Jia Lung invest in the account?

Akshay jogs at a speed of $10 \mathrm{~km} / \mathrm{h}$.
One evening he jogged around his neighborhood for 1 hour 30 minutes.
(a) Calculate the distance that Akshay covered.
(b) Given that the scale of the neighbourhood is $1: 25000$, find in cm , the map distance that he covered.

$$
\operatorname{Answer}(b)=.
$$

cm
(c) A reservoir located in his neighbourhood occupies a total area of $1.70 \mathrm{~cm}^{2}$ on the map. What is the actual area, in m^{2}, of the reservoir?

Answer (c)..................................m ${ }^{2}$
$P Q R$ is a right-angled triangle. $Q R T$ is a straight line. $P R=12 \mathrm{~cm}$ and $Q R=19 \mathrm{~cm}$.

Find the values of the following, giving your answer to two decimal places where necessary.
(a) $\tan \angle P Q R$

> Answer (a)
(b) $\cos \angle T R P$

In the diagram, O is the centre of the circle $B C D$ with radius 20 cm and $C D$ is the diameter of the circle. The ratio of the length AB to the length AD is 0.5 .
A is a point on $B C$ produced such that $A D$ is a tangent to the circle at D.

Calculate the area of the shaded region.

The table below shows the ages of 16 employees who work part-time at a cafe.

20	21	16	23
22	17	19	65
23	22	17	22
23	19	19	18

(a) Complete the dot diagram to show the distribution of the ages of the employees.

Answer (a)

(b) Find the median of the distribution of ages.
Answer (b) Median = years
(c) Calculate the mean age of the employees.

Answer (c) Mean = \qquad years
(d) Pranav made the following statement:
"The mean is the most accurate way to determine the average age of the employees."
Validate if Pranav statement is true.

Allyson participates in a game show. In order to win a prize, she has to navigate through a maze.
The prize is located at checkpoint X. There are no prizes awarded at checkpoint Y and Z.
The diagram below shows four junctions A, B, C and D in the maze.
Once Allyson runs pass a junction, she is not able to make a turnaround.

The probability that Allyson goes straight, without changing direction, at every junction is $\frac{3}{7}$.

(a) Find the probability that Allyson hits the dead end.

> Answer (a)
(b) Find the probability that Allyson wins a prize.

Answer (b)

(a) Find the ratio of the height of the smaller jug to the ratio of the height of the larger jug.

> Answer (a)
\qquad :
(b) The curved surface area of the smaller jug is $63 \mathrm{~cm}^{2}$.

Find the curved surface area of the larger jug.

Answer (b)
cm^{2}
(c) The capacity of the larger jug is 2.5 litres. Find the capacity of the smaller jug. Give your answer in cubic centimetres.
(a) Express $\overrightarrow{R P}$ as a column vector.
Answer (a) =
(b) The point J lies on $\overrightarrow{R P}$ produced such that $\overrightarrow{P J}=m \overrightarrow{R P}$

Show that $\overrightarrow{O J}=\binom{3+m}{2-2 m}$

The diagram shows the speed time graph of a car. The car starts from rest and accelerates uniformly to a speed of $15 \mathrm{~m} / \mathrm{s}$ in 10 seconds.
The car then travels at a constant speed for some time before it decelerates uniformly at $0.75 \mathrm{~m} / \mathrm{s}^{2}$ until it comes to rest.
The whole journey takes one minute.

(a) Given that the speed of the car after x seconds is $v \mathrm{~m} / \mathrm{s}$, express v in terms of x.

Answer $v=$.
(b) For how long does the car travel at the maximum speed?

Answer
(c) Calculate the total distance travelled by the car during this 1 minute journey.
(d) Hence, sketch the distance time graph for the whole journey, indicating all relevant values in your sketch.

\sim End of Paper ~

Class	Full Name	Index Number

PRELIMINARY EXAMINATION

MATHEMATICS
 Paper 2

Secondary 4 Express / 5 Normal Aacdemic / 4A1

3 September 2019
Candidates answer on the Question Paper.
Additional Materials: Graph Paper (1 sheet)

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on all the work you hand in.
You may use a pencil for any diagrams or graphs.
Do not use staples, highlighters, glue or correction fluid.
Answer all questions.
If working is needed for any questions it must be shown with the answer.
Omission of essential working will result in loss of marks.
Calculators should be used where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question. The total marks for this paper is 100 .

DO NOT OPEN THIS PAPER UNTIL YOU ARE TOLD TO DO SO

This document consists of $\underline{\mathbf{2 1}}$ printed pages, including this cover page.

Answer all the questions.
1 (a) Solve the inequality $\frac{x+2}{3} \geq \frac{4-x}{7}$.
(b) Express as a single fraction in its simplest form $\frac{2 x}{(3 x-5)^{2}}+\frac{x}{5-3 x}$.
(c) Simplify $\left(\frac{27 a^{6}}{b^{12}}\right)^{-\frac{1}{3}}$.
[2]
(d) Simplify $\frac{24 p^{3} q^{2}}{5 r^{3}} \div \frac{8 p^{4} r}{15 q^{3}}$.
[2]
(e) Solve the equation $\frac{15}{x+2}=2 x+3$

2 A series of diagrams of shaded and unshaded small squares is shown below. The shaded squares are those which lie on the diagonals of the diagram.

(a) Copy and complete the table below.

Diagram, \boldsymbol{n}	1	2	3	4	5
Number of shaded squares, \boldsymbol{S}	1	5	9		
Number of unshaded squares, \boldsymbol{U}	0	4	16		
Total number of squares, \boldsymbol{T}	1	9	25		

(b) By observing the number patterns, without drawing further diagrams,
(i) write down the total number of squares in diagram 12,
(ii) find an expression, in terms of n, for the total number of squares, \boldsymbol{T}.
(c) (i) Find an expression, in terms of n, for the number of shaded squares, \boldsymbol{S}.
(ii) Write down the number of the diagram that has 41 shaded squares.
(d) Hence, or otherwise, find an expression, in terms of n, for the number of unshaded squares, \boldsymbol{U}.
$3 \quad P$ is the point $(-5,12)$ and Q is the point $(5,-4)$
(a) Find the length of $P Q$.
(b) Find the equation of the line $P Q$.
(c) The equation of the line l_{1} is $8 x+5 y+10=0$.
(i) Show how you can decide whether the line l_{1} does or does not intersect the line $P Q$?
(ii) The equation of line l_{2} is $3 y=4 x-39$.

Find the coordinates of the point of intersection of the line l_{1} and the line l_{2}.

3 Mrs Tan is a Korean Language teacher.
She conducts classes for basic and advaced students on weekdays and weekends. Each student has a 15 -week block of lessons with one lesson per week.
The matrix K shows the number of students she teaches each week in one 15 -week block.

> Basic Advanced
> $\mathbf{K}=\left(\begin{array}{cc}12 & 3 \\ 5 & 8\end{array}\right)$ Weekday \quad Weekend
(a) Evaluate the matrix $\mathbf{P}=15 \mathrm{~K}$.
(b) Mrs Tan charges $\$ 20$ for each basic lesson and $\$ 32$ for each advanced lesson. Represent the lesson charges in a 2×1 matrix \mathbf{L}.
(c) Evaluate the matrix $\mathbf{T}=\mathbf{P L}$.
(d) State what the elements of \mathbf{T} represent.
(e) Mrs Tan wants to attract more students, so in the next 15-week block she reduces her prices by 10%.
For this block of lessons, on weekdays she has 15 basic students and 5 advanced students.
On weekends she has 7 basic students and 6 advanced students.
Calculate the total amount of money she earns for this 15 -week block of lessons.

5 The cumulative frequency graph shows the distribution of the age groups of the Fitness First club.
(a)

> Cumulative Frequency

Age
(i) Complete the grouped frequency table for the ages of the members.

Age (x)	$20 \leq x<30$	$30 \leq x<40$	$40 \leq x<50$	$50 \leq x<60$	$60 \leq x<70$
Frequency	10				15

(ii) Calculate the mean age of each member.
(iii) Calculate the standard deviation.
(iv) Find the percentage of members whose age is 30 years old and above but less than 60 years old.
(v) A magazine article stated that citizens aged 50 and above are less active than those aged below 40.
Comment on whether the data from the Fitness First club supports this claim.
(b) The table below gives information about the ages of the members in the Any Time Fitness club.

	Members aged under 50	Members aged 50 or over
Male	50	34
Female	36	30

(i) One of these members is selected at random.

Find, as a fraction in its lowest terms, the probability that he or she is under 50.
(ii) Two of the members are selected at random.

Find the probability that
(a) both members are female,
(b) they are both aged 50 or over, but only one is a male member.

6 A litre of 95-octane unleaded petrol cost $\$ x$ in January 2019.
(a) Mr Ang paid $\$ 85.50$ for his petrol. Write down in terms of x, the amount of petrol bought.

Mr Bala paid $\$ 100$ for his 98 -octane unleaded petrol which cost 25 cents more per litre.
(b) Write down in terms of x, the amount of petrol bought by Mr Bala.
(c) If Mr Ang received 2 litres less petrol than Mr Bala, write down an equation to represent this information and show that it can reduce to

$$
\begin{equation*}
16 x^{2}-112 x+171=0 \tag{3}
\end{equation*}
$$

(d) Solve the equation $16 x^{2}-112 x+171=0$.
(e) The price of the 98-octane unleaded petrol in January 2019 was a reduction of 7% on the price in December 2018.
Find the price of the 98 -octane unleaded petrol in December 2018 if it cost less than $\$ 3$ for a litre of 95 -octane unleaded petrol in January 2019.

7 The diagram shows a container consisting of a square bottom with rectangular sides, each 20 cm by 4 cm , and a regular pyramid on top with perpendicular height given by $V X$. Water is poured into the container till the brim of the cuboid.

(a) Find the height $V X$ of the pyramid.
(b) Calculate the total surface area of the container.
(c) Find the volume of water in the cuboid.

The container is now inverted as shown in the diagram below.

(d) Calculate the depth of the water in the pyramid when inverted.
(e) Another smaller container, which is geometrically similar, has a square base of $225 \mathrm{~cm}^{2}$. Both containers are made of the same material.
Find the mass of the smaller container in grams, given that the mass of the empty larger container is 1.28 kg .

8 In the diagram, $O A B C$ is a parallelogram and D is the midpoint of $B C . B E$ and $O C$ produced intersect at the point $F . B E: B F=1: 3$ and $O C: O F=1: 2$. Let $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O C}=\mathbf{c}$.

(a) Express and simply the following vectors in terms of a and \mathbf{c}.
(i) $\overrightarrow{A C}$
(ii) $\overrightarrow{B F}$
(iii) $\overrightarrow{O D}$

$$
\begin{equation*}
\text { (iv) } \overrightarrow{O E} \tag{2}
\end{equation*}
$$

(b) State two facts about the vectors $\overrightarrow{O D}$ and $\overrightarrow{O E}$ from the results in (a).
(c) Find the ratio of the areas of

$$
\text { (i) } \triangle O D F \text { and } \triangle O E F
$$

(ii) $\triangle O C D$ and $O A B C$,
(iii) $\triangle O C D$ and $O A B F$.

9 Two school teams, Novotel and Temasek, are participating in an Amazing Race in Bishan Park. The diagram shows the paths in the park.
The teams assemble at P before heading to Q to start the race.
P is due north of R.
The bearing of R from Q is 241°.
The distance $P R$ is 72 metres and the distance $R Q$ is 85 metres.
(a) Find the distance $P Q$.

(b) The final station of the race is at R, each team is required to find a clue that is hidden at point S before completing the race at R. The bearing of S from R is 099° and $Q S$ is 54 metres.
Given that there are two possible locations for S, find the two possible values of angle RSQ.
(c) Both teams manage to find the clue at the same time and team Novotel is closer to R than team Temasak.
Team Novotel claims that they are the winner.
Given that the speed of team Novotel is 30\% less than the speed of team Temask when they travel from S to R.
Do you agree with team Novotel that they will win the race?
Justify your answer with clear working in your calculations.

10 Answer the whole of this question on a sheet of graph paper.

The table below gives some values of x and the corresponding values of y for $y=x(1+x)(5-x)$.

x	-2	-1	-0.5	1	2	3	4	5
y	14	0	-1.375	8	18	p	20	0

(a) Find the value of p.
(b) Using a scale of 2 cm to 1 unit, draw a horizontal x-axis for $-2 \leq x \leq 5$. Using a scale of 2 cm to represent 5 units, draw a vertical y-axis for $-5 \leq y \leq 25$.
On your axes, plot the points given in the table and join them with a smooth curve.
(c) By drawing a tangent, find the gradient of the curve where $x=4$.
(d) (i) On the same axes, draw the line $2 x+y=12$ for $-2 \leq x \leq 5$.
(ii) Write down the x-coordinates of the points where this line intersects the curve.
(iii) The x-coordinates of the points where the two graphs intersect are solutions of the equation $x^{3}+A x^{2}+B x+12=0$. Find the value of A and the value of B.

MATHEMATICS Paper 1

Secondary 4 Express/ 4A1/ 5 Normal Academic 30 August 2019

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on all the work you Write in dark blue or blackpen on both sides of the paper.
You may use a pencil for anx diagrams or graphs.
Do not use staptes, paper clips, hightighters, groe or correctionfluid.
Answer all questions.
If working is needed for any questions it must be shown with the answer.
Omission of essential workiges will resultinioss of marks.
Calculators shoutd be used where @propriate.
If the degree of accuracy is notspecified in the question, and if the answer is not exact, give the answer to three signifieant figures. Give answers in degrees to one decimal place.
For π, use either yourcalculator value or 3.142 , unless the question requires the answer in terms of π.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question. The total marks for this paper is 80 .

DO NOT OPEN THIS PAPER UNTIL YOU ARE TOLD TO DO SO

Setter: Mr Alvis Mazon Tan

For Examiner's use
80

This document consists of $\underline{\mathbf{0}} \underline{\text { printed pages, including this cover page. }}$

Mathematical Formulae

Compound interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration
Curve surface area of a cone $=\pi r l$
Surface area of a sphere $=4 \pi r^{2}$ Volume of a cone $=\frac{1}{3} \pi r^{2} h$

Trigonometry

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

Answer all the questions.
1
Write down the following in ascending order.

$$
\begin{aligned}
& \frac{25}{38} \sqrt{0.49} \quad 0.60^{\frac{2}{3}} 0.701 \\
& \frac{25}{38} \sqrt{0.49}, 0.701 \quad 0 \cdot 60^{\frac{2}{3}} \\
& \text { Answer } \ldots \ldots
\end{aligned}
$$

2 (a) Expand and simplify $(2 x-1)(2-3 x)-3 x(2 x-5)$.

$$
\begin{aligned}
& (2 x-1)(2-3 x)-3 x(2 x-5) \\
= & 4 x-6 x^{2}-2+3 x-6 x^{2}+15 \\
= & -12 x^{2}+22 x-2 \\
= & -2\left(6 x^{2}-11 x+1\right)=[A 1]
\end{aligned}
$$

3 Calculate $\frac{13.5^{3}}{6.48-2.57}$, giving your answers corrected to 2 significant figures.

4 If the radius of a sphere increases by 10%, find the percentage increase in its volume.

$$
\begin{aligned}
& \frac{\frac{4}{3} \pi r^{3}(1.1)^{3}-\frac{4}{3} \pi r^{3}}{\frac{4}{3} \pi r^{3}} \times 100 \% \quad[\mathrm{M} /] \\
& =33.1 \% \quad[\mathrm{Al}]
\end{aligned}
$$

On a certain day the exchange rate between the 20 (£) And the Singapore dollars was $\mathrm{S} \$ 1.684=£ 1$.
(a) Calculate the amount of pounds that Renee can buy

(b) After fur weekgishe realized she has too much pounds and she now wants to change £20QBack to Singapore dollars.
If the $10 \$ \$$ by this transaction is $S \$ 6$, what is the current exchange rate? Leave your answers corrected to 4 decimal places.

$$
\begin{aligned}
& \text { with reference to the original exchange rate } \\
& \mathcal{L} 200=5 \$ 1.684 \times 200 \\
& =S \$ 336.80 \\
& \text { S } \$ 336.80-5 \$ 6=5 \$ 330.8 \\
& \text { New exchange rate: } \\
& \frac{S \$ 330.8}{\substack{\{200 \\
[\mathrm{MI}]}}=\underset{\text { Answer (b) } £ 1=\mathrm{S} \$. .1 .: 654.4 .}{ }
\end{aligned}
$$

Integers P and Q, written as products of their prime factors, are $P=2^{2} \times 3 \times k^{2}$ and $Q=2^{3} \times 7 \times k$, where k is a prime number.
(a) Express, in terms of k and as a product of its prime factors, the smallest possible integer which is exactly divisible by both P and Q.

$$
L \cdot C \cdot M=2^{3} \times 3 \times 7 \times k^{2} \quad[B 1]
$$

$$
\text { Answer (a) } 2^{3} \times 3 \times 7 \times k^{2}
$$

(b) Find the smallest integer, n, such that 27 kn is a multiple of P. Give your answer in terms of k if necessary.

Kai Yuan has written down seven numbers.
The mean of these numbers is 8 , the median is 7 and the mode is 11 .
The smallest number is an even prime number and the largest number is eight times the smallest number.
The second and third numbers are consecutive numbers.
Find the seven numbers.

$$
\begin{equation*}
\pm \sqrt{\frac{a v+s}{(v+!)}} \tag{3}
\end{equation*}
$$

The graph shows the total revenue, in billion dollars, of three different fast food chain.

 revenue is more than 3 times of the latter $[B 1]$
(a) Solve the inequalities $8+x<10+\frac{3}{2} x \leq 15.5-2 x$.

$$
\begin{aligned}
& 8+x<10+\frac{3}{2} x \text { and } 10+\frac{3}{2} x \leqslant 15 \cdot 5-2 x \text { [MI] } \\
&-\frac{1}{2} x<2 \text { and } x \leqslant \frac{11}{7} \\
& \therefore x>4 \text { and } x \leqslant \frac{11}{7}\left[\mathrm{MI}^{3}\right]
\end{aligned}
$$

The solution is $-4<x \leqslant \frac{11}{7} \bigcirc[1]$

(b) Hence, write down the largest rational number that satisfies

$$
8+x<10+\frac{3}{2} x \leq 15.5-2 x
$$

$$
\text { Answer (b) } x=\ldots \ldots \ldots \ldots
$$

11 The first four terms in a sequence of numbers $T_{1}, T_{2}, T_{3}, T_{4}$ are as follow

$$
\begin{aligned}
& T_{1}=\frac{2}{1}-\frac{3}{2} \\
& T_{2}=\frac{3}{2}-\frac{4}{2^{2}} \\
& T_{3}=\frac{4}{2^{2}}-\frac{5}{2^{3}} \\
& T_{4}=\frac{5}{2^{3}}-\frac{6}{2^{4}}
\end{aligned}
$$

(a) Write down the $n^{\text {th }}$ line and show that it can be expressed as $T_{n}=\frac{n}{2^{n}}$.

(b) Hence or otherwise j evaluate the following sum and leave your answer as a fraction.

$$
T_{1}+T_{2}+T_{3}+\ldots \ldots \ldots \ldots \ldots \ldots \cdot T_{11}
$$

$$
\text { [MI] }\left\{\begin{align*}
T_{1}+T_{2}+\cdots T_{11} & =\left(\frac{2}{1}-\frac{3}{2}\right)+\left(\frac{3}{2}-\frac{4}{2^{2}}\right)+\left(\frac{4}{2^{2}}-\frac{5}{2^{3}}\right) \\
& \left(\frac{11}{2^{9}}-\frac{12}{2^{10}}\right)+\left(\frac{12}{2^{10}}-\frac{13}{2^{11}}\right) \\
= & \frac{2}{1}-\frac{13}{2^{11}} \\
= & \frac{4083}{2048} \quad \text { Answer (b) } \frac{4083}{2048} \tag{2}\\
& {[A 1] }
\end{align*}\right.
$$

$A=\{$ points lying on the line $2 \mathrm{x}+\mathrm{y}=8\}$
$B=\{$ points lying on the line $3 x-4 y=12\}$
$C=\{$ points lying on the line $m x-4 y=c\}$
(a) Is $(-1,6) \in A$? Explain your answer clearly.

$$
\begin{aligned}
& \text { Sub(}-1,6 \text {) into " } A^{\prime \prime} \\
& \angle \cdot H \cdot S=2(-1)+6=4 \\
& R \cdot H \cdot S=8, \operatorname{since} \angle \cdot H \cdot \leqslant=R \cdot H \cdot S,(-1,6) \notin A_{\mu}[B 1]
\end{aligned}
$$

(b) Find the element p such that $p \in(A \cap B)$.

(c) Write down a possible value of m and of c such that $B \cap C=\emptyset$.

$$
B \cap C=\phi \Rightarrow \text { No solution. }
$$

The line $y=\frac{3}{4} x-3$ and $m x-4 y=c$ most be parallel but cannot have the same y-intercept.

$$
\begin{aligned}
\therefore m & =3 \\
C & {[B 1] } \\
& {[B 1] }
\end{aligned}
$$

Answer (c) $m=\ldots \ldots \ldots \ldots \ldots \ldots \ldots$

$$
c=\underbrace{\ldots \ldots \ldots \ldots \ldots \ldots}
$$ Calculate the value of $a+b+c+d+e+f$.

Sum of interior x in a hexagon: $(6-2) \times 180^{\circ}$

How nth didfrial Lung invest in the account?

$$
\begin{aligned}
& \phi^{2}=P\left(1+\frac{r}{100}\right)^{n} \\
& 8436.48=P\left(1+\frac{4}{100}\right)^{4} \quad \text { [MI] } \\
& 8436.48=P(1.04)^{4} \\
& P=\frac{8436.48}{(1.04)^{4}}=\$ 7211.54 \Rightarrow \quad \text { [AI] } \\
& \\
& \text { Anvers. } 7211.54
\end{aligned}
$$

One evening he jogged around his neighborhood for 1 hour 30 minutes.
(a) Calculate the distance that Akshay covered.

$$
\begin{aligned}
& 10 \mathrm{~km} / \mathrm{h} \times 1.5 \mathrm{~h} \\
& =15 \mathrm{~km}[\mathrm{BI}]_{\text {Answer }(a)=\ldots .15} \mathrm{k} . \mathrm{n}_{\mathrm{m}}
\end{aligned}
$$

(b) Given that the scale of the neighbourhood is 1:25000, find in cm , the map distance that he covered.

$$
\begin{aligned}
& 1 \mathrm{~cm}: 25000 \mathrm{~cm} \\
& 1 \mathrm{~cm}: 0.25 \mathrm{~km} \\
& 15 \mathrm{~km} \Rightarrow 15 \mathrm{~km}
\end{aligned}
$$

(c) the map. What is the actualdarea, in m^{2}, of the reservoir?

$$
\begin{aligned}
& 1.70 \mathrm{~cm}^{2}: 1.70 \times 62500 \mathrm{~m}^{2} \\
&= 106250 \mathrm{~m}^{2} \\
& 1 \mathrm{~cm}^{2}: 625000000 \mathrm{~cm}^{2} \text { [MI] } \\
& \text { [Al] }
\end{aligned}
$$

$P Q R$ is a right-angled triangle. $Q R T$ is a straight line.
$P R=12 \mathrm{~cm}$ and $Q R=19 \mathrm{~cm}$.

Find the values of the following, giving your answer to two decimal places where necessary.
(a) $\tan \angle P Q R$
(b)

$$
Q P=\sqrt{19^{2}-12^{2}}
$$

$$
\text { Answer (a) } 0.81
$$

$$
=\frac{-12}{19}
$$

[Al]

17 In the diagram, O is the centre of the circle $B C D$ with radius 20 cm and $C D$ is the diameter of the circle. The ratio of the length AB to the length AD is 0.5 .
A is a point on $B C$ produced such that $A D$ is a tangent to the circle at D.

Calculate the area of the shaded region.

$$
\begin{aligned}
& \Varangle A D B=\sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6} \text { rand }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
& \text { region }= \text { Area of } \\
& \text { sector } \\
& O B D
\end{aligned}-\begin{array}{|c}
\text { Area of } \\
\triangle O B D
\end{array} \\
& =\frac{1}{2}(20)^{2}\left(\frac{\pi}{3}\right)-\frac{1}{2}(20)^{2} \sin \left(\frac{\pi}{3}\right)[\mathrm{MI}] \\
& =36.2 \mathrm{~cm}^{2} \text {. }
\end{aligned}
$$

\qquad cm^{2}

The table below shows the ages of 16 employees who work part-time at a cafe.

20	21	16	23
22	17	19	65
23	22	17	22
23	19	19	18

(a) Complete the dot diagram to show the distribution of the ages of the employees.

(c) Catenate the mean age of the employees.

$$
\begin{align*}
& \text { slandiede }=\frac{\sum f x}{\sum f}=\frac{366}{16}=22.9 \quad[B 1] \tag{1}\\
& 22.9
\end{align*}
$$

(d) Pranav made the following statement:
"The mean is the most accurate way to determine the average age of the employees" Validate if Pranav statement is true.
(1) Not Valid
[BI]
(2) Mean is affected by extremal points in the data set. [BI]

Allyson participates in a game show. In order to win a prize, she has to navigate through a maze.
The prize is located at checkpoint X. There are no prizes awarded at checkpoint Y and Z.
The diagram below shows four junctions A, B, C and D in the maze.
Once Allyson runs pass a junction, she is not able to make a turnaround.

The probability that Allyson goes straight, without changing direction, at every junction is $\frac{3}{7}$.

(a) Find the probability that Allyson hits the dead end.

(b) Find the probability that Allyson wins a prize.

$$
\begin{aligned}
& P(\text { Allyson wins apprize }) \\
= & \left(\frac{4}{7} \times \frac{4}{7} \times \frac{4}{7}\right)+\left(\frac{4}{7} \times \frac{3}{7} \times \frac{4}{7}\right) \quad[M 2] \\
= & \frac{64}{343}+\frac{48}{343} \\
= & \frac{112}{343}[A 1] \quad \frac{112}{343}
\end{aligned}
$$

(a) Find the ratio of the height of the smaller jug to the ratio of the height of the larger jug.

$$
\left(\frac{h_{\text {shall }}}{h_{\text {large }}}\right)^{2}=\frac{45}{125} \Rightarrow \frac{h_{\text {shall }}}{h_{\text {large }}}=\sqrt{\frac{45}{125}} \frac{3}{5}[B 1]
$$

(c) The capacity of the larger jug is 2.5 litres. Find the capacity of the smaller jug. Give your answer in cubic centimetres.

$$
\begin{aligned}
\left(\frac{3}{5}\right)^{3} & =\frac{V_{\text {small }}}{2.5 \lambda} \quad[\mathrm{ml}] \\
V_{\text {small }} & =\frac{27}{125} \times 2.51 \\
& =0.54 \lambda \\
& =540 \mathrm{~cm}^{3} /[A 1]
\end{aligned}
$$

$$
\text { Answer (c) } 540 \ldots \ldots . \mathrm{cm}^{3}
$$

(a) Express $\overrightarrow{R P}$ as a column vector.

$$
\begin{aligned}
\overrightarrow{R P} & =\overrightarrow{R O}+\overrightarrow{O P} \\
& =\overrightarrow{Q P}+\overrightarrow{O P} \\
& =-\overrightarrow{P Q}+\overrightarrow{O P} \quad[M I] \\
& =\binom{-2}{-4}+\binom{3}{2} \\
& =\binom{1}{-2} \quad[A 1]
\end{aligned}
$$

(b) The point J lies on $\overrightarrow{R P}$ produced such that $\overrightarrow{P J}=m \overrightarrow{R P}$

Show that $\overrightarrow{O F}=\binom{3+m}{2-2 m}$

$$
=m(\overrightarrow{R P})+\overrightarrow{O P}
$$

$$
=m\binom{1}{-2}+\binom{3}{2}
$$

$$
=\binom{m}{-2 m}+\binom{3}{2}
$$

$$
=\binom{3+m}{2-2 m}_{\mathbb{K}} \text { (shown) [A1] }
$$

The diagram shows the speed time graph of a car. The car starts from rest and accelerates uniformly to a speed of $15 \mathrm{~m} / \mathrm{s}$ in 10 seconds.
The car then travels at a constant speed for some time before it decelerates uniformly at $0.75 \mathrm{~m} / \mathrm{s}^{2}$ until it comes to rest.
The whole journey takes one minute.

(a) Given that the speed of the ear after x seconds is $v \mathrm{~m} / \mathrm{s}$. exp res v in tennis of x.

(b) For how long does the car frayed (at the maximum speed?

Lets the timenurere he ends at constant speed be t.

$$
\begin{gather*}
\text { sandy! } \frac{(0-15) \mathrm{m} / \mathrm{s}}{(60-t) \mathrm{s}}=-0.75 \mathrm{~m} / \mathrm{s}^{2} \quad[\mathrm{M} \cdot] \\
\therefore t=40 \mathrm{~s} \quad 30
\end{gather*}
$$

Duration: $40 \mathrm{~s}-10 \mathrm{~s}=30 \mathrm{~s}$ xt $\quad[\mathrm{Al}]$

(c) Calculate the total distance travelled by the car during this 1 minute journey.

$$
\begin{aligned}
& \frac{1}{2}(60+30) \times 15 \mathrm{~m} / \mathrm{s} \quad[\mathrm{MI}] \\
& =675 \mathrm{~m} \quad[\mathrm{Al}]
\end{aligned}
$$

$$
675 \mathrm{~m}
$$

(d) Hence, sketch the distance time graph for the whole journey, indicating all relevant values in your sketch.

Class	Full Name	Index Number

bowen
SECONDARY
I believe, therefore I am

Marking Scheme PRELIMINARY EXAMINATION

 2019
MATHEMATICS

Paper 2

Secondary 4 Express / Secondary 5 Normal (Academic)

3 September 2019
Candidates answer on the Question Paper.
Additional Materials: Graph Paper

READ THESE INSTRUCTIONS FIRST

Write your class, index number and name on all the work you hand in. Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or corfection fluid.
Answer all questions.
If working is required for any question, inmustoesshown withethe answer.
Omission of essential warking will result in loss of marks
The use of an approved scientificeaculator is expected, where appropriate.
If the degree of accuracy ishat spesified in dre) question, and if the answer is not exact, give your answer to threestgnilficant figures. Giye ediswer in degrees to one decimal place.
For π, use either yourp calcutator value or 3.142 , unless the question requires the answer in terms of π.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total marks for this paper is $\mathbf{1 0 0}$.

DO NOT OPEN THIS PAPER UNTIL YOU ARE TOLD TO DO SO

Setter: Mrs Jane Cheng

For Examiner's Use
100

This document consists of $\underline{21}$ printed pages, including this cover page.

Answer all the questions.
1
(a) Solve the inequality $\frac{x+2}{3} \geq \frac{4-x}{7}$.

$$
\begin{align*}
7(x+2) & \geqslant 3(4-x) \tag{2}\\
7 x+14 & \geqslant 12-3 x \tag{mi}\\
10 x & \geqslant-2 \\
x & =-\frac{1}{5}
\end{align*}
$$

(b) Express as a single fraction in its simplest form $\frac{2 x}{(3 x-5)^{2}+\frac{(x)}{5-3 x}}$.
(c) Simplify $\left(\frac{2 \times a^{\circ}}{b^{12}}\right) d \sqrt{\frac{1}{3}} d d^{8}$

$$
\begin{align*}
& \left(\frac{15 a^{6}}{b^{12}}\right)^{-\frac{1}{3}} \\
= & \left(\frac{b^{12}}{27 a^{6}}\right)^{\frac{1}{3}} \\
= & \frac{b^{4}}{3 a^{2}} \tag{141}
\end{align*}
$$

(d) Simplify $\frac{24 p^{3} q^{2}}{5 r^{3}} \div \frac{8 p^{4} r}{15 q^{3}}$.

$$
\begin{aligned}
& =\frac{24 p^{3} q^{2}}{5 r^{3}} \times \frac{15 q^{3}}{8 p^{4}} \\
& =\frac{q q^{2+3} p^{3-4}}{r^{3+1}} \\
& =\frac{q q^{5}}{p r^{4}}
\end{aligned}
$$

$$
2 x^{2}+7 x-9=0
$$

$$
(2 x+9)(x-1)=0
$$

$$
\begin{array}{lll}
2 x+9=0 & \text { or } & x-1=0 \\
x=-4 \frac{1}{2} & x=1
\end{array}
$$

(A1)

2 A series of diagrams of shaded and unshaded small squares is shown below.
The shaded squares are those which lie on the diagonals of the diagram.
\square

(a) Copy and complete the table below.

Diagram, \boldsymbol{n}	1	2	3	4	5
Number of shaded squares, \boldsymbol{S}	1	5	9	13	17
Number of unshaded squares, \boldsymbol{U}	0	4	16	36	64
Total number of squares, \boldsymbol{T}	1	9	25	$7^{2} \times 4$	$9^{2}=81$

(b) By observing the number patterns, without drawing further diagrams,
(i) write down the total number of squares in diagram 1

(ii) find an expression, in terms of n for the total number of squares, T.
(c) (i) Enif an expression, intethls of n, for the number of shaded squares, S.
shrivitn-3
(A)
(ii) Write down the number of the diagram that has 41 shaded squares.

$$
\begin{align*}
4 n-3 & =41 \\
4 n & =44 \tag{A}\\
n & =11
\end{align*}
$$

(d) Hence, or otherwise, find an expression, in terms of n, for the number of unshaded squares, \boldsymbol{U}.

$$
\begin{aligned}
U & =T-5 \\
& =(2 n-1)^{2}-(4 n-3) \\
& =4 n^{2}-4 n+1-4 n+3 \\
& =4 n^{2}-8 n+4 \\
& =4 \text { (whin. KiasuexamPaper)com }_{365}^{2}
\end{aligned}
$$

$3 \quad P$ is the point $(-5,12)$ and Q is the point $(5,-4)$
(a) Find the length of $P Q$.

$$
\begin{aligned}
l & =\sqrt{\left(y_{2}-y_{1}\right)^{2}+\left(x_{2}-x_{1}\right)^{2}} \\
& =\sqrt{(12+4)^{2}+(-5-5)^{2}} \\
& =\sqrt{356} \\
& =18.867
\end{aligned}
$$

(b) Find the equation of the line $P Q$.

$$
\begin{gathered}
y=m x+c \\
-4=-\frac{8}{5}(5)+c \\
c=4
\end{gathered}
$$

(c) The equation of the line l_{l} is $8 x+5 y+10=0$.
(i) Show how you can decide whether the line l_{1} does or does not intersect the line $P Q$?

$$
\begin{aligned}
& \text { li } \quad 5 y=-8 x-10 \\
& y=-8 / 5 x-2
\end{aligned} \quad m=-8 / 5 \quad \text { (mi) }
$$

Both equations have the same gradient, they are parallel to each other. Hence, the line l_{1} does not intersect with $P Q$.
(ii) The equation of line $\sqrt{2}$ is $3 y=4 x-39$. Find the coordinates of the point of intersection of the line l_{1} and © \&he line l_{2}.

sub $y=-8$ into eqn (1)

$$
\begin{gathered}
8 x+5(-8)=-10 \\
8 x=-10+40 \\
8 x=30 \\
x=3314 \\
x=3.75
\end{gathered}
$$

3 Mrs Tan is a Korean Language teacher.
She conducts classes for basic and advaced students on weekdays and weekends.
Each student has a 15 -week block of lessons with one lesson per week.
The matrix K shows the number of students she teaches each week in one 15 -week block.

Basic Advanced

$$
\mathbf{K}=\left(\begin{array}{cc}
12 & 3 \\
5 & 8
\end{array}\right) \quad \begin{aligned}
& \text { Weekday } \\
& \text { Weekend }
\end{aligned}
$$

(a) Evaluate the matrix $\mathbf{P}=15 \mathrm{~K}$.

$$
\begin{align*}
p= & 15\left(\begin{array}{cc}
12 & 3 \\
5 & 8
\end{array}\right) \tag{1}\\
& =\left(\begin{array}{cc}
180 & 45 \\
75 & 120
\end{array}\right)
\end{align*}
$$

(b) Mrs Tan charges $\$ 20$ for each basic lessen and 85 tor each advanced lesson. Represent the lesson charges in a 2×1 matrix \mathbf{L}
(c) Evaluate the matrix $\mathrm{D}_{\mathrm{D}}=\mathrm{PL}$.

$$
\begin{align*}
& T=\left(\begin{array}{ll}
180 & 45 \\
75 & 120
\end{array}\right)\binom{20}{32}(\mathrm{ml}) \\
& =\binom{5040}{5340}
\end{align*}
$$

(d) State what the elements of \mathbf{T} represent.

The elements of T represent the
\qquad for a 15-week block of lessons on
weekdays and weekends respectively.
(e) Mrs Tan wants to attract more students, so if he next 15-week block she reduces her prices by 10%.
For this block of lessons, On weekdays she has 15 basic students and 0^{3} advanced students.
On weekends she has 7 basic students and σ adv vance students.
Calculate the total amount of money she earns foppis 15-week block of

$=\$ 10.692$

5 The cumulative frequency graph shows the distribution of the age groups of the Fitness First club.
(a)

Cumulative Frequency

(i) Complete the grouped freqeethey table for the ages of the members.

Age (x)	$20-x<30$	$38+e_{x}<40$	$40 \leq x<50$	$50 \leq x<60$	$60 \leq x<70$
Frequency	10	25	90	60	15

(ii) Calculate the mean age of each member.

$$
\begin{align*}
\bar{X} & =(10 \times 2 x+25 \times 35+90 \times 45+60 \times 55+15 \times 65) \div 200 \tag{1}\\
& =\frac{47-25}{} \quad \tag{2}
\end{align*}
$$

$$
\begin{aligned}
S D & =\sqrt{\frac{\sum f x^{2}}{N}-\left(\frac{\sum f x}{N}\right)^{2}}=\sqrt{\frac{464000}{200}-(47.25)^{2}} \\
& =9.3508 \\
& =9.35 \quad(35 . f)
\end{aligned}
$$

(iv) Find the percentage of members whose age is 30 years old and above but less than 60 years old.
No. of members $=25+90+60=172$

$$
\begin{equation*}
\frac{175}{200} \times 100 \%=87.5 \% \tag{1}
\end{equation*}
$$

(v) A magazine article stated that citizens aged 50 and above are less active than those aged below 40 .
Comment on whether the data from the Fitness First club supports this

Accept any other reasonable answer. claim.
(b) The table below gives information about the ages members in the Any Time Fitness club.
(i) One of these members isselecteed at randenal

Find as a fraction intis lowest terms fore probability that he or she is under 50. P (apghibetivers6) $=\frac{86}{150}=\frac{43}{75}$
(ii) Two ps) he members are selected at random. No. of female
Find the probability that Find the probability that
(a) both members are female, members $=66$
$P\left(\right.$ Both are female) $=\frac{66}{150} \times \frac{66}{149}=\frac{143}{745}$
(b) they are both aged 50 or over, but only one is a male member.

No. of members $\geqslant 50$ yrs old male $=34$ $P\left(\right.$ Both $\geqslant 50$ yrs old, only one is a $\begin{array}{l}\text { male member) female. } 30 \\ \text { mo }\end{array}$

$$
\begin{equation*}
=\frac{34}{150} \times \frac{30}{149}+\frac{30}{150} \times \frac{34}{149}=\frac{69}{745} \tag{Al}
\end{equation*}
$$

(M) www.KiasuExamPaper.com 371

6 A litre of 95-octane unleaded petrol cost $\$ x$ in January 2019.
(a) Mr Ang paid $\$ 85.50$ for his petrol. Write down in terms of x, the amount of petrol bought.

$$
\text { Mr Ans: }=\frac{85 \cdot 5}{x} \text { litre (Ai) }
$$

Mr Bala paid $\$ 100$ for his 98-octane unleaded petrol which cost 25 cents more per litre.
(b) Write down in terms of x, the amount of petrol bought by Mr Bala.

$$
\text { MT Bala: } \frac{100}{x+0.24} \text { lite (4) }
$$

(c) If Mr Ang received 2 litres less petrol than Mr Bala , wire dorm an equation to represent this information and show that it can recuse to

(d) Solve the equation $16 x^{2}-112 x+171=0$.

$$
\begin{align*}
& a=16 \quad b=-112 \quad c=171 \\
& x=\frac{-(-112) \pm \sqrt{(-112)^{2}-4(16)(17)}}{2 \times 16} \tag{MI}\\
& x=4.75(2 \mathrm{dp}) \text { or } x=2.25
\end{align*}
$$

(e) The price of the 98 -octane way eared petrol in foundry 2019 was a reduction of 7% on the price in December 2018.
Find the price of the 88 -octane unleaded petrol in December 2018 if it cost less than $\$ 3$ for alitreat $25-0$ octane pealeaded petrol in January 2019.

$$
\begin{aligned}
& \text { 95- Retake wide Ref = \#2.25 (Jan 2019) } \\
& 98-04 \$ 2.25+0.25=\$ 2.50 \text { per litre } \\
& \text { in } \operatorname{Jan} 2019
\end{aligned}
$$

$\$ 2.50-93 \%$ of sec 2018 price ml

$$
\begin{aligned}
\frac{2.50}{93} \times 100 \% & =2.68817 \\
& =\frac{2.69}{(A 1)}(2 \mathrm{~d} \cdot \mathrm{p})
\end{aligned}
$$

Price of 98 -octane in DeC 2018 was

$$
\underset{\text { www.KiasuExamPaper.com }}{373} \quad \$ 2.69
$$

7 The diagram shows a container consisting of a square bottom with rectangular sides, each 20 cm by 4 cm , and a regular pyramid on top with perpendicular height given by $V X$. Water is poured into the container till the brim of the cuboid.

$$
\begin{align*}
& \text { (a) Find the height } V X \text { of the pyramid. } \\
& \text { Slant height } l=\sqrt{24^{2}-10^{2}}=\sqrt{470} \mathrm{dm} \\
& \left.\qquad V X^{2}=(\sqrt{476})^{2}\right) \tag{2}\\
& V X=1896003
\end{align*}
$$

(b)

$$
\begin{aligned}
& =320 \text { ardantoo }+872.697 \\
& =1592.697 \\
& =1590 \mathrm{~cm}^{2}(3 \mathrm{~s} . \mathrm{f})
\end{aligned}
$$

(c) Find the volume of water in the cuboid.

Volume of water in the cuboid

$$
\begin{aligned}
& =20 \times 20 \times 14 \\
& =1600 \mathrm{~cm}^{3}
\end{aligned}
$$

The container is now inverted as shown in the diagram below.

(d) Calculate the depth of the water in the pyramid when inverted.

Let x be the ratio of he of water to the ht of the pyramid (\sqrt{x})

$$
\frac{1}{3}(20 x)(20 x)(19.39 x \text { (mi) }
$$

$\int_{5}^{19} 0^{399} \times 2$
Hisiff yuck
(e) Another smaller container, which is geometrically similar, has a square base of $225 \mathrm{~cm}^{2}$. Both Containers are na de of the same material. Find the mass of the smalletcontainer in grams, given that the mass of the empty larger container 19.28 kg .

$$
\begin{aligned}
& \frac{A_{1}}{A_{2}}=\frac{S_{12 n}^{n}}{=}\left(\frac{l_{1}}{l_{2}}\right)^{2} \text { Wasp of the smaller container } \\
& \frac{l_{1}}{l_{2}}=\sqrt{\frac{225}{400}} \\
& =3 / 4 \\
& \begin{aligned}
\frac{V_{1}}{V_{2}} & =\left(\frac{3}{4}\right)^{3} \\
& =\frac{27}{64} \quad(m 1)
\end{aligned} \\
& \begin{aligned}
\frac{V_{1}}{V_{2}} & =\left(\frac{3}{4}\right)^{3} \\
& =\frac{27}{64} \quad(m 1)
\end{aligned} \\
& =\frac{27}{64} \times 12809 \\
& =27 \times 20 g \\
& =540 \mathrm{f}
\end{aligned}
$$

8 In the diagram, $O A B C$ is a parallelogram and D is the midpoint of $B C . B E$ and $O C$ produced intersect at the point $F . B E: B F=1: 3$ and $O C: O F=1: 2$.
Let $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O C}=\mathbf{c}$.

(a) Express and simply the following rectors in terms of a and \mathbf{c}.
(i)

(ii)

(iii) $\overrightarrow{O D}$

$$
\begin{align*}
\overrightarrow{O D} & =\overrightarrow{O C}+\overrightarrow{C D} \tag{1+1}\\
& =\underset{\sim}{c}+\frac{1}{2} a \tag{1}
\end{align*}
$$

$$
\begin{align*}
\text { SaID } & =\overrightarrow{A O}+\overrightarrow{O_{C}} \tag{1}\\
& =-a+c \tag{A1}
\end{align*}
$$

(iv) $\overrightarrow{O E}$

$$
\begin{align*}
\overrightarrow{O E} & =\overrightarrow{O F}+\overrightarrow{F E} \\
& =2 c+\frac{2}{3} \overrightarrow{F B} \tag{mi}\\
& =2 c-\frac{2}{3}(-a+c) \\
& =\frac{4}{3} c+\frac{2}{3} a \\
& =\frac{4}{3}\left(c+\frac{c}{2} a\right) \tag{AI}
\end{align*}
$$

(b) State two facts about the vectors $\overrightarrow{O D}$ and $\overrightarrow{O E}$ from the results in (a).

$$
\begin{aligned}
& \overrightarrow{O E}=\frac{4}{3} \overrightarrow{O D} \\
& \frac{\overrightarrow{O E}}{\overrightarrow{O B}}=4: 3
\end{aligned}
$$

1) $\overrightarrow{O E}$ is parallel to $\overrightarrow{i n}$.

$$
O E: O D=4: 3
$$

(c) Find the ratio of the areas of
(ii) $\triangle O D F$ and $\triangle O E F$,

(41)
(ii) $\triangle \triangle E D$ and $\triangle A B C$,

$$
\begin{align*}
& \triangle O C D \text { and } A B B C, \tag{1}\\
& \text { Area of } \triangle O C D=\text { Area of OABC }
\end{align*}
$$

$$
=1=4
$$

(iii) $\triangle O C D$ and $O A B F$. Areas of $\triangle O B C=\triangle B C F=1=1$

$$
\begin{align*}
& \begin{array}{ccc}
\triangle O C D & O A B C & \triangle B C F \\
1 & 4 &
\end{array} \tag{2}\\
& 21 \\
& \text { (MI) } \\
& 42 \\
& \text { Area of } \triangle \text { OCD: Area of oAF: }=1: 6
\end{align*}
$$

9 Two school teams, Novotel and Temasek, are participating in an Amazing Race in Bishan Park. The diagram shows the paths in the park.
The teams assemble at P before heading to Q to start the race.
P is due north of R.
The bearing of R from Q is 241°.
The distance $P R$ is 72 metres and the distance $R Q$ is 85 metres.
(a) Find the distance PQ .

(b) The final station of the race is at R, each team is required to find a clue that is hidden at point S before completing the race at R.
The bearing of S from R is 099° and $Q S$ is 54 metres.
Given that there are two possible locations for S, find the two possible values of angle $R S Q$.

$$
\angle Q R S=99^{\circ}-61^{\circ}=38^{\circ}
$$

(c) Both teams manage to find the clue at the same time and team Novotel is closer to R than team Temasak.
Team Novotel claims that they are the winner.
Given that the speed of team Novotel is 30% less than the speed of team Temask when they travel from S to R.
Do you agree with team Novotel that they will win the race?
Justify your answer with clear working in your calculations.

$$
\text { Novotel - } S_{2} \quad \text { Temasak }-S_{1}
$$

Team $\angle R Q S_{2}=180^{\circ}-38^{\circ}-104.2812^{\circ}$

$$
\text { Novotel } \quad=37.7188^{\prime}
$$

$$
\begin{aligned}
& \text { Time }_{\text {Novatel }}=\frac{53.66}{0.7 x}=\frac{76.657}{x} \\
& \text { Time Temasak }^{x}=\frac{80.3017}{x} \text { AT) }
\end{aligned}
$$

Time taken by Team Novotel is less than time taken by Team Temasak.
Yes, I agree that Team Novotel will win the race.

The table below gives some values of x and the corresponding values of y for $y=x(1+x)(5-x)$.

x	-2	-1	-0.5	1	2	3	4	5
y	14	0	-1.375	8	18	p	20	0

(a) Find the value of p.
(b) Using a scale of 2 cm to 1 unit, draw a horizontal x-axis for $-2 \leq x \leq 5$. Using a scale of 2 cm to represent 5 units, draw a vertical y-axis for $-5 \leq y \leq 25$.
On your axes, plot the points given in the table and join them with a smooth curve.
(c) By drawing a tangent, find the gradient of the curve where $x=4$.
(d) (i) On the same axes, draw the line $2 x+y$
(ii) Write down the x-coordinates of the point
curve.
(iii) The x-coordinates of the points where the two graphs intersect are

$$
\begin{aligned}
y & =x\left(5+4 x-x^{2}\right) \\
& =-x^{3}+4 x^{2}+5 x
\end{aligned}
$$

$-x^{3}+4 x^{2}+5 x=-2 x+12$
$-x^{3}+4 x^{2}+7 x-12=0$

$$
x^{3}-4 x^{2}-7 x+12=0
$$

$$
\begin{equation*}
A=-4 \tag{141}
\end{equation*}
$$

Q 10
a) $P=24$
(A1) Ny
b) plotting of pts (1)
smooth
curve (1)
label and scele (1)

di) $y=-2 x+{ }^{-5}-12$
c) $m=\frac{9-20}{5-4}=-11(\pm 1)$

$$
\left.\begin{array}{rl}
d(1 i) \quad x & =1.2 \pm 0.1 \\
\text { or } x & =4.9 \pm 0.1
\end{array}\right\}\left(A_{2}\right.
$$

d(iii) $\quad A=-4 \quad B=-7$

