Answer all the questions.

- 1 Factorise fully
 - (a) $(k+1)^2-25k^2$,
 - **(b)** $p^2q^2 3p^2q 3pq^2 + pq^3$.

- Answer (a) [2]
 - *(b)* [2]

2 Simplify

$$\frac{c^2 - 8c + 16}{c^2 - 2c} \times \frac{c - 2}{c - 4}$$

Answer [2]

3	One of the solution of $3x^2 + kx - 4 = 0$ is $x = 4$.
	Find
	(*) 41 51

- (i) the value of k,
- (ii) the other solution of the equation.

Answer (i)	 [1]
(ii)	 [1]

4 Express as a single fraction in its simplest form.

$$2 - \frac{m - 3n}{2n + m}$$

Answer[2]

5 (a) Given that $4^{17} \div 16 \times 2^0 = 4^k$, find the value	e of A	1 K	K
---	--------	-----	---

(b) Given that $m = 4.15 \times 10^2$ and $n = 2.12 \times 10^{-4}$, evaluate $\frac{3n}{m}$, giving your answer in standard form.

Answer (a) [2]	Answer (a)		[2]
----------------	------------	--	-----

6 Simplify each the following, expressing your answers in **positive** index form.

(a)
$$\sqrt{\frac{49b^6}{a^8}} \div \frac{a^{-1}b^6}{2}$$
,

(b)
$$\frac{x^3y^{-3}}{3z} \times \left(\frac{x}{y}\right)^{-2}$$

		0	
7	(a)	Given that p and q are integers where $-1 \le p \le 4$ and $0 \le q$	\leq 3, find
		(i) the least possible value of $\frac{2q}{p}$, (ii) the largest possible value of $q^2 - p^2$.	
		Answer (a)(i)	[1]
		(ii)	[1]
	(b)	Solve the inequality $11 + 2x \le x + 3 < 20$.	

Answer (b).....[2]

- 8 (a) Stephen borrowed a sum of \$1000 from the bank. The bank charges an interest of 24% per annum compounded half yearly. Calculate the amount of money he has to return at the end of 2 years, correct to the nearest cent.
 - (b) Given that $m = \sqrt{\frac{30}{n+2}}$, calculate the value of *n* when m = 2.

9 (a) Solve the equation $\frac{2x}{x+1} = \frac{3}{x-2}$.

(b) A quadratic graph in the form of $y = (x+a)^2 + b$ is shown below. Determine the values of a and b, where a and b are integers.

Answer (b) [2]

In $\triangle DEF$ shown below, C is a point on EF and $\angle DEF = 90^{\circ}$. DE = 10 cm, DF = 18 cm and CD = 12 cm.

(a) Express $\sin \angle DCF$ as a fraction in its simplest form.

Answer (a)	 [1]
1 /	

(b) Calculate $\angle EFD$.

Answer (b)° [2]

(c) Calculate the length of CF.

11

The diagram above shows three lines n, p and l. The point B has coordinate (4, 4) and C is the point of intersection of lines n and l. Lines p and n intersect at A.

(a) Write down the equation of lines n a	nd p	id i	ines n and	equation of 1	Write down the	(a)
--	------	------	--------------	---------------	----------------	-----

Answer (a)	•	•	•		•				•	•	•		٠	•	•	•	•		•		•	•					•	•	•	•					
		•		•			•	•	•	•		•			•		•	•		•				•							8		2	2	

(b) Hence determine the coordinates of point A

(c) Find the gradient of line l and hence write down the equation of line l.

(d) Given that point C has coordinates (x, y), determine the values of x and y.

The diagram below shows a flag pole of 3.2m standing at a point P on the top of a slope which is inclined at 20° to the horizontal ground. The flag pole is 2m above the ground level. A x m taut rope at the top of the flag pole at point T is attached to point G at the end of the slope.

(a) Find $\angle TPG$.

Answer	(a)	 ° г17
TITISTVET	(u)	 [1]

(b) Find the length of the slope GP.

(c)	Find x .		
		Answer (c)	m [3]
(d)	Hence, calculate the angle of	of elevation from point G to	point T.
		Answer (d)	° [3]

End of paper1

Answer all the questions.

- 1 (a) Factorise completely ac 2bc + 5ak 10bk. [2]
 - (b) Express as a single fraction in its simplest form $\frac{8x+1}{(3x-1)^2} + \frac{2}{(1-3x)}$. [2]
 - (c) Given that $\frac{2}{p} = \sqrt{\frac{p-q}{q}}$, express q in terms of p. [3]
- 2 (a) Simplify $\frac{(2a)^3}{b^4} \div \frac{4a^{-2}}{b^2}$, leaving your answer in **positive index**. [2]
 - (b) Patrick went to a car showroom to buy a new car. After looking at the cars, he decided to buy a new Toyota Camry. He needs a loan of \$138 000 to buy the car.

Bank A charges an interest rate of 2.25% per annum compounded monthly. Bank B charges a simple interest rate of 2.35% per annum.

Which bank should he borrow from if he were to take a five year loan?

Justify your answer. You must show all your working clearly.

[3]

- (c) Determine if 2^{5000} or 6^{2000} is greater. Explain your answer. [2]
- 3 (a) It is estimated that a female adult human body has 24 trillion red blood cells in 5000 cm³ of blood.
 - (i) Express 24 trillion in standard form. [1]
 - (ii) Find the number of red blood cells in 1 cm³ of blood, giving your answer in standard form. [1]
 - (b) The population of Singapore in the year 2015 is approximately 5.54 million.
 This is a growth of 1.2% from the year 2014, the slowest in more than a decade.
 - (i) 5.54 million can be written as $k \times 10^8$. Find the value of k. [1]
 - (ii) Find the estimated population of Singapore in the year 2014, giving your answer as an ordinary number, correct to three significant figures. [1]

4	(i)	Given	that $P(1, 5)$ and $Q(-3, 0)$, find	
		(a)	the length of the line segment PQ , giving your answer in	
			exact form,	[2]
		(b)	the gradient of PQ ,	[1]
		(c)	the equation of the line which is parallel to PQ and passing	
			through the point (8, 6).	[2]
	(ii)	If $x =$	1 is the line of symmetry of triangle PQR , state the coordinates	
		of poir	nt R.	[1]
	(iii)	If the c	coordinate of S is $(7, -2)$ and $PQST$ forms a parallelogram, state the	e
		coordi	nates of the point T .	[1]
5	(i)	Solve	the inequality $8\frac{1}{2} - x < 2x + 13 \le \frac{x + 33}{2}$.	[3]
	(ii)	Hence,	, write down the integral values of x that satisfy this inequality.	[1]
6	Abigai	l has a l	budget of \$180 to buy lemon-honey tarts for her friends.	
	(a)	Given	that the price of each lemon-honey tart is x , write down an expres	ssion,
		in term	as of x , for the number of lemon-honey tarts she can buy.	[1]
	(b)	At the	shop, she discovers that the price of each lemon-honey tart has rise	en by
		60 cen	ts. Write down an expression, in terms of x , for the number of	
		lemon-	-honey tarts she can buy now.	[1]
	(c)	Due to	the increase in price, Abigail could buy 4 fewer lemon-honey tarts	S.
		Write	down an equation in x to represent this information, and show that	it
		reduce	s to $5x^2 + 3x - 135 = 0$.	[3]
	(d)	Solve	the equation $5x^2 + 3x - 135 = 0$, giving your answers correct to	
		two de	cimal places.	[4]
	(e)		, calculate the number of honey-lemon tarts she could buy	342 (35
			the increase in price.	[1]
			•	

7

The diagram shows a park ABCD in the shape of a quadrilateral on horizontal ground. G is a point on AB such that AG : GB = 3 : 2 and GD is parallel to BC.

AG = 180 m, GB = 220 m, BC = 160 m and angle $AGD = 115^{\circ}$.

(a) Calculate

(i)
$$AD$$
, [3]

(ii) angle
$$GDA$$
, [2]

(b) The base of a vertical flagpole, GF, is at vertex G on the park.

Given that the angle of elevation of F from D is 3.5°, find the height of the flagpole.

[2]

End of Paper 2

(Have you checked your work?)

Answer all the questions.

Factorise each of the following expressions completely:

(a)
$$(k+1)^2-25k^2$$
,

(b)
$$p^2q^2 - 3p^2q - 3pq^2 + pq^3$$
.

(b)
$$p^{2}q(q-3)-pq^{2}(3-2)$$

= $p^{2}q(q-3)+pq^{2}(q-3)$ m 1 - $pq^{2}(q-3)$ m 1 - $pq^{2}(q-3)$
= $(p^{2}q+pq^{2})(q-3)$
= $pq(p+q)(q-3)$ A1

Answer (a)
$$(1-4/c)(1+6k)$$
 [2]

2 Simplify

$$\frac{c^2 - 8c + 16}{c^2 - 2c} \times \frac{c - 2}{c - 4},$$

$$\frac{\left(C - 4\right)^2}{\left(C + 2\right)} \times \frac{C - 2}{\left(C + 4\right)} = \frac{C - 4}{C}$$

$$M$$

3

One of the solution of $3x^2 + kx - 4 = 0$ is x = 4.

- (i) the value of k,
- (ii) the other solution of the equation.

$$(i)$$
 $48-4k-4=0$
 $48-4k-4=0$
 $-4k=44$
 $(2=-11)$ (3)

$$(ii)$$
 $3x^2 - 11k - 4 = 0$
 $(3x + 1)(x - 4) = 0$

$$X=4 \text{ or } X=-\frac{1}{3}$$
B1

Answer (i)...
$$X = -\frac{1}{3}$$
 [1]

4 Express as a single fraction in its simplest form.

$$2-\frac{m-3n}{2n+m},$$

$$=\frac{4n+2m-m+30}{2n+m}$$

 $\frac{70tM}{20tM}$ Answer ... [2]

- Given that $4^{17} \div 16 \times 2^0 = 4^k$, find the value of k.
 - (b) Given that $m = 4.15 \times 10^2$ and $n = 2.12 \times 10^{-4}$, evaluate $\frac{3n}{m}$, giving your answer in standard form.

Answer (a)
$$4 = 15$$
 [2]
(b) $1 - 53 \times 10^{-6}$ [1]

6 Simplify each the following, expressing your answers in **positive** index form.

(a)
$$\sqrt{\frac{49b^6}{a^8}} \div \frac{a^{-1}b^6}{2}$$
,

(b)
$$\frac{x^3y^{-3}}{3z} \times \left(\frac{x}{y}\right)^{-2}$$

(a)
$$\frac{7b^3}{a^4} \times \frac{2}{a^7b^6} = \frac{14}{a^3b^3} A1$$

(b)
$$\frac{\chi^{3}y^{-3}}{32} \times \frac{\chi^{-2}}{y^{-2}} MI$$

= $\frac{\chi y^{-1}}{32} = \frac{\chi}{3y2} AI$

Answer (a)
$$\frac{14}{a^3b^3}$$
 [2]

- Given that p and q are integers where $-1 \le p \le 4$ and $0 \le q \le 3$, find
 - (i) the least possible value of $\frac{2q}{p}$,
 - (ii) the largest possible value of $q^2 p^2$.

Answer (a)(i)	-6	B1[1]
(ii)	9	B1

(b) Solve the inequality $11+2x \le x+3 < 20$. Show your answer on a number line.

	, ,	1	A BI	
	X < - '	X	1950	
<i>Answer (b)</i>		·····	[2]

(a) Stephen borrowed a sum of \$1000 from the bank. The bank charges an interest of 24% per annum compounded half yearly. Calculate the amount of money he has to return at the end of 2 years, correct to the nearest cent.

(b) Given that $m = \sqrt{\frac{30}{n+2}}$, calculate the value of n when m = 2. (a) $A = 1000 \left[1 + \frac{14}{2} \right]^{4} MI$ $= $1573. 352_{A}$

(b) $2 = \sqrt{\frac{30}{112}}$ $4 = \frac{30}{112}$ M1 $112 = \frac{30}{4}$ $1 = \frac{30}{12}$ M1 $112 = \frac{30}{4}$ $1 = \frac{30}{12}$ A1

Answer (a) \$ 1573.52 [2]

(b) $5^{\frac{1}{2}}$ or 5.5 [2]

9 (a) Solve the equation $\frac{2x}{x+1} = \frac{3}{x-2}$.

2x(y-2) = 3x+3 $2x^{2}-7x-3 = 0$ $X = \frac{7+\sqrt{49+24}}{4}M1$ $X = \frac{7+8\cdot544}{4} \text{ or } X = \frac{1}{4}$

 $X = \frac{7+8.544}{4}$ or $X = \frac{7-8.544}{4}$ = -0.386_{A1}

Answer (a) $\chi = 3.89 \text{ or } -0.386$ [2]

(b) A quadratic graph in the form of $y = (x+a)^2 + b$ is shown below. Determine the values of a and b.

y=(x-1)2+2

Answer (b)
$$Q = -1, b = 2$$
 [2]

In $\triangle DEF$ shown below, C is a point on EF and $\angle DEF = 90^{\circ}$. DE = 10 cm, 10 $DF = 18 \,\mathrm{cm}$ and $CD = 12 \,\mathrm{cm}$.

(a) Express $\sin \angle DCF$ as a fraction in its simplest form.

(b) Calculate $\angle EFD$.

$$EF^{2} = \sqrt{18^{2}} \cdot 10^{2} \qquad ton EFD = \frac{10}{\sqrt{224}}$$

$$= 224$$

$$EF = \sqrt{224}$$

$$EF = \sqrt{224}$$

$$EFD = ton \left[\frac{10}{\sqrt{224}} \right] \approx 33.7^{\circ}$$

Answer (b) 33.7

(c) Calculate the length of CF. $C\widehat{D}F = [80^{\circ}-33.7^{\circ}-123.6^{\circ}]$ $= 22.7^{\circ}$ Using sine rule, $\frac{18}{\sin D\widehat{C}F} = \frac{CF}{\sin 227^{\circ}}$ Answer (c) $\frac{8.34C}{\sin 27}$ $\frac{1}{\cos 2$ Calculate the length of CF.

11

The diagram above shows three lines n, p and l. The point B has coordinate (4, 4) and C is the point of intersection of lines n and l. Lines p and n intersect at A.

(a) Write down the equation of lines n and p.

Answer (a)
$$X=3$$
 B1 $Y=2$ B1 [2]

(b) Hence determine the coordinates of point A

Answer (b)
$$(3,1)$$
 B!

(c) Find the gradient of line l and hence write down the equation of line l.

Gradient =
$$\frac{4-2}{4-0} = \frac{2}{4} = \frac{1}{2}$$
.

Y= $\pm x + C$

Sub (0,2) into eqn above, Answer (c) Gradient: $\frac{1}{2}$ B1

 $2 = \pm lot + C = C = 2$. Equation of line 1: $\frac{1}{2} = \pm x + 2$. [1]

(d) Given that point C has coordinates (x, y), determine the values of x and y. Sub x=3 into the equal like ℓ ,

$$\gamma = \frac{1}{2}(3) + 2 = 3\frac{1}{2}$$
.

Answer (d) $\chi = 3$, $\gamma = 3\frac{1}{2}$ [2]

The diagram below shows a flag pole of 3.2m standing at a point P on the top of a slope which is inclined at 20° to the horizontal ground. The flag pole is 2m above the ground level. A x m taut rope at the top of the flag pole at point T is attached to point G at the end of the slope.

(a) Find $\angle TPG$.

(b) Find the length of the slope GP.

Sin 20° =
$$\frac{2}{GP}$$

:- $GP = \frac{2}{\sin 20} = 5.8476 mM1$
=5.85 m

(c)	Find x. Using Cosine rule,
	$\chi^2 = (3.2)^2 + (5.8476)^2 - 2(3.2)(5.8476)\cos 10^{\circ}$
	= 57.2675
	i. X = J57-2675 = 7-5675
	=7-57 Answer (c) 7-57 m [3]

(d) Hence, calculate the angle of elevation from point G to point T.

Using sine Ne,
$$\frac{7.5675}{Sin10°} = \frac{3.2}{sin76p}M1 = 23.4° + 20°M1.$$

$$7.5675 = Sin^{-1}\left[\frac{3.15in10°}{7.5675}\right] = 43.4°$$

$$= 23.4°$$
Answer (d) 43.4^{A1}

End of paper 1

SEC 3 EXP E-MATHS SAI (PAPER 2)

$$I(a)$$
 $ac-2bc+5ak-10bk = c(a-2b)+5k(a-2b)$ [MI]
= $(a-2b)(c+5k) * [AI]$

$$\frac{8x+1}{(3x-1)^2} + \frac{2}{1-3x} = \frac{8x+1}{(3x-1)^2} - \frac{2}{3x-1}$$
 [MI]

Many stude complicated the sol by =
$$\frac{8x+1-2(3x-1)}{(3x-1)^2}$$
doing this: $(8x+1)(1-3x)+2(3x-1)^2$

And they diplnot factorise to simply $(3x-1)^{2}(1-3x) = \frac{8x+1-6x+2}{(3x-1)^{2}}$ their answer at the end. = 2x+3

* many stude did not put this bracket. (3x-1)2 * [A1]

$$\frac{4}{P^{2}} = \frac{P-q}{q}$$

$$\frac{4}{P^{2}} = \frac{P-q}{q}$$

$$4q = P^{3} - P^{2}q$$

$$4q + P^{2}q = P^{3}$$

$$q(4+P^{2}) = P^{3}$$

$$-1 q = \frac{P^{3}}{4+P^{2}} * CAI$$

* Many stude could only square both sides to get rid of the square noot sign; and they were Stuck ofter that.

* Many stude could not factorise to isolate 9,

(2) Lennoumistela:
$$(1) 4q+qp^2=p^3$$

$$5q=\frac{p^3}{p^2} (ERKOR)$$

(2)
$$4q = p^3 - p^2 q$$

 $\frac{4q}{q} = p^3 - p^2$

$$\frac{2(a)}{b^{4}} = \frac{(2a)^{3}}{b^{4}} \times \frac{4a^{-2}}{b^{2}} = \frac{[8a^{3}]}{b^{4}} \times \frac{b^{2}}{4a^{-2}}$$
* Common mistake:
$$(2a)^{3} = 6a^{3} \text{ or } 2a^{3}. = \frac{2a^{5}}{b^{2}} \text{ (A1)}$$

* Common mistake:
$$\frac{8a^{3}}{b^{4}} \times \frac{b^{2}}{4a^{2}}$$

$$= \frac{8a^{3}}{b^{4}} \times 4a^{2}b^{2}$$

Compound Int =
$$138000 \left(1 + \frac{2.25}{12}\right)^{5 \times 12} - 138000 \left[\text{MI}\right]$$

= \$ 1645. 70489

* Many studs do not know the compound int. formular & the simple int. formula. * Many studs compound total amount with simple int.

Patrick should borrow from Bank B as he will pay a lower interest. [A1]

$$\zeta_{5000} = (\zeta_{5})_{1000} = 3\zeta_{1000}$$

$$\zeta_{2000} = (\zeta_{5})_{1000} = 3\zeta_{1000}$$

Given the same indices, since 36.732,

of Many studes presented only $2^5 = 32$ and $6^2 = 36$ without taking into account the index 1000.

$$3(a)(i)$$
 24 trillion = 24 × 10¹²
= 2.4 × 10¹³ * [BI]

$$3(a)(ii)$$
 $\frac{2.4 \times 10^{13}}{5000} = 4.8 \times 10^{9}$ [BI]

3(b) (ii)
$$\frac{5.54 \times 10^6}{101.2} \times 100 = 5474308.3$$

 $\approx 5470000 * [B1]$

* Common mistale:

4(i) (a) beight of PQ =
$$\sqrt{(1-(-5))^2+(5-0)^2}$$
 [Mi]
* Common unistable:

length = $\sqrt{(1-(-5)^2)(5-0)^2}$ = $\sqrt{41}$ A. [A1]

* Many studsdid not leave answer in exact form.

* Many studsdid not leave answer in exact form.

* Many studsdid not leave in the following studs think that unitime is answer in exact form.

* Many studsdid not leave in the following studsdid not leave in exact form.

* Many studsdid not leave in the following studsdid not leave in exact form.

* (B1] answer in exact form.

* (B1] answ

4(iii)

5(i)
$$8\frac{1}{2} - x < 2x + 13 \le \frac{x + 33}{2}$$

 $8\frac{1}{2} - x < 2x + 13$ and $2x + 13 \le \frac{x + 33}{2}$
 $17 - 2x < 4x + 26$ $4x + 26 \le x + 33$
 $-6x < 9$ $3x \le 7$
 $x > -1\frac{1}{2}$ [MI] $x \le 2\frac{1}{3}$ [MI]

* many stude did not solve the inequality.

Many left the answer
$$-1\frac{1}{2}$$
 $2\frac{1}{3}$

Part (ii)'s answer. Ans: $-1\frac{1}{2}$ < >1 \leq 2\frac{1}{3} \tau. [A1]

5 (ii) The integers are -1,0,1,2 #. [BI]
** Many did not know that -1 and 0 are integers.

≈ 36 *. [BI]

7(a) (i)
$$AD^{2} = 180^{2} + 220^{2} - 2(180)(220) \cos 115^{\circ}$$
 [MI]

$$= 338.040403$$

$$\approx 338 \text{ m}_{3}(35.4) \text{ [AI]}$$

$$7(a) (ii) \frac{\sin 460A}{180} = \frac{\sin 115^{\circ}}{338.0404503}$$

$$\therefore 460A = \sin^{-1}\left(\frac{180 \sin 115^{\circ}}{338.0404803}\right) \text{ [MI]}$$

$$= 28.85478243$$

$$\approx 28.9^{\circ}_{3}(101.9^{\circ}) \text{ [AI]}$$

$$= 17944.89418 \text{ m}^{\circ}$$

$$= 17944.89418 \text{ m$$

7(b)
$$\tan 3.5^{\circ} = \frac{FG}{220}$$

 $FG = 220 \tan 3.5^{\circ}$ [MI]
 $\approx 13.5 m_{*}(35.6)$ [AI]