Class	Index Number	Name

ANG MO KIO SECONDARY SCHOOL MID-YEAR EXAMINATION 2016 SECONDARY THREE EXPRESS

MATHEMATICS
Paper 1

4048/01

Monday

09 May 2016

2 hours

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use a pencil for any diagrams or graphs. Do not use highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

Calculators should be used where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 80.

For Examiner's Use

This document consists of 16 printed pages

Mathematical Formulae

Compound interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curve surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab \sin C$$

Arc length = $r\theta$, where θ is in radians

Sector Area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

1	(a)	Calculate $\frac{\sqrt[3]{0.1257} - 0.258^2}{1.5^{3.41}}$.		
		Write down the first six digits on your calculator display.		
	(b)	Answer Write your answer to part (a) correct to 4 significant figures		 [1]
		Answer	(b)	 [1]

2	Factorise completely	$12x^2y^2$ 1 $2x^2 + 4x^2$	
_	r actorise completely	12x y - 1 - 5x + 4y	•

Answer	[2
	 L

Cider costs p cents per litre.
 Given that a barrel can contain q cm³ of cider, find an expression, in terms of p and q, for the cost of a barrel of cider in dollars.

Answer \$ _____[3

4 (a) Given that $25^{15} \div 125 = 5^k$, find k.

Answer	(a)	k =	[1]

(b) Simplify

(i)
$$\frac{x^0}{y^2} \div \frac{3}{y^3},$$

Answer
$$(b)(i)$$
 [2]

(ii)
$$2 \div \frac{6}{5x^{-3}}$$
.

(c) Simplify
$$\sqrt[6]{x^7} + \frac{\sqrt{x^5}}{\sqrt[3]{x^4}}$$
, leaving your answer in radical form.

Answer (c) _____[3]

5	Simplify	2	3
3	Simplify	$\overline{(1-2x)^2}$	$\frac{1}{2x-1}$.

		Answer	[2]
6	Writt	ten as the product of their prime factors,	
		$a=2^2\times5\times7,$	
		$b = 2 \times 3 \times 5^3,$	
	Find	$c=2^2\times 3^2\times 5^2.$	
	(a)	the value of the square root of c ,	
		Answer (a)	[1]
	(b)	the LCM of a, b and c, giving your answer as the product of its prime factors,	
			Hall-Statement
		Answer (b)	[1]
	(c)	the greatest number that will divide a , b and c exactly.	

Answer (c) [1]

7	The	scale of a map is 2.5 cm: 0.5 km.
	(a)	Write this scale in the form $1:n$.
		[1]
		Answer (a) [1]
	(b)	The distance between two villages on the map is 12.5 cm.
		Find the actual distance, in kilometres, between the two villages.
		Answer (b) km [1]
	(c)	A reservoir has an actual area of 7.5 km ² .
		Find the area, in square centimetres, of the reservoir on the map.
		Answer (c) $\underline{\qquad}$ cm ² [2]
8	(a)	Express $x^2 - 12x + 9$ in the form $(x + a)^2 + b$.
		Answer (a)[1]
	(b)	Hence solve the equation $x^2 - 12x + 9 = 0$, giving your answers correct to two decimal places.
		Answer (b) $x = $ or [3]

9	Solve	the	simultaneous	equations
---	-------	-----	--------------	-----------

$$5x + 6y = 9,$$

$$7y + 8x = 17.$$

Answer x =

y = [3]

10	(a)	Solve the inequality $x-2 < 2x + 7$	$\leq \frac{3x+8}{3}$	
----	-----	-------------------------------------	-----------------------	--

Answer	(a)	· · · · · · · · · · · · · · · · · · ·	[3]	
--------	-----	---------------------------------------	-----	--

(b) Hence write down the smallest integer value of x which satisfies $x-2 < 2x+7 \le \frac{3x+8}{3}$.

Answer	<i>(b)</i>		[1]
--------	------------	--	----	---

Operating on their own, pipe A and pipe B can fill a tanker with petrol in 5 minutes and 7 minutes respectively.

Find the time taken for the tanker to be filled by the two pipes operating together.

12 In a survey, a group of students were asked how many siblings they have. The number is shown in the table below.

Number of siblings	0	1	2	3	4
Number of students	24	28	2x - 3	7	3

(a)	Write down the la	argest possible	value of x if t	he modal num	ber of siblings is	1
-----	-------------------	-----------------	-------------------	--------------	--------------------	---

Answer (a) x = [1]

(b) Write down the smallest possible value of x if the median number of siblings is 2.

Answer (b) x = [1]

(c) Calculate the value of x if the mean number of siblings is 1.

Answer (c) x = [2]

Solve the equation $\frac{3x-4}{3} + \frac{4}{7} = \frac{x-5}{5}$.

Answer x = [2]

Angle $BEC = 90^{\circ}$ and angle $CDE = 90^{\circ}$.

CB is produced to A.

CE = 5 cm, BC = 13 cm and DE = 3 cm.

Write down

(a) $\sin \angle DEC$,

Answer (a)
$$\sin \angle DEC =$$
 [1]

(b) $\tan \angle BCE$,

Answer (b)
$$\tan \angle BCE =$$
 [2]

(c) $\cos \angle ABE$.

Answer (c)
$$\cos \angle ABE =$$
 [1]

15 (a) (i) Sketch the graph of y = x(6-x).

(ii) Write down the equation of the line of symmetry of y = x(6-x).

Answer (a)(ii) _____ [1]

[2]

[2]

(b) (i) Sketch the graph of $y = 4 + (x-3)^2$.

(ii) Write down the coordinates of the minimum point of the curve.

Answer (b)(ii) (______, ____) [1 4048/01/2016 [Turn Over

AMKSS 3E MYE

16	Acc	ording to studies, the Earth has witnessed five major mass extinctions.
	(a)	The first major mass extinction, the End Ordovician event and the last major mass extinction, the
		End Cretaceous event happened 0.44 billion and 66 million years ago respectively.
		Find the number of years between the two events.
		Give your answer in standard form.
		Answer (a) years [1]
	(b)	During the Cretaceous period, ammonite, a spherical organism of diameter 2.5 millimetres thrived
		in the ocean.
		Calculate the volume of an ammonite in cubic centimetres.
		Answer (b) cm^3 [2]
	(c)	The Cretaceous period ended when an asteroid impacted the Earth.
		Given that the asteroid travelled 8325 millimetres in an hour, calculate the speed of the asteroid.
		Express your answer in kilometres per second.
		Answer (c) km/s [2]

17	A train departs from Moscow, Russia and arrives at Nice, France in 51 hours and 53 minutes.					
	Whe	n the local time in Moscow is 1.13 am, V	Vednesday	, the local time in Nice is 11.13	pm, Tuesda	ıy.
	(a)	The train left Moscow at 10.13 pm, Mo	onday loca	l time.		
		What was the local time and day in Nic	ce when it	arrived?		
			Answer	(a),	***************************************	[2]
	(b)	The train travelled a total distance of 32	281 km.			
		Find the average speed, in kilometres p	er hour, of	the train.		
		•	Amornion	<i>(b)</i>	1 /1	501
			Answer	(0)	km/h	[2]
18	The	urface tongion of a victor duculat. Descrita	. 1			
10		arface tension of a water droplet, B units			s radius, r c	m.
		urface tension is 1 unit when the radius o				
	Find t					
		ne percentage increase in the surface tens			s 4 <i>R</i> cm.	
					s 4 <i>R</i> cm.	
					s 4 <i>R</i> cm.	
					s 4 <i>R</i> cm.	
					s 4 <i>R</i> cm.	
					s 4 <i>R</i> cm.	
					s 4 <i>R</i> cm.	
					s 4 <i>R</i> cm.	
					s 4 <i>R</i> cm.	
					s 4 <i>R</i> cm.	
					s 4 <i>R</i> cm.	
						[3]
				water droplet when the radius is	s 4 <i>R</i> cm.	[3]

4048/01/2016

[Turn Over

AMKSS 3E MYE

19 Paul has a bag of marbles. He divided the marbles into three boxes, A, B and C.

	The t	otal number of marbles in box A and B as compared	ared to the marbles in box C is in	
	the ra	atio of 7:5, and the total number of marbles in b	ox B and C as compared to the ma	rbles in box A is
	in the	eratio of 13:8.		
	Give	a that there are 34 marbles in box B , find the total	al number of marbles in the bag.	
			Answer	marbles [3]
20	(a)	Krystal bought a camera at a cost price of \$118	88 from the warehouse.	
		Given that she wants to make a 28% profit, cal	culate the selling price of the came	era.
			Answer (a) \$	[2]
			Answer (a) \$	[2]
	(b)	Krystal also had a meal at a restaurant which a	mounted to \$129.90 after a service	charge of 10 %
		and a Goods and Service Tax (GST) of 7%.		
		Calculate the cost price of the meal exclusive of	of the service charge and GST.	
			Answer (b) \$	roı
			Answer (b) \$	[2]

4048/01/2016

[Turn Over

AMKSS 3E MYE

21 The line CD has an equation 2x = y - 12 and cuts the x-axis at D.

The line AD cuts the x-axis and y-axis at D and E respectively.

Given that the line AC is parallel to the x-axis and the line BC is parallel to the y-axis, find

(a) the coordinates of C,

Answer	(a)	(,)	[1]

(b) the equation of the line AC,

Answer (b) _____[1]

(c) the coordinates of D,

Answer (c) (______, ____) [1]

21(d) is on the next page

(d)	the length of the line AB ,						
	*	Answer	(d)			units	[1]
(e)	the equation of the line AB ,						
					,		
		Answer	(e)				[2]
(f)	the coordinates of E .						
		Answer	<i>(f)</i>	(, , <u></u>)	[1]

END OF PAPER

AMKSS 3E MYE

4048/01/2016

Class	Index Number	Name

ANG MO KIO SECONDARY SCHOOL MID-YEAR EXAMINATION 2016 SECONDARY THREE EXPRESS

MATHEMATICS
Paper 2

4048/02

Friday

06 May 2016

2 hours 30 minutes

Additional Materials:

Answer Paper

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on all the work you hand in.

Write in dark blue or black pen on both sides of the paper.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 100.

This document consists of 12 printed pages.

Mathematical Formulae

Compound interest

Total amount =
$$P \left(1 + \frac{r}{100} \right)^n$$

Mensuration

Curved surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3} \pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab \sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

Mean =
$$\frac{\sum fx}{\sum f}$$

Standard deviation = $\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$

Answer all the questions.

1 (a) Solve the equations

(i)
$$3x^2 - 507 = 0$$
, [2]

(ii)
$$\frac{x-2}{x+3} - \frac{x-3}{12+4x} = 5$$
. [3]

(b) The equation for calculating the focal length of a lens is given by

$$\frac{1}{f} = \frac{1}{u} + \frac{1}{v}.$$

- (i) Find the value of f when $u = 4 \times 10^{-2}$ and $v = 1.2 \times 10^{-1}$. [1]
- (ii) Express v in terms of f and u. [2]

(c) Given that
$$\frac{8m+3n}{3n-2m} = \frac{3}{2}$$
, find the value of $\frac{m}{n}$. [2]

- (d) Given that x-2y=3 and $x^2+4y^2=1$, find the value of xy. [2]
- (e) At a games carnival, the prices of tickets for adults and children are \$2.40 and \$1.60 respectively.

The number of adult tickets and children tickets sold can be represented by a and c respectively.

- (i) On a particular day, the total number of adult tickets sold is 30 less than the number of children tickets sold.
 - Write down an equation in a and c to represent this information. [1]
- (ii) If on the same day the total sales of tickets amount to \$228, write down an equation in a and c to represent this information. [1]
- (iii) Solve these two equations to find the number of adult and children tickets sold on that day. [3]

2 (a) Simplify the following expressions, leaving your answers in positive index where necessary.

(i)
$$\frac{1}{9c^{-2}} \times \frac{(3d)^{-1}}{c^3}$$
 [2]

(ii)
$$\frac{5f^2g^3}{21gh} \div \frac{40f^5g^2}{7h^3}$$
 [2]

- (b) Given that x and y are integers such that $-7 \le x < 3$ and $-2 \le y \le 3$, calculate
 - (i) the greatest value of x + y, [1]
 - (ii) the least value of xy, [1]
 - (iii) the greatest value of $x^2 y^2$. [1]
- (c) Peter can make z waffles in 1 hour. In the same amount of time, Bruce is able to make 2 more waffles than Peter. On a particular day, both Peter and Bruce made not more than 126 waffles in the span of 2 hours and 15 minutes.
 - (i) Using the above information, form an inequality in z, and solve it. [2]
 - (ii) Hence, find the maximum number of waffles that Bruce can make in 1 hour. [1]

- Penny works in a cheesecake cafe that pays her a wage of x per hour. In March, her salary was \$2000.
 - (a) Write down an expression in terms of x, for the number of hours she worked in March. [1]
 - (b) From April onwards, Penny's wage was increased by \$1.50 per hour. If she also received \$2000 in April, write down an expression in terms of x, for the number of hours she worked in April. [1]
 - (c) If Penny worked 13 hours less in April than in March, form an equation in x and show that it reduces to

$$26x^2 + 39x - 6000 = 0.$$
 [3]

- (d) Solve the equation $26x^2 + 39x 6000 = 0$, giving both answers correct to two decimal places. [3]
- (e) Calculate the minimum number of hours Penny needs to work in May if she aims to earn a salary of at least \$3000. [1]

4	(a)	Leonard deposits \$7000 in a bank that gives a compound interest of 0.8% per annum.	
		Calculate the total amount of money Leonard will receive after 8 years.	[2]
	(b)	Rajesh has \$7000. He decides to open a toy shop that will cost him \$30000.	
		He borrows the remaining amount from a bank that charges him 2.5% simple	
		interest per annum for 8 years.	
		Calculate the monthly installment that Rajesh needs to pay the bank.	[3]
	(c)	Sheldon wants to invest €7000 in currency exchange. He decides to change his	
		Euros (€) to Swedish Kroner (SKR). In June, he changes the money at a rate	
		of $\in 1 = 6.03$ SKR. In July, the exchange rate changes to $\in 1 = 5.71$ SKR.	
		If Sheldon exchanges all his money back to Euros in July, calculate the profit	
		that he earns in Euros.	[2]
	(d)	Steward bought a motorcycle that cost \$7000.	
		The value of the motorcycle depreciated by 12% during the first year.	
		In the second year, the motorcycle further depreciated by 20% of its new	
		value.	
		If Steward sold off his motorcycle at the end of the second year, calculate the	
		amount of money that he lost.	[2]

The diagram shows a model of the slope of a hill. ABCD is a rectangle such that $AD = 130 \,\text{m}$, and CDEF is a square with sides 120 m. A and B are 50 m vertically above E and F respectively and $\angle AED = \angle BFC = 90^{\circ}$.

Find

- (i) the length of CE, [2]
- (ii) $\angle BDF$, [2]
- (iii) $\angle DAF$. [3]
- (b) In the diagram below, the lines WZ and VX intersect at Y. VWX is an isosceles triangle where VX = WX and $\angle VXW = 50^{\circ}$.

Given that VZ is parallel to WX and $\angle VZW = 39^{\circ}$, find

(i) $\angle ZYX$, [2]

(ii) $\angle VWZ$. [2]

6 The diagram shows a wooden cylinder that has removed parts in the shape of a hemisphere and a cone on opposite ends.

The radius of the base of the cylinder is 6 cm.

The perpendicular height of the cone is equal to the radius of its base.

Find the height of the cylinder. (a) [1] **(b)** Calculate (i) the volume of the cone, [2] the volume of the hemisphere, (ii) [2] (iii) the volume of the solid. [2] Calculate the total surface area of the solid. (c) [4]

The diagram shows three towns P, Q and R on a horizontal ground. Town Q is 200 km away from R and 90 km away from P. The bearing of town R from Q is 050° and the bearing of town Q from P is 110°.

(a) Find $\angle PQR$. (i) [1] (ii) **Hence**, calculate the area of ΔPQR . [2] Show that the distance between towns P and R is approximately 257 km. **(b)** [3] (c) Calculate the bearing of town P from town R. [3] (d) An eagle was hovering 3 km vertically above town Q. Calculate the greatest possible angle of depression of the eagle to a point along PR. [3] 8 JKL is a triangle where the line JL is parallel to the y-axis. Point J lies on the x-axis, and the coordinates of L is (1, -4) and K is (-2, 2).

- (a) (i) Calculate the area of ΔJKL . [1]
 - (ii) Hence, calculate the perpendicular distance from J to KL. [3]
- (b) Write down the equation of line JL. [1]
- (c) The line LZ meets the x-axis at (3, 0).

 Given that coordinates of point X is (6, 6), prove that points L, X and Z lie on the same line.

 [2]

The figures below are formed by squares of lengths 1, 2, 3, ... units. The table shows the corresponding lengths (L) and perimeter (P) of each figure (n).

Figure 1

Figure 2

Figure 3

Figure (n)	Length (L)	Perimeter (P)
1	1	4
2	3	10
3	6	18
4	10	у
5	Z	40

(a) Write down the values of y and z. [1]

(b) Express L in terms of n. [1]

(c) Show that P can be expressed as $3n + n^2$. [2]

(d) Find the area of the figure when P = 70 units. [2]

The diagram shows the relative display sizes of iPhone 6 and iPhone 6 Plus as advertised on their website. The iPhone 6 has a diagonal display size of 4.7 inches, while the iPhone 6 Plus has a diagonal display size of 5.5 inches.

iPhone 6

iPhone 6 Plus

(source: http://www.apple.com/sg/iphone-6s/specs/)

- (a) Given that the diagonal display size of the iPhone 6 Plus in centimetres is 13.97 cm, calculate the diagonal display size of the iPhone 6 in centimetres.
- (b) If the length of the iPhone 6 Plus display is 4.8 inches, find the width of the iPhone 6 Plus display in inches, correct to 1 decimal place. [2]

The website also shows the dimension of the entire phone. In the diagram below, the dimensions of the iPhone 6 Plus are given as 6.2 inches by 3.1 inches. The top surface of the iPhone 6 Plus can be modelled as shown in Figure 1 below, where the corners are identical quadrants with radius 0.4 inches.

0.4 0.4 0.4 0.4

Dimensions of iPhone 6 Plus

Figure 1

(source: http://www.apple.com/sg/iphone-6s/specs/)

(c) (i) Find the top surface area of the iPhone 6 Plus model in Figure 1, in square inches.

[2]

[2]

(ii) Hence, calculate the surface area of the iPhone 6 Plus display as a percentage of its top surface area.

[2]

2016 3E E.Math Paper 1 Marking Scheme

	Solution	Mark	Remark
1(-)	$\sqrt[3]{0.1257} - 0.258^2$		
1(a)	$\frac{\sqrt[3]{0.1257} - 0.258^2}{1.5^{3.41}} = 0.10898$	B1	
1(b)	0.1090	B1	
0			
2	$12x^2y^2 - 1 - 3x^2 + 4y^2$		
	$=12x^2y^2+4y^2-3x^2-1$		
	$=4y^{2}(3x^{2}+1)-(3x^{2}+1)$		
	$=(3x^2+1)(4y^2-1)$	M1	
	$= 4y^{2}(3x^{2} + 1) - (3x^{2} + 1)$ $= (3x^{2} + 1)(4y^{2} - 1)$ $= (3x^{2} + 1)(2y - 1)(2y + 1)$	A1	
3	$1000 \mathrm{cm}^3 = p \mathrm{cents}$		
	$1 \text{cm}^3 = \frac{p}{1000} \text{cents}$	M1	
	States of the	1111	
	$q \text{ cm}^3 = \frac{pq}{1000} \text{ cents}$	M1	
	$1barrel = \$ \frac{pq}{100000}$	A1	
	100000		
4(a)	k = 27	B1	
4(b)(i)	$\frac{1}{y^2} \times \frac{y^3}{3}$	M1	9
1	$y^2 = 3$	IVII	
	$=\frac{y}{a}$	A1	
	3		
4(b)(ii)	$y = \frac{y}{3}$ $2 \div \frac{6}{5x^{-3}}$ $= 2 \times \frac{5x^{-3}}{6}$		
	$5x^{-3}$		
	$=2\times\frac{6}{6}$	M1	
	$= \frac{5}{3x^3} \text{ or } \frac{5x^{-3}}{3}$ $= \sqrt[6]{x^7} + \frac{\sqrt{x^5}}{\sqrt[3]{x^4}}$ $= x^{\frac{7}{6}} + x^{\frac{5}{2} - \frac{4}{3}}$	A1	
	$=\frac{3x^3}{3x^3}$ or $\frac{3}{3}$		
4(c)	$6\sqrt{7}$, $\sqrt{x^5}$		
4(0)	$\sqrt{x} + \frac{1}{\sqrt[3]{x^4}}$		
	7 5 4		
	$= x^6 + x^2$ 3	M1	
	$=x^{\frac{7}{6}}+x^{\frac{7}{6}}$		
	$=2x^{\frac{7}{6}}$		
	$\begin{vmatrix} =2x^{6} \\ =2\left(\sqrt[6]{x^{7}}\right) \end{vmatrix}$	M1	
	$=2(\sqrt[4]{x'})$	A1	
_	2 3	+	
5	$\left \frac{2}{(1-2r)^2} - \frac{3}{2r-1} \right $		
	$\frac{(1-2x)}{2} = \frac{2x-1}{3(1-2x)}$		
	$\frac{2}{(1-2x)^2} - \frac{3}{2x-1}$ $= \frac{2}{(1-2x)^2} + \frac{3(1-2x)}{(1-2x)^2}$	M1	
	$(1-2\lambda)$ $(1-2\lambda)$		

		5 62	
		$=\frac{3-6x}{(x-x)^2}$	A1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$(1-2x)^2$	Al
6(b) $2^2 \times 3^3 \times 5^3 \times 7$ BI BI 6(c) 10 BI BI 7(a) 20000 BI 7(b) 2.5 km BI 81 7(c) 187.5 cm² BI 81 8(a) $(x-6)^2 - 27$ BI 88(a) $(x-6)^2 - 27$ MI $x = 6 \pm \sqrt{27}$ $x = 6 \pm \sqrt{27}$ $x = 6 \pm \sqrt{27}$ $x = 0.80$ or 11.20 A1 $x = -2$ Any suitable method $x = -3$ $y = -1$ A1 $x = -2$ A1			1 - 15
6(b) $2^2 \times 3^3 \times 5^3 \times 7$ BI BI 6(c) 10 BI BI 7(a) 20000 BI 7(b) 2.5 km BI 81 7(c) 187.5 cm² BI 81 8(a) $(x-6)^2 - 27$ BI 88(a) $(x-6)^2 - 27$ MI $x = 6 \pm \sqrt{27}$ $x = 6 \pm \sqrt{27}$ $x = 6 \pm \sqrt{27}$ $x = 0.80$ or 11.20 A1 $x = -2$ Any suitable method $x = -3$ $y = -1$ A1 $x = -2$ A1	6(a)	30	B1
6(c) 10 B1 7(a) 20000 B1 7(b) 2.5 km B1 7(c) 187.5 cm² B1 8(a) $(x-6)^2 - 27$ B1 8(b) $(x-6)^2 = 27$ $x = 6.80$ or 11.20 M1 9 Any suitable method $x = 3$ $y = -1$ M1 10(a) $x - 2 < 2x + 7$ $2x + 7 \le \frac{3x + 8}{3}$ $x > -9$ M1 M1 10(b) -8 B1 11 $\frac{1}{5} + \frac{1}{7} = \frac{12}{35}$ $\frac{12}{12} = \frac{21}{12}$ mins = 2 mins 55 s M1 12(a) 15 B1 12(a) 15 B1 12(b) 23 B1 12(c) $\frac{4x + 55}{2x + 59} = 1$ $x = 2$ M1 13 $\frac{15x - 20 - 3x + 15}{15} = -\frac{4}{7}$ $84x = -25$ M1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6(c)	10	B1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.5
7(c) 187.5 cm^2 B1 8(a) $(x-6)^2 - 27$ B1 8(b) $(x-6)^2 = 27$ $x = 0.80 \text{ or } 11.20$ M1 A2 9 Any suitable method $x = 3$ $y = -1$ M1 A1 10(a) $x - 2 < 2x + 7$ $x > -9$ $2x + 7 \le \frac{3x + 8}{3}$ $x > -9$ M1 M1 10(b) -8 B1 11 $\frac{1}{5} + \frac{1}{7} = \frac{12}{35}$ $1 + \left(\frac{12}{35}\right) = \frac{35}{12}$ $1 = \frac{35}{12} = 2\frac{11}{12} \text{mins} = 2 \text{mins} 55 \text{ s}$ M1 12(a) 15 B1 12(b) 23 B1 12(c) $\frac{4x + 55}{2x + 59} = 1$ $x = 2$ M1 A1 13 $\frac{15x - 20 - 3x + 15}{15} = -\frac{4}{7}$ $84x = -25$ M1	7(a)	20000	B1 ·
7(c) 187.5 cm^2 B1 8(a) $(x-6)^2 - 27$ B1 8(b) $(x-6)^2 = 27$ $x = 6 \pm \sqrt{27}$ $x = 0.80 \text{ or } 11.20$ M1 A2 9 Any suitable method $x = 3$ $y = -1$ M1 A1 A1 10(a) $x - 2 < 2x + 7$ $x > -9$ $2x + 7 \le \frac{3x + 8}{3}$ $x > -9$ M1 M1 -9 < $x \le -4\frac{1}{3}$ A1 10(b) -8 B1 11 $\frac{1}{5} + \frac{1}{7} = \frac{12}{35}$ $1 + \left(\frac{12}{35}\right) = \frac{35}{12}$ $1 = \frac{35}{12} = 2\frac{11}{12} \text{mins} = 2 \text{mins} 55 \text{ s}$ M1 12(a) 15 B1 12(b) 23 B1 12(c) $\frac{4x + 55}{2x + 59} = 1$ $x = 2$ M1 A1 13 $\frac{15x - 20 - 3x + 15}{15} = -\frac{4}{7}$ $84x = -25$ M1	7(b)	2.5 km	B1
8(a) $(x-6)^2 - 27$ B1 8(b) $(x-6)^2 = 27$ M1 $x = 6 \pm \sqrt{27}$ A2 9 Any suitable method $x = 3$ M1 $y = -1$ A1 10(a) $x - 2 < 2x + 7$ $2x + 7 \le \frac{3x + 8}{3}$ $x > -9$ $x \le -4\frac{1}{3}$ M1 10(b) -8 B1 11 $\frac{1}{5} + \frac{1}{7} = \frac{12}{35}$ M1 $1 + \frac{12}{35} = \frac{35}{12}$ M1 $\frac{35}{12} = 2\frac{11}{12}$ mins $= 2$ mins 55 s A1 12(a) 15 B1 12(b) 23 B1 12(c) $\frac{4x + 55}{2x + 59} = 1$ M1 $x = 2$ A1		187.5 cm ²	B1
8(b) $(x-6)^2 = 27$ $x = 6 \pm \sqrt{27}$ x = 0.80 or 11.20 9 Any suitable method $x = 3y = -1 10(a) x - 2 < 2x + 7 2x + 7 \le \frac{3x + 8}{3} x > -9 x \le -4\frac{1}{3} M1 M1 -9 < x \le -4\frac{1}{3} A1 10(b) -8 B1 11 \frac{1}{5} + \frac{1}{7} = \frac{12}{35} 1 \div \left(\frac{12}{35}\right) = \frac{35}{12} 1 \div \left(\frac{12}{35}\right) = \frac{35}{12} M1 M1 M2 M1 M1 M1 M1 M1 M1 M1$			
8(b) $(x-6)^2 = 27$ $x = 6 \pm \sqrt{27}$ x = 0.80 or 11.20 9 Any suitable method $x = 3y = -1 10(a) x - 2 < 2x + 7 2x + 7 \le \frac{3x + 8}{3} x > -9 x \le -4\frac{1}{3} M1 M1 -9 < x \le -4\frac{1}{3} A1 10(b) -8 B1 11 \frac{1}{5} + \frac{1}{7} = \frac{12}{35} 1 \div \left(\frac{12}{35}\right) = \frac{35}{12} 1 \div \left(\frac{12}{35}\right) = \frac{35}{12} M1 M1 M2 M1 M1 M1 M1 M1 M1 M1$	8(2)	$(-6)^2$ 27	R1
$x = 6 \pm \sqrt{27} \\ x = 0.80 \text{ or } 11.20$ $x = 3 \\ y = -1$ $x = -2 + 7 $ $x = -4 + 3 $ $x = -2 + 7 $ $x = -4 + 3 $ $x = -2 + 7 $ $x = -4 + 3 $ $x = -2 + 7 $ $x = -4 + 3 $ $x = -2 + 7 $ $x = -4 + 3 $ $x = -25 $ $x = -4 + 3 + 3 $ $x = -4 + 3 + 3 $ $x = -4 + 3 + 3 + 3 $ $x = -4 + 3 + 3 + 3 + 3 + 3 $ $x = -4 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 $		(x-0) -21	BI
$x = 6 \pm \sqrt{27} \\ x = 0.80 \text{ or } 11.20$ $x = 3 \\ y = -1$ $x = -2 + 7 $ $x = -4 + 3 $ $x = -2 + 7 $ $x = -4 + 3 $ $x = -2 + 7 $ $x = -4 + 3 $ $x = -2 + 7 $ $x = -4 + 3 $ $x = -2 + 7 $ $x = -4 + 3 $ $x = -25 $ $x = -4 + 3 + 3 $ $x = -4 + 3 + 3 $ $x = -4 + 3 + 3 + 3 $ $x = -4 + 3 + 3 + 3 + 3 + 3 $ $x = -4 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 $	8(b)	$(x-6)^2 = 27$	9.1
$x = 0.80 \text{ or } 11.20$ Any suitable method $x = 3$ $y = -1$ $10(a)$ $x - 2 < 2x + 7$ $x > -9$ $x \le -4\frac{1}{3}$ A1 $-9 < x \le -4\frac{1}{3}$ A1 $1\frac{1}{5} + \frac{1}{7} = \frac{12}{35}$ A1 $1 \div \left(\frac{12}{35}\right) = \frac{35}{12}$ A1 $\frac{35}{12} = 2\frac{11}{12} \text{ mins} = 2 \text{ mins } 55 \text{ s}$ A1 $12(a)$ 15 $12(b)$ 23 $12(c)$ $\frac{4x + 55}{2x + 59} = 1$ $x = 2$ A1 $\frac{15x - 20 - 3x + 15}{5x + 25} = -\frac{4}{7}$ MI $\frac{15}{84x = -25}$ MI			M1
9 Any suitable method $x = 3$ $y = -1$ 10(a) $x - 2 < 2x + 7$ $2x + 7 \le \frac{3x + 8}{3}$ $x > -9$ $x \le -4\frac{1}{3}$ M1 M1 $ -9 < x \le -4\frac{1}{3}$ A1 11(b) -8 B1 11 $\frac{1}{5} + \frac{1}{7} = \frac{12}{35}$ M1 $ 1 \div \left(\frac{12}{35}\right) = \frac{35}{12}$ M1 $ \frac{35}{12} = 2\frac{11}{12} \text{ mins} = 2 \text{ mins } 55 \text{ s}$ A1 12(a) 15 $ 12(b) 23$ B1 12(c) $\frac{4x + 55}{2x + 59} = 1$ M1 $ x = 2$ M1 $ x = 2$ M1 $ x = 3$ M1 $ x = 4$ M1			Δ2
$\begin{vmatrix} x = 3 \\ y = -1 \end{vmatrix}$ A1		x = 0.80 or 11.20	AZ
$\begin{vmatrix} x = 3 \\ y = -1 \end{vmatrix}$ A1			
$\begin{vmatrix} x = 3 \\ y = -1 \end{vmatrix}$ A1	9	Any suitable method	M1
$y = -1$ $10(a)$ $x - 2 < 2x + 7$ $x > -9$ $x \le -4\frac{1}{3}$ $10(b)$ -8 11 $\frac{1}{5} + \frac{1}{7} = \frac{12}{35}$ $1 + (\frac{12}{35}) = \frac{35}{12}$ $\frac{35}{12} = 2\frac{11}{12} \text{mins} = 2 \text{ mins } 55 \text{ s}$ $12(a)$ 15 $12(b)$ 23 $12(c)$ $\frac{4x + 55}{2x + 59} = 1$ $x = 2$ 13 $\frac{15x - 20 - 3x + 15}{15} = -\frac{4}{7}$ $84x = -25$ $M1$ $M1$ $A1$ $M1$ $M1$ $M1$ $M1$			A1
10(a) $x-2 < 2x+7$ $2x+7 \le \frac{3x+8}{3}$ M1 M1 $-9 < x \le -4\frac{1}{3}$ M1 M1 10(b) -8 B1 11 $\frac{1}{5} + \frac{1}{7} = \frac{12}{35}$ M1 $\frac{1 \div (\frac{12}{35})}{12} = \frac{35}{12}$ M1 $\frac{35}{12} = 2\frac{11}{12} \text{mins} = 2 \text{mins } 55 \text{ s}$ A1 12(a) 15 12(b) 23 12(c) $\frac{4x+55}{2x+59} = 1$ M1 $x = 2$ M1 A1 13 $\frac{15x-20-3x+15}{15} = -\frac{4}{7}$ M1 M1 M1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		7 -	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2 0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10(a)	$ x-2 < 2x+7$ $2x+7 \le \frac{3x+8}{2}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$x > -9$ $x \le -4\frac{\pi}{3}$	M1 M1
10(b) -8 B1 $ \frac{1}{5} + \frac{1}{7} = \frac{12}{35} \\ 1 \div \left(\frac{12}{35}\right) = \frac{35}{12} $ M1 $ \frac{35}{12} = 2\frac{11}{12} \text{ mins} = 2 \text{ mins } 55 \text{ s} $ A1 $ \frac{12(a)}{12(b)} 23 $ B1 $ 12(c) \frac{4x + 55}{2x + 59} = 1 \\ x = 2 $ M1 A1 $ \frac{15x - 20 - 3x + 15}{15} = -\frac{4}{7} $ M1 M1 M1 M1			
10(b) -8 B1 $ \frac{1}{5} + \frac{1}{7} = \frac{12}{35} \\ 1 \div \left(\frac{12}{35}\right) = \frac{35}{12} $ M1 $ \frac{35}{12} = 2\frac{11}{12} \text{ mins} = 2 \text{ mins } 55 \text{ s} $ A1 $ \frac{12(a)}{12(b)} 23 $ B1 $ 12(c) \frac{4x + 55}{2x + 59} = 1 \\ x = 2 $ M1 A1 $ \frac{15x - 20 - 3x + 15}{15} = -\frac{4}{7} $ M1 M1 M1 M1		° 1	
10(b) -8 B1 $ \frac{1}{5} + \frac{1}{7} = \frac{12}{35} \\ 1 \div \left(\frac{12}{35}\right) = \frac{35}{12} $ M1 $ \frac{35}{12} = 2\frac{11}{12} \text{ mins} = 2 \text{ mins } 55 \text{ s} $ A1 $ \frac{12(a)}{12(b)} 23 $ B1 $ 12(c) \frac{4x + 55}{2x + 59} = 1 \\ x = 2 $ M1 A1 $ \frac{15x - 20 - 3x + 15}{15} = -\frac{4}{7} $ M1 M1 M1 M1		$-9 < x \le -4\frac{1}{2}$	A1
11 $\frac{1}{5} + \frac{1}{7} = \frac{12}{35}$ $1 \div \left(\frac{12}{35}\right) = \frac{35}{12}$ $\frac{35}{12} = 2\frac{11}{12} \text{ mins} = 2 \text{ mins } 55 \text{ s}$ A1 12(a) 15 $12(b) 23$ $12(c) \frac{4x + 55}{2x + 59} = 1$ $x = 2$ M1 A1 13 $\frac{15x - 20 - 3x + 15}{15} = -\frac{4}{7}$ M1 M1 M1		3	
11 $\frac{1}{5} + \frac{1}{7} = \frac{12}{35}$ $1 \div \left(\frac{12}{35}\right) = \frac{35}{12}$ $\frac{35}{12} = 2\frac{11}{12} \text{ mins} = 2 \text{ mins } 55 \text{ s}$ A1 12(a) 15 $12(b) 23$ $12(c) \frac{4x + 55}{2x + 59} = 1$ $x = 2$ M1 A1 13 $\frac{15x - 20 - 3x + 15}{15} = -\frac{4}{7}$ M1 M1 M1	10(b)	-8	B1
$1 \div \left(\frac{12}{35}\right) = \frac{35}{12}$ $\frac{35}{12} = 2\frac{11}{12} \text{ mins} = 2 \text{ mins } 55 \text{ s}$ A1 $12(a) 15 \qquad \qquad B1$ $12(b) 23 \qquad \qquad B1$ $12(c) \frac{4x + 55}{2x + 59} = 1$ $x = 2 \qquad \qquad A1$ $13 \qquad \frac{15x - 20 - 3x + 15}{15} = -\frac{4}{7}$ $84x = -25$ M1 M1			
$1 \div \left(\frac{12}{35}\right) = \frac{35}{12}$ $\frac{35}{12} = 2\frac{11}{12} \text{ mins} = 2 \text{ mins } 55 \text{ s}$ A1 $12(a) 15 \qquad \qquad B1$ $12(b) 23 \qquad \qquad B1$ $12(c) \frac{4x + 55}{2x + 59} = 1$ $x = 2 \qquad \qquad A1$ $13 \qquad \frac{15x - 20 - 3x + 15}{15} = -\frac{4}{7}$ $84x = -25$ M1 M1	11	1 1 12	
$1 \div \left(\frac{12}{35}\right) = \frac{35}{12}$ $\frac{35}{12} = 2\frac{11}{12} \text{ mins} = 2 \text{ mins } 55 \text{ s}$ A1 $12(a) 15 \qquad \qquad B1$ $12(b) 23 \qquad \qquad B1$ $12(c) \frac{4x + 55}{2x + 59} = 1$ $x = 2 \qquad \qquad A1$ $13 \qquad \frac{15x - 20 - 3x + 15}{15} = -\frac{4}{7}$ $84x = -25$ M1 M1 M1		$\frac{-+-}{5} = \frac{-}{7}$	M1
$ \frac{35}{12} = 2\frac{11}{12} \text{ mins} = 2 \text{ mins } 55 \text{ s} $ A1 $ \frac{12(a)}{12(b)} \frac{15}{23} \qquad \qquad B1 $ $ 12(c) \frac{4x + 55}{2x + 59} = 1 \qquad \qquad M1 $ $ x = 2 $ A1 $ \frac{15x - 20 - 3x + 15}{15} = -\frac{4}{7} $ $ 84x = -25 $ M1			
$ \frac{35}{12} = 2\frac{11}{12} \text{ mins} = 2 \text{ mins } 55 \text{ s} $ A1 $ \frac{12(a)}{12(b)} \frac{15}{23} \qquad \qquad B1 $ $ 12(c) \frac{4x + 55}{2x + 59} = 1 \qquad \qquad M1 $ $ x = 2 $ A1 $ \frac{15x - 20 - 3x + 15}{15} = -\frac{4}{7} $ $ 84x = -25 $ M1		$\left 1 \div \left \frac{12}{11} \right = \frac{33}{11}$	M1
12(a) 15 12(b) 23 B1 12(c) $\frac{4x+55}{2x+59} = 1$ $x = 2$ M1 A1 13 $\frac{15x-20-3x+15}{15} = -\frac{4}{7}$ $84x = -25$ M1			
12(a) 15 12(b) 23 B1 12(c) $\frac{4x+55}{2x+59} = 1$ $x = 2$ M1 A1 13 $\frac{15x-20-3x+15}{15} = -\frac{4}{7}$ $84x = -25$ M1		35 211 . 2 . 55	A1
12(a) 15 12(b) 23 B1 12(c) $\frac{4x+55}{2x+59} = 1$ $x = 2$ M1 A1 13 $\frac{15x-20-3x+15}{15} = -\frac{4}{7}$ $84x = -25$ M1		$\frac{1}{12} = 2 \frac{1}{12} \text{ mins} = 2 \text{ mins } 55 \text{ s}$	
12(b) 23 B1 12(c) $\frac{4x+55}{2x+59} = 1$ M1 $x = 2$ A1 13 $\frac{15x-20-3x+15}{15} = -\frac{4}{7}$ M1 $84x = -25$		A tot A tot	
12(b) 23 B1 12(c) $\frac{4x+55}{2x+59} = 1$ M1 $x = 2$ A1 13 $\frac{15x-20-3x+15}{15} = -\frac{4}{7}$ M1 $84x = -25$	12(a)	15	D1
12(c) $\frac{4x+55}{2x+59} = 1$ $x = 2$ M1 A1 13 $\frac{15x-20-3x+15}{15} = -\frac{4}{7}$ $84x = -25$ M1			No. of the control of
$x = 2$ A1 $\frac{15x - 20 - 3x + 15}{15} = -\frac{4}{7}$ $84x = -25$ M1	12(b)		RI
$x = 2$ A1 $\frac{15x - 20 - 3x + 15}{15} = -\frac{4}{7}$ $84x = -25$ M1	12(c)	$\frac{4x+55}{6}=1$	M1
$x = 2$ A1 $\frac{15x - 20 - 3x + 15}{15} = -\frac{4}{7}$ $84x = -25$ M1	(-)	$2x + 59^{-1}$	
13 $\frac{15x - 20 - 3x + 15}{15} = -\frac{4}{7}$ M1 $84x = -25$			A1
84x = -25			
84x = -25	300.00	15r - 20 - 3r + 15	
84x = -25	13	$\frac{13\lambda - 20 - 3\lambda + 13}{2} = -\frac{4}{2}$	M1
25			
41		25 / 0.208	A1
$x = -\frac{25}{84} / -0.298$ A1		$x = -\frac{1}{84} - 0.298$	AI
07		U - U - U - U - U - U - U - U - U - U -	

14(a)	$\frac{4}{5}$	B1
14(b)	$BE = \sqrt{13^2 - 5^2} = 12$	M1
	$\tan \angle BCE = \frac{12}{5}$	A1
14(c)	$\cos \angle ABE = -\cos \angle CBE = -\frac{12}{13}$	B1
15(a)(i)	-	
15(u)(i)	9 3 6 3	B1 (Shape) B1 (Points)
15(a)(ii)	x=3	
15(b)(i)	13 4 0 3 3	B1 (Shape) B1 (Points)
15(b)(ii)	(3, 4)	B1
16(a)	3.74×10 ⁸ years	B1
16(b)	$\frac{4}{3}\pi(0.125)^3$	M1
	$3 = 0.00818 \text{ cm}^3$	A1
16(c)	8325×10 ⁻⁶	
	3600	M1
	$=2.31\times10^{-6} \text{ km/s}$	A1
17(a)	0006 / 12.06 am, Thursday	B1, B1

17(b)	$\frac{3281}{52}$	M1
	$\overline{51\frac{53}{60}}$	IVII
	= 63.2 km/h	A1
18	$B = kr^2$	
10	$B = Rr$ $1 = kR^2$	
	$1 = kR^2$ $k = \frac{1}{R^2}$	M1
	R^2	IVII
	$B_{new} = \frac{1}{R^2} (4R)^2$	
	$B_{new} = 16$	M1
*	$\frac{16-1}{1} \times 100\% = 15 \times 100\% = 1500\%$	A1
	1	Al
19	A+B:C $A:B+C$ $8:13$	
	7:5 49:35 8:13 32:52	M1
		1
	A:B:C 32:17:35	
	17 units = 34 marbles 84 units = 168 marbles	M1 A1
	8 7 7 70	
20(a)	$\frac{128}{100} \times 1188$	M1
	= \$1520.64	Al
20(b)	107% = \$129.90	M1
	100% = \$121.40	M1
	110% = \$121.40	A1
	100% = \$110.37	A1
21(a)	(-7, -2)	B1
21(b)	y = -2	B1
21(c)	D(d,0) $2d = -12$	
	d = -6	DI.
	D(-6,0)	B1
21(d)	$\sqrt{(-3+7)^2+(-2-1)^2}$	
	= 5 units	B1
21(e)	Gradient = $\frac{-2-1}{-3+7} = -\frac{3}{4}$	M1
	$y = -\frac{3}{4}x + c$	1111
	$y = -\frac{1}{4}x + c$	
	$1 = \frac{21}{4} + c$	
	4	

	$c = -4\frac{1}{4}$ $y = -\frac{3}{4}x - 4\frac{1}{4}$	A1	
21(f)	$E\bigg(0,-4\frac{1}{4}\bigg)$	B1	

ANG MO KIO SECONDARY SCHOOL MID YEAR EXAMINATION 2016 SECONDARY THREE EXPRESS PAPER 2 SOLUTIONS

NO	ANSWERS	MARKS
1(ai)	$3x^2 - 507 = 0$	
	$x^2 = 169$	M1
	$x = \pm 13$	A1
1(aii)	$\frac{x-2}{x+3} - \frac{x-3}{12+4x} = 5$	
	x+3 12+4x	
	$\frac{x-2}{x+3} - \frac{x-3}{4(3+x)} = 5$	
		, i
	$\frac{4(x-2)-x+3}{4(x+3)} = 5$	M1
	4(x+3)	IVII
	4(x-2)-x+3=20(x+3)	M1
	$x = -3\frac{14}{17}$	A1
1(bi)	$f = 3 \times 10^{-2} \text{ or } 0.03$	B1
1(bii)	$\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$	
	$\frac{1}{v} = \frac{1}{f} - \frac{1}{u}$	
		M1
	$\frac{1}{v} = \frac{u - f}{uf}$	(combining into one
	uf $(1 1)^{-1}$	fraction)
	$v = \frac{uf}{u - f}$ or $v = \left(\frac{1}{f} - \frac{1}{u}\right)^{-1}$	A1
1(c)	$\frac{8m+3n}{}=\frac{3}{}$	
	3n-2m 2	
	2(8m+3n) = 3(3n-2m)	M1
	$\frac{m}{n} = \frac{3}{22}$	A1
4(1)		
1(d)	$(x-2y)^2 = x^2 - 4xy + 4y^2$	
	$(3)^2 = 1 - 4xy$	M1
	xy = -2	A1
1(ei)	a+30=c	B1
1(eii)	2.4a + 1.6c = 228	B1
1(eii)	Any Method	M1
	a = 45, c = 75	A1,A1

2(a)(i)	$\frac{1}{9c^{-2}} \times \frac{\left(3d\right)^{-1}}{c^3}$	
	$=\frac{1}{9c^{-2}}\times\frac{1}{3dc^3}$	M1
	$=\frac{1}{27cd}$	A1
2(a)(ii)		
_(=,()	$\frac{5f^2g^3}{21gh} \div \frac{40f^5g^2}{7h^3}$	
	$= \frac{5f^2g^3}{21gh} \times \frac{7h^3}{40f^5g^2}$	M1
	$=\frac{h^2}{24f^3}$	A1
2(bi)	5	B1
2(bii)	-21	B1
2(biii)	49	B1
2(c)(i)	$2.25(z+z+2) \le 126$	M1
	$z \le 27$	A1
2(c)(ii)	29	B1
3(a)	2000	B1
	x	
3(b)	2000	B1
	x+1.5	
3(c)	$\frac{2000}{x} - \frac{2000}{x+1.5} = 13$	M1
	$3000 = 13(x^2 + 1.5x)$	
	$26x^2 + 39x - 6000 = 0$	M1
3(d)		M1
3(u)	$x = \frac{-39 \pm \sqrt{625521}}{52}$	M1
	x = 14.46 or $x = -15.96$	A1,A1
3(e)	188 hours	B1
		n.

		T
4(a)	$A = 7000 \left(1 + \frac{0.8}{100} \right)^8$	M1
	= \$7460.75	A1
4(b)	Total Loan = $23000 + \frac{23000 \times 2.5 \times 8}{100}$ = \$27600	M1
	Monthly Installment = $\frac{276000}{8 \times 12}$	M1
	= \$287.50	A1
4(c)	June $\rightarrow \ \epsilon 7000 \times 6.03 = 42210 \text{SKR}$	
	July \rightarrow 42210 ÷ 5.71 = €7392.29	M1
	Profit = €392.29	A1
4(d)	1^{st} year $\rightarrow 7000 \times 0.88 = 6160	
	$2^{nd} \text{ year} \rightarrow 6160 \times 0.8 = 4928	M1
	Loss = \$2072	A1
5(ai)	$CE = \sqrt{120^2 + 120^2}$	M1
	$=170\mathrm{cm}$	A1
5(aii)	$\tan \angle BDF = \frac{50}{\sqrt{120^2 + 120^2}}$	M1
	∠ <i>BDF</i> = 16.4°	A1
5(aiii)	AF = AD = 130	
	$DF = CE = \sqrt{120^2 + 120^2}$	M1
	$\angle DAF = \cos^{-1} \frac{130^2 + 130^2 - \left(\sqrt{120^2 + 120^2}\right)^2}{2(130)(130)}$	M1
	= 81.5°	A1
5(bi)	$ZVX = 50^{\circ}$ (alt angle)	M1
	$\angle ZYX = 39 + 50 = 89^{\circ}$	A1
5(bii)	$\angle VWX = \frac{180 - 50^{\circ}}{2} = 65^{\circ} \text{ (isos triangle)}$	M1
	$\angle ZYX = 65 - 39 = 26^{\circ} $ (alt angle)	A1

$V = \frac{\pi}{3}(6^{3})$ $= 452 \text{ cm}^{3}$ $K = 452 \text{ cm}^{3}$ $V = \pi(6^{2})(12) - \frac{1}{3}\pi(6^{2})(6) - \frac{2}{3}\pi(6^{3})$ $= 679 \text{ cm}^{3}$ $K = 679 \text{ cm}^{3}$ $K = 2\pi(6)(12) + 2\pi(6^{2}) + \pi(6)(\sqrt{6^{2} + 6^{2}})$ $= 839 \text{ cm}^{2}$ $K = 839 \text{ cm}^{2}$ $K = \frac{1}{2}(90)(200)(\sin 120)$ $= 7790 \text{ cm}^{2}$ $K = \frac{1}{2}(90)(200)(\sin 120)$ $= 7790 \text{ cm}^{2}$ $K = 257$ $K = 257$ $K = \frac{\sin \angle QRP}{90} = \frac{\sin 120}{257}$ $\angle QRP = 17.65752082$ $bearing = 17.65752082 + 50 + 180$ $= 247.6^{\circ}$ $K = 1$ $K = $	6(a)	12 cm	B1	
	6(bi)	$V = \frac{1}{2}\pi(6^2)(6)$	M1	
$V = \frac{1}{3}\pi(6^{2})$ $= 452 \text{ cm}^{3}$ $V = \pi(6^{2})(12) - \frac{1}{3}\pi(6^{2})(6) - \frac{2}{3}\pi(6^{3})$ $= 679 \text{ cm}^{3}$ $6(c)$ $SA = 2\pi(6)(12) + 2\pi(6^{2}) + \pi(6)(\sqrt{6^{2} + 6^{2}})$ $= 839 \text{ cm}^{2}$ $7(ai)$ $A = \frac{1}{2}(90)(200)(\sin 120)$ $= 7790 \text{ cm}^{2}$ $PR = 257$ $7(c)$ $\frac{\sin \angle QRP}{90} = \frac{\sin 120}{257}$ $\angle QRP = 17.65752082$ $bearing = 17.65752082 + 50 + 180$ $= 247.6^{\circ}$ 1 cm $\frac{1}{2}(257)(QX)$ $QX = 60.6225681 \text{ cm}^{2}$ 2 cm 1 cm 1 cm 2 cm 2 cm 3 cm 4 cm 4			A1	
	6(bii)	$V = \frac{2}{\pi}\pi(6^3)$	M1	
$V = \pi(6^2)(12) - \frac{1}{3}\pi(6^2)(6) - \frac{1}{3}\pi(6^3)$ $= 679 \text{ cm}^3$ A1 $SA = 2\pi(6)(12) + 2\pi(6^2) + \pi(6)(\sqrt{6^2 + 6^2})$ $= 839 \text{ cm}^2$ M1,M1,M1 A1 $\frac{7(\text{ai})}{7(\text{aii})} \qquad \angle PQR = 70 + 50 = 120^\circ$ M1 $\frac{7(\text{aii})}{7(\text{aii})} \qquad A = \frac{1}{2}(90)(200)(\sin 120)$ $= 7790 \text{ cm}^2$ A1 $\frac{7(\text{b})}{7(\text{b})} \qquad PR^2 = 200^2 + 90^2 - 2(200)(90)(\cos 120)$ $PR = 257$ A1 $\frac{\sin \angle QRP}{90} = \frac{\sin 120}{257}$ $\angle QRP = 17.65752082$ $bearing = 17.65752082 + 50 + 180$ $= 247.6^\circ$ A1 $\frac{7(\text{d})}{7(\text{d})} \qquad \frac{7790}{2} = \frac{1}{2}(257)(QX)$ $QX = 60.6225681 \text{ cm}^2$ $\tan \theta = \frac{3}{60.6225681}$ $\theta = 2.8^\circ$ M1 $M1$ $M1$ $M1$ $M1$ $M3$ $M4$ $M1$ $M3$ $M4$ $M1$ $M3$ $M4$ $M4$ $M4$ $M4$ $M5$ $M6$ $M6$ $M1$ $M1$ $M3$ $M4$ $M4$ $M4$ $M5$ $M4$ $M5$ $M6$ $M6$ $M6$ $M6$ $M7$ $M9$ $M1$ $M1$ $M1$ $M1$ $M1$ $M1$ $M1$ $M1$				
	6(biii)	$V = \pi(6^2)(12) - \frac{1}{2}\pi(6^2)(6) - \frac{2}{2}\pi(6^3)$	M1	
$SA = 2\pi(6)(12) + 2\pi(6) + \pi(6)(16^{2} + 6^{2})$ $= 839 \text{ cm}^{2}$ $7(ai) $			A1	
7(ai) $\angle PQR = 70 + 50 = 120^{\circ}$ M1 7(aii) $A = \frac{1}{2}(90)(200)(\sin 120)$ M1 $= 7790 \text{ cm}^2$ A1 7(b) $PR^2 = 200^2 + 90^2 - 2(200)(90)(\cos 120)$ M2 $PR = 257$ M1 7(c) $\frac{\sin \angle QRP}{90} = \frac{\sin 120}{257}$ M1 $\angle QRP = 17.65752082$ M1 $= 247.6^{\circ}$ M1 7(d) $7790 = \frac{1}{2}(257)(QX)$ M1 (or by using trigo ratio to find QX) $\tan \theta = \frac{3}{60.6225681}$ M1 $\theta = 2.8^{\circ}$ M1	6(c)	$SA = 2\pi(6)(12) + 2\pi(6^2) + \pi(6)(\sqrt{6^2 + 6^2})$	M1,M1,M1	
7(aii) $A = \frac{1}{2}(90)(200)(\sin 120)$ $= 7790 \text{ cm}^{2}$ A1 7(b) $PR^{2} = 200^{2} + 90^{2} - 2(200)(90)(\cos 120)$ $PR = 257$ A1 7(c) $\frac{\sin \angle QRP}{90} = \frac{\sin 120}{257}$ $\angle QRP = 17.65752082$ bearing = 17.65752082 + 50 + 180 $= 247.6^{\circ}$ A1 7(d) $7790 = \frac{1}{2}(257)(QX)$ $QX = 60.6225681 \text{ cm}^{2}$ $\tan \theta = \frac{3}{60.6225681}$ $\theta = 2.8^{\circ}$ M1 M1 M1 (or by using trigo ratio to find QX) M1 M1 M1 M1 M1 M1 M1 M1 M1 M		$= 839 \text{ cm}^2$	A1	
$A = \frac{1}{2}(90)(200)(\sin 120)$ $= 7790 \text{ cm}^{2}$ A1 $PR^{2} = 200^{2} + 90^{2} - 2(200)(90)(\cos 120)$ $PR = 257$ A1 $\frac{\sin \angle QRP}{90} = \frac{\sin 120}{257}$ $\angle QRP = 17.65752082$ $bearing = 17.65752082 + 50 + 180$ $= 247.6^{\circ}$ A1 $7790 = \frac{1}{2}(257)(QX)$ $QX = 60.6225681 \text{ cm}^{2}$ $\tan \theta = \frac{3}{60.6225681}$ $\theta = 2.8^{\circ}$ M1	7(ai)	$\angle PQR = 70 + 50 = 120^{\circ}$	M1	
	7(aii)	$A = \frac{1}{2}(90)(200)(\sin 120)$	M1	
$PR = 257$ $7(c) \qquad \frac{\sin \angle QRP}{90} = \frac{\sin 120}{257}$ $\angle QRP = 17.65752082$ $bearing = 17.65752082 + 50 + 180$ $= 247.6^{\circ}$ $7(d) \qquad 7790 = \frac{1}{2}(257)(QX)$ $QX = 60.6225681 \text{ cm}^{2}$ $\tan \theta = \frac{3}{60.6225681}$ $\theta = 2.8^{\circ}$ M1 M1 (or by using trigo ratio to find QX) M1 M1 M1 M1 M1 M1 M1 M1 M1 M		_	A1	
$PR = 257$ $7(c) \qquad \frac{\sin \angle QRP}{90} = \frac{\sin 120}{257}$ $\angle QRP = 17.65752082$ $bearing = 17.65752082 + 50 + 180$ $= 247.6^{\circ}$ $7(d) \qquad 7790 = \frac{1}{2}(257)(QX)$ $QX = 60.6225681 \text{ cm}^{2}$ $\tan \theta = \frac{3}{60.6225681}$ $\theta = 2.8^{\circ}$ M1 M1 (or by using trigo ratio to find QX) M1 M1 M1 M1 M1 M1 M1 M1	7(b)	$PR^2 = 200^2 + 90^2 - 2(200)(90)(\cos 120)$	M2	
$\frac{3M + 2M}{90} = \frac{3M + 2S}{257}$ $\angle QRP = 17.65752082$ $bearing = 17.65752082 + 50 + 180$ $= 247.6^{\circ}$ A1 $7790 = \frac{1}{2}(257)(QX)$ $QX = 60.6225681 \text{ cm}^{2}$ $\tan \theta = \frac{3}{60.6225681}$ $\theta = 2.8^{\circ}$ M1 M1 M1 M1 A1 M1 M1 M1 M1 M1			A1	
$\angle QRP = 17.65752082$ $bearing = 17.65752082 + 50 + 180$ $= 247.6^{\circ}$ A1 $7790 = \frac{1}{2}(257)(QX)$ $QX = 60.6225681 \text{ cm}^{2}$ $tan \theta = \frac{3}{60.6225681}$ $\theta = 2.8^{\circ}$ M1 M1 (or by using trigo ratio to find QX) M1 M1 M1 M1 M1 M1	7(c)		M1	
$= 247.6^{\circ}$ $7790 = \frac{1}{2}(257)(QX)$ $QX = 60.6225681 \text{ cm}^{2}$ $\tan \theta = \frac{3}{60.6225681}$ $\theta = 2.8^{\circ}$ M1 (or by using trigo ratio to find QX) M1 M1		20,		
7(d) $7790 = \frac{1}{2}(257)(QX)$ $QX = 60.6225681 \text{ cm}^2$ $\tan \theta = \frac{3}{60.6225681}$ $\theta = 2.8^{\circ}$ M1 (or by using trigo ratio to find QX) M1 M1		bearing = 17.65752082 + 50 + 180	M1	
$7790 = \frac{1}{2}(257)(QX)$ $QX = 60.6225681 \text{ cm}^2$ $\tan \theta = \frac{3}{60.6225681}$ $\theta = 2.8^{\circ}$ M1 (or by using trigo ratio to find QX) M1 M1		= 247.6°	A1	
$\tan \theta = \frac{3}{60.6225681}$ $\theta = 2.8^{\circ}$ M1	7(d)		using trigo ratio to find	
$\theta = 2.8^{\circ}$		$\tan \theta = \frac{3}{60.6225681}$		
A1		No. 10 Per September 1997 Control of the Control of	M1	
			A1	

8(ai)	6 units ²	B1
8(aii)	$KL = \sqrt{3^2 + 6^2}$	M1
	$6 = \frac{1}{2} \times \sqrt{6^2 + 3^2} \times h$	M1
	h = 1.79 units	A1
8(b)	x = 1	B1
8(c)	Gradient of $LX = \frac{-4-6}{1-6} = 2$ Gradient of $ZX = \frac{6}{6-3} = 2$	M1 (eithe gradient)
	Since Gradient of LX = Gradient of ZX, points Z, L, X lie on the same line.	A1
9(a)	y = 28	D4 /hath
	z = 15	B1 (both)
9(b)	$L = \frac{n^2 + n}{2}$	B1
9(c)	P = 2L + 2n	M1
	$= n^2 + n + 2n$ $= 3n + n^2$	A1
9(d)	$3n + n^2 = 70$	
	$3n + n^2 - 70 = 0$ or by guess and $(n+10)(n-7) = 0$	
	n = 7 check	M1
	$A = 1^2 + 2^2 + + 7^2$ = 140 units ²	A1
50		
10(a)	5.5" → 13.97 cm	
	$4.7" \rightarrow \frac{13.97}{5.5} \times 4.7$	M1
	= 11.938 cm	A1
10(b)	Width = $\sqrt{5.5^2 - 4.8^2}$	M1
	= 2.7"	A1

10(ci)	$A = (6.2)(3.1) - 4 \left[0.4^2 - \frac{1}{4} \pi (0.4)^2 \right]$	M1 (excess area)
	= 19.1 inches square	A1
10(cii)	% of S.A. = $\frac{(4.8)(\sqrt{5.5^2 - 4.8^2})}{19.08265482} \times 100\%$	M1
	= 67.5%	A1