SAZ

TANJONG KATONG SECONDARY SCHOOL Year-End Examination 2017 Secondary 3

CANDIDATE NAME CLASS		INDEX NUMBER
ADDITIONA Paper 1 Additional Materia	L MATHEMATICS Is: Writing Paper	4047/01 Monday 9 October 2017 1 hour 30 minutes
READ THESE IN	STRUCTIONS FIRST	•

Write your name, class and index number on the work you hand in. Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all the questions.

Write your answers on the writing paper provided.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal in the case of angles in degree, unless a different level of accuracy is specified in the question.

The use of a scientific calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 60.

This documen	t consists	of 5	printed	pages
--------------	------------	------	---------	-------

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Binomial Theorem

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + \dots + b^n,$$
where n is a positive integer and $\binom{n}{r} = \frac{n!}{(n-r)!r!} = \frac{n(n-1)\dots(n-r+1)}{r!}$

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$
$$\sec^2 A = 1 + \tan^2 A$$
$$\csc^2 A = 1 + \cot^2 A$$

Formulae for \(\Delta ABC \)

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$
$$\Delta = \frac{1}{2}bc \sin A$$

1 (a) Find the exact value of
$$\tan\left(\frac{2\pi}{3}\right) + \sin\left(\frac{\pi}{4}\right)$$
. [2]

(b) If
$$\tan \theta = -\frac{1}{5}$$
 and $0^{\circ} < \theta < 180^{\circ}$, find the exact value of $\cos(360^{\circ} - \theta)$. [2]

2 (i) Sketch the graph of
$$y = \frac{1}{x^2}$$
. [1]

- (ii) On the same diagram sketch the graph of $x = y^3$. [2]
- (iii) Calculate the coordinates of the point of intersection of your graphs. [2]
- 3 The quadratic equation $2x^2 5x + 6 = 0$ has roots α and β .

(i) Write down the value of
$$\alpha + \beta$$
 and $\alpha\beta$. [1]

(ii) A second equation
$$4x^2 + px + q = 0$$
 has roots $\frac{1}{\alpha}$ and $\frac{1}{\beta}$.
Find the value of p and of q .

4 (i) Express
$$\frac{2x^3+5x^2+6x+1}{(x+1)(x^2+1)}$$
 in the form $2 + \frac{ax^2+bx+c}{(x+1)(x^2+1)}$ where a, b and c are unknown integers. [2]

(ii) Hence, express
$$\frac{2x^3+5x^2+6x+1}{(x+1)(x^2+1)}$$
 in partial fractions. [5]

4

- Larry is given an injection which contains the drug Flugo. The concentration of Flugo, C, in the bloodstream is $4e^{-0.03t}$ units/cm at time t hours after an injection.
 - (i) Determine the time when C = 1 unit/cm. [2]
 - (ii) Sketch the graph of concentration against time for Flugo. [2]
 - (iii) 15 hours later, Larry is given a second dose of the same injection. Calculate the concentration of Flugo in Larry's bloodstream another 5 hours later. [2]

A drug becomes ineffective when the concentration of the drug falls below 1 unit/cm.

- (iv) Another injection contains the drug SneezeFree and the concentration of this drug at time t hours after the injection is $2e^{-0.07t} + \frac{2}{t+1}$ units/cm. Given that the concentration of the drug only decreases, show that Sneezefree becomes ineffective between 12 to 13 hours. [2]
- 6 (a) (i) Express $(3p)^2 p^{4x} + 7(p^{2x+1})^2$ in the form $16p^{ax+b}$, where a and b are unknown integers to be found. [2]
 - (ii) Hence, show that $(3p)^2 p^{4x} + 7(p^{2x+1})^2$ is a perfect square. [2]
 - **(b)** Solve $5^{2x+1} + 5^{x+1} = 10$. [5]
- 7 (a) Find the coefficient of x^{-1} in the expansion of $\left(\frac{x}{2} + \frac{1}{x}\right)^9$. [3]
 - (b) Given that $(1+x)^p + (1+3x)^q = a + 23x + bx^2 + ...$, where p and q are integers, and p+q=11,
 - (i) state the value of a, [1]
 - (ii) find the value of p, q and b. [5]
 - (c) (i) Expand the first three terms of $(1 m)^7$, in ascending powers of m. [2]
 - (ii) Hence, expand $(1-x-x^2)^7$ up to the term in x^2 . [2]

[2]

- 8 (a) Find the range of values of m for which the equation $2x^2 + mx + 2 = 0$ has no real roots for all real values of x. [4]
 - (b) (i) Express $y = 4x 2x^2$ in the form $y = a(x+m)^2 + n$, where a, m and n are constants.
 - (ii) Hence, explain why the highest value of the graph is 2. [1]
 - (iii) Find the range of values of x for which the graph of $y = 4x 2x^2$ is below the line y = 3 x. [3]

End of Paper

$$1a \qquad -\sqrt{3} + \frac{\sqrt{2}}{2}$$

1b

$$\left(-\frac{5\sqrt{26}}{26}\right)$$

2i, ii

2iii

3i

 $\alpha\beta = 3$

6

3ii
$$p = -\frac{10}{3}$$
$$q = \frac{4}{3}$$

4i
$$2 + \frac{3x^2 + 4x - 1}{(x+1)(x^2+1)}$$

4ii
$$2 + \frac{3x^2 + 4x - 1}{(x+1)(x^2+1)} = 2 - \frac{1}{x+1} + \frac{4x}{x^2+1}$$

6ai
$$16p^{2+4x}$$

6b
$$x = 0$$

7bi
$$a = 2$$

7bii
$$p = 5$$
 $q = 6$

$$b = 145$$

7ci
$$(1-m)^7 = 1 - 7m + 21m^2 + ...$$

7cii
$$1-7x+14x^2+...$$

8a
$$-4 < m < 4$$

8bi
$$2(x-1)^2+2$$

8biii
$$x < 1$$
 or $x > \frac{3}{2}$

SMZ

TANJONG KATONG SECONDARY SCHOOL Year-End Examination 2017 Secondary 3

CANDIDATE NAME CLASS	INDEX NUMBER
ADDITIONAL MATHEMATICS Paper 2	4047/02 Friday 6 Oct 2017
Additional Materials: Writing Paper Graph Paper	2 hours
READ THESE INSTRUCTIONS FIRST	

Write your name, class and index number on the work you hand in. Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all the questions.

Write your answers on the writing paper provided.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal in the case of angles in degree, unless a different level of accuracy is specified in the question.

The use of a scientific calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 80.

This document	consists	of 5	printed	pages
---------------	----------	------	---------	-------

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation
$$ax^2 + bx + c = 0$$
,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
.

Binomial Theorem

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + \dots + b^n,$$

where *n* is a positive integer and $\binom{n}{r} = \frac{n!}{(n-r)!r!} = \frac{n(n-1).....(n-r+1)}{r!}$

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$
$$\sec^2 A = 1 + \tan^2 A$$
$$\csc^2 A = 1 + \cot^2 A$$

Formulae for \(\Delta ABC \)

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$
$$\Delta = \frac{1}{2}bc \sin A$$

- 1 A cylinder has a volume of 90π cm³ and radius $(2 + \sqrt{3})$ cm. Find the height of the cylinder in the form $(a + b\sqrt{3})$ cm. [5]
- 2 (a) Find the range of values of c for which the line y = 2x + c does not intersect the curve $y = \frac{2}{1-x}$. [5]
 - (b) Show that, for all real values of p, the equation $x^2 2(p+1)x + 2p = 0$ always has two real and distinct roots. [2]
 - (c) A cubic equation f(x) = 0 has roots 0, -1 and 2k.
 Given the coefficient of the highest power is 2 and has a remainder of -72 when divided by x 3. Find the value of k.
- 3 (a) Solve the equation $\lg(5x-6) + \lg(3x+1) = 1 + 2\lg x$. [4]
 - (b) Given that $4^a = 12^b$, prove that $\log_3 4 = \frac{b}{a-b}$. [4]
 - (c) Given that $p = \log_2 x$ and $q = \log_2 y$, express the following in terms of p and/or q.
 - (i) $\log_2 \frac{x}{y^3}$, [3]
 - (ii) $\log_{16} x$. [2]
- 4 (a) Prove the identity $\frac{\sin x}{\sec x 1} + \frac{\sin x}{\sec x + 1} = 2 \cot x$. [4]
 - (b) Solve the equation $2\cos\left(y + \frac{\pi}{6}\right) = 1$ for $0 < y < 2\pi$. Leave your answers in terms of π . [4]
 - (c) Solve the equation $5 \sin A \cos A + 2 \sin A = 0$ for $0^{\circ} \le A \le 360^{\circ}$. [4]
- 5 (i) Sketch the graph of $y = \lg (x + 2)$. [2]
 - (ii) In order to solve the equation 10^{2-x} = (x+2)⁴, a graph of a suitable straight line is drawn on the same set of axes as the graph of y = lg (x + 2).
 Find the equation of this straight line. [3]

6 (i) Find the coordinates of the centre, C and the radius of the circle which has the points A(1, 4) and B(7, 12) at the ends of a diameter.

Hence write down the equation of the circle.

[4]

(ii) Find the equation of the tangent to the circle at P(8, 5).

[3]

7 (a) The diagram shows part of the straight line graph when xy is plotted against (x+1).

Find

(i) the value of θ in degrees,

[2]

(ii) y in terms of x.

[2]

(b) The table shows experimental values of 2 variables x and y. It is known that x and y are connected by the equation $y = ax^2 + bx$.

x	2	3	4	5	6
у	2.2	11.7	28.0	49.0	76.8

(i) On graph paper, plot $\frac{y}{x}$ against x and draw a straight line graph.

[2]

(ii) Use your graph to estimate the value of a and of b.

[3]

(iii) The same equation $y = ax^2 + bx$ can also be represented by using a different vertical and horizontal axis.

Explain how the values of a and of b may be obtained.

[2]

8 Given that $y = p + q \cos 2x$, where p and q are integers.

[1]

[1]

(i) state the period of y.Given that the maximum and minimum values of y are 2 and - 4 respectively, find

- (ii) the amplitude of y,
- (iii) the value of p and of q. [2]

Using the values of p and q found in part (iii),

- (iv) sketch the graph of y for $0 \le x \le \pi$. [3]
- 9 The diagram drawn below is not to scale.

The diagram shows a triangle PQR in which the coordinates of points P and R are (2, 3) and (-4, -5) respectively and O is the origin.

The equation of PQ is 12y = -5x + 46 and QR is parallel to the line 6y + 13x = 0.

- (i) Find the coordinates of X which lies on RP such that 3RX = RP. [2]
- (ii) Find the equation of QR and hence show that Q is (-10, 8). [3]
- (iii) Find the area of triangle PQR. [3]
- (iv) Explain whether it is possible to draw a circle passing through the points P, Q and R with QR as the diameter. [2]

End of Paper

Answers

6

1
$$(630-360\sqrt{3})$$
cm
2(a) $-6 < c < 2$
3(a) 3

$$3(c)(i) p - 3 q$$
 $3(c)(ii) \frac{p}{4}$

4(b)
$$\frac{\pi}{6}, \frac{3\pi}{2}$$

(ii)
$$y = -\frac{1}{4}x + \frac{1}{2}$$

6(i)
$$(x-4)^2 + (y-8)^2 = 25$$

(ii)
$$3y = 4x - 17$$

(a)(ii) $y = -2 + \frac{2}{x}$

7(b)(i) (b)(ii)
$$b = -4.7[-4.8 \text{ to } -4.6]$$

$$a = \frac{9.8 - (-4.7)}{5 - 0} = 2.9 [2.86 - 2.98]$$

7(b)(iii)
$$\frac{y}{x^2} = a + \frac{b}{x}$$

Plot $\frac{y}{x^2}$ against $\frac{1}{x}$, from the

straight line obtained, the gradient = b and the vertical intercept = a

8(i)

(ii)3

(iii)
$$p = -1, q = 3$$

 $X(-2, -2\frac{1}{3})$ 9(i)

9(iii) 63 units 2

SAZ Tanjong Katung

2017 Sec 3 Additional Mathematics Paper 1 Marking Scheme

1a	$\tan\left(\frac{2\pi}{3}\right) + \sin\left(\frac{\pi}{4}\right)$ $= -\sqrt{3} + \frac{\sqrt{2}}{2}$ $\cos(360^\circ - \theta) = -\frac{5}{\sqrt{26}}$ $\left(= -\frac{5\sqrt{26}}{26}\right)$	B1, B1 isw B1 – negative B1 – ratio o.e.
2i, ii	$\left(=-\frac{5\sqrt{26}}{26}\right)$	(i) G1 – graph of $y = \frac{1}{r^2}$
	$y = \frac{1}{x^2}$ $x = y^3$	(ii) 1 mark for 1 st quadrant, 1 mark for 3 rd quadrant
2iii	$y = \frac{1}{(y^3)^2}$ $y^7 = 1$ $y = 1$ $x = 1$	M1 – equate both graphs
3i	$\alpha + \beta = \frac{5}{2}$ $\alpha \beta = 3$	B1 for both
	$\alpha\beta = 3$	

2017 Sec 3 Additional Mathematics Paper 1 Marking Scheme

3ii	1 1 -	M1 find sum or product of
511	$\frac{1}{\alpha} + \frac{1}{\beta} = -\frac{p}{4}$	M1 – find sum or product of
	$\alpha \beta 4$	new roots
	$\alpha + \beta$ p	
	$\frac{\alpha+\beta}{\alpha\beta} = -\frac{p}{4}$	
	αρ +	
	$\frac{3}{2}$ p	
	$\frac{5/2}{3} = -\frac{p}{4}$	
		A.1
	$p = -\frac{10}{3}$	A1
	3	
	$\frac{1}{\alpha} \times \frac{1}{\beta} = \frac{q}{4}$	
	$\alpha \hat{\beta} = 4$	
	1 a	
	$\frac{1}{3} = \frac{q}{4}$	
1	$q=\frac{4}{3}$	
	3	A1
4i	$\frac{2x^3 + 5x^2 + 6x + 1}{(x+1)(x^2+1)} = 2 + \frac{3x^2 + 4x - 1}{(x+1)(x^2+1)}$	M1 – long division or
	$\frac{1}{(x+1)(x^2+1)} = 2 + \frac{1}{(x+1)(x^2+1)}$	comparison
	(N TI)(N TI)	A1
4ii	$3x^2 + 4x - 1$ $A = Bx + C$	B1
	$\frac{3x^2 + 4x - 1}{(x+1)(x^2+1)} = \frac{A}{x+1} + \frac{Bx + C}{x^2+1}$	
	$3x^{2} + 4x - 1 = A(x^{2} + 1) + (Bx + C)(x + 1)$	(-1 mark if no brackets for
	x = -1	Bx + C
	400 500	M1 – substitution or
	∴ A = -1	comparing coefficient
	B=4	
	C = 0	A2 – (minus 1 mark for each
		mistake)
	$2 + \frac{3x^2 + 4x - 1}{(x+1)(x^2+1)} = 2 - \frac{1}{x+1} + \frac{4x}{x^2+1}$	
	$(x+1)(x^2+1)$ $x+1$ x^2+1	√B1 (follow through if split
		into correct cases)
5i	$4e^{-0.03t}=1$	
	1	M1 – ln/lg both sides
	$\ln e^{-0.03t} = \ln \frac{1}{4}$	
	4	A1 isw
e	t = 46.2 hours	Gl. shape (decreasing
5ii	↑	G1 – shape (decreasing
		graph)
		If $t < 0$, -1 mark for shape
	1 .	C1 internal and a second
1	4	G1 – intercept and asymptote
	1	

2017 Sec 3 Additional Mathematics Paper 1 Marking Scheme

5iii	Concentration	M1 - find concentration at
	$= 4e^{-0.03(20)} + 4e^{-0.03(5)}$	t = 5 or t = 20
	= 5.64units / cm	
5iv	At $t=12$,	Al M1 – attempt to show that
314		concentration at one point is
	$C = 2e^{-0.07(12)} + \frac{2}{12+1}$	above 1 and at one point is
	=1.02	less than 1.
	2	
	$C = 2e^{-0.07(13)} + \frac{2}{13+1}$	
	= 0.948	
	Hence, between $t = 12$ or $t = 13$, concentration must	
	have been 1. So it becomes ineffective between $t = 12$	
	or $t=13$.	A1 – conclusion
6ai	(-)2 4 (-)2	$B1 - expand()^2$ (either
oai	$(3p)^2 p^{4x} + 7(p^{2x+1})^2$	bracket)
	$=9p^2p^{4x}+7p^{4x+2}$	
	$=p^{2+4x}(16)$	
	$=16p^{2+4x}$	B1 – factorise common term (in the given form)
6aii	$p^{2+4x}(16)$	B1 - $(p^{1+2x})^2$ is a perfect
		square
	$=(p^{1+2x})^24^2$	B1 – 16 is a perfect square
6b	$5^{2x+1} + 5^{x+1} = 10$	
	$(5^x)^2(5) + (5^x)(5) - 10 = 0$	M1 – split power $2x+1$
	let $5^x = a$	
	$5a^2 + 5a - 10 = 0$	M1 – form quadratic
	(a-1)(a+2)=0	equation
		M1 – factorise
	a=1 or $a=-2(rej)$	A1 (-2 rejected, either here
	$5^x = 1$	or at final ans)
	x = 0	
		A1
7-		M1.4
7a	General Term = $\binom{9}{r} \left(\frac{x}{2}\right)^r \left(\frac{1}{x}\right)^{9-r}$	M1 Any method (general term, expansion)
	Power of $x = 2r - 9$,
	2r - 9 = -1	
	r = 4	B1 - r = 4
	Coefficien $t = 7.875$	4.1
	Coefficient = 1.013	A1

2017 Sec 3 Additional Mathematics Paper 1 Marking Scheme

7bi	a=2	B1
7bii	$(1+x)^p = 1 + px + \dots$	
	$(1+3x)^q = 1 + 3qx + \dots$	
	p + 3q = 23	M1 – compare coeff of x
	p+q=11	M1 – solve simult.
	p=5	A1
	q = 6	A1
	$b = {5 \choose 2} + {6 \choose 2} (9)$	
	(2) (2)	
	= 145	A1
7ci	$(1-m)^7 = 1 - 7m + 21m^2 + \dots$	B2 1 -7m, 21m ²
7cii	Replace m with $x + x^2$ $1 - 7(x + x^2) + 21(x + x^2)^2 +$	$M1$ – substitute m with $x + x^2$
İ	$=1-7x-7x^2+21x^2+$	
	$= 1 - 7x - 7x + 21x +$ $= 1 - 7x + 14x^{2} +$	A1
	=1-72+142 +	Al
		$B1 - b^2 - 4ac$ with substituitn
8a	$m^2 - 4(2)(2) < 0$	$B1 - b^2 - 4ac$ with substituith $B1 - Discriminant < 0$
	$m^2 - 16 < 0$	
	(m+4)(m-4)<0	M1 – factorise (no factorisation, M0A0)
	-4 < m < 4	A1
8bi	$4x-2x^2$	
	$=-2(x^2-2x)$	M1 +1-1
	$= -2(x^2 - 2x + 1 - 1)$	
	$=-2(x-1)^2+2$	A1
8bii	0 is the lowest value of $(x-1)^2$	
	0 is the highest value of $-2(x-1)^2$	B1
	2 is the highest value of $-2(x-1)^2 + 2$	
8biii	$4x - 2x^2 < 3 - x$	B1 – form inequality/equate
	$-2x^2 + 5x - 3 < 0$	
	(2x-3)(x-1) > 0	B1 roots 1, 1.5 seen
	$-2x^{2} + 5x - 3 < 0$ $(2x-3)(x-1) > 0$ $x < 1 \text{ or } x > \frac{3}{2}$	B1
	2	1

2017 Sec 3 End of Year Add Maths P2

No.	Solution	Remarks	
1	90π	B1 Form eqn	
	$\pi(2+\sqrt{3})^2$	B1 Evaluate (rad) ²	
	90 $7-4\sqrt{3}$	B1 Evaluate (rad)	
	$\frac{90}{7+4\sqrt{3}} \times \frac{7-4\sqrt{3}}{7-4\sqrt{3}}$	M1 Correct conjugate surd	
	$\frac{90(7-4\sqrt{3})}{49-16(3)}$	M1 Evaluate deno	
	49-16(3)	Wil Evaluate dollo	
	$(630 - 360\sqrt{3})$ cm	A1	
		TOTAL 5	
2(a)	$2x + c = \frac{2}{1 - x}$		
	1-x	M1 Equate line & curve	
	(2x+c)(1-x)=2	and get quad eqn	
	$2x^2 + (c-2)x + 2 - c = 0$	B1 Inequality D < 0	
	D < 0	Ml Correct sub of D	
	$(c-2)^2 - 4(2)(2-c) < 0$ $c^2 + 4c - 12 < 0$		
	(c+4c-12<0) (c+6)(c-2)<0		
	-6 < c < 2	M1 Factoring must be seen 5	
		A1 [-1m poor presentation]	
2(b)	$x^2 - 2(p+1)x + 2p = 0$	D1 C	
	$D = [-2(p+1)]^2 - 4(2p)$	B1 Correct sub of D	
	$=4p^2+8p+4-8p$	1	
	$=4(p^2+1)>0$	B1 > 0 seen & statement 2	
	Real and distinct roots (shown)	B1 > 0 seen & statement 2	
2(c)	f(x) = 2x(x+1)(x-2k)	B1 Form eqn	
	f(3) = -72	M1 sub $x=3$, $R = -72$	
	2(3)(4)(3-2k) = -72		
	48k = 144		
	k = 3	Al 3	_
	I	TOTAL 10)
3(a)	$\lg(5x-6) + \lg(3x+1) = 1 + 2\lg x$	M1 Combine lg terms	
- (-)	$\lg \frac{(5x-6)(3x+1)}{x^2} = 1$		
		M1 Change to index form/	
	$15x^2 - 13x - 6 = 10x^2$	Remove lg	
	$5x^2 - 13x - 6 = 0$	M1 Salva aund sen seen	
	(x-3)(5x+2)=0	M1 Solve quad eqn seen	
	$x = 3$ $x = -\frac{2}{5}$ (rejected)	A1 Must reject -ve ans	
3(b)	$4^a = 12^b$	M1 Bring down index	\dashv
	$a\log_3 4 = b\log_3(4\times 3)$	M1 log 3 both sides	
	$a \log_3 4 = b \log_3 4 + b \log_3 3$		
	$(a-b)\log_3 4 = b(1)$	M1 Split log ₃ 12	
	$\log_3 4 = \frac{b}{a - b}$	B1 Group log ₃ 4 term & ans	
	a-b	4	

2017 Sec 3 End of Year Add Maths P2

No.	Solution	Remarks	
3(c)(i)	$\log_2 \frac{x}{v^3} = \log_2 x - 3\log_2 y$	M1 Use $\lg \frac{a}{b} = \lg a - \lg b$ M1 Use $\lg a^m = m \lg a$	
	<u>*</u>	M1 Use $\lg a^m = m \lg a$	
	=p-3q	A1	3
3(c)(ii)	$\log_{16} x = \frac{\log_2 x}{\log_2 16}$	B1 Change base	
	© 50 10 1	B1	
	$=\frac{P}{4}$		2
		TOTAL	13
L			

2017 Sec 3 End of Year Add Maths P2

No.	Solution Solution	Remarks	
4(a)	$\frac{\sin x}{\sin x} + \frac{\sin x}{\sin x}$	T. C. T. C.	
	$\frac{\cos x - 1}{\sec x - 1} + \frac{\cos x}{\sec x + 1}$		
	$\int_{-\infty}^{\infty} \sin x(\sec x + 1) + \sin x(\sec x - 1)$		
	$=\frac{\sin x(\sec x+1)+\sin x(\sec x+1)}{\sec^2 x-1}$	M1 Combine fractions	
		M1 Use identity	
	$ 2\sin x \left(\frac{1}{\cos x}\right) $	$\sec^2 x - 1 = \tan^2 x o.e.$	
	$=\frac{(\cos x)}{\tan^2 x}$	M1 Use $\sec x = \frac{1}{1}$	
	000 M	cos x	
	$=\frac{2}{}$	M1 Use $\cot x = \frac{1}{\tan x}$	
	tan x	$\begin{aligned} & tan x \\ & Prove LHS = RHS \end{aligned}$	4
	$= 2 \cot x (Proved)$	Prove Lns – Kns	
4(b)	$2\cos(y+\frac{\pi}{2})-1$		
	$2\cos(y + \frac{\pi}{6}) = 1$	B1 for $\frac{\pi}{3}$	
	$y + \frac{\pi}{6} = \frac{\pi}{3}, 2\pi - \frac{\pi}{3}$,	
	$y + \frac{7}{6} - \frac{7}{3}$, $2n - \frac{7}{3}$	B1 for 2π – (their Basic \angle)	
	$y = \frac{\pi}{6}, \frac{3\pi}{2}$	D2 de net conet des souis	
	$y = \frac{1}{6}, \frac{1}{2}$	B2 do not accept deg equiv or not in π	4
		Accept if whole qn work in	
		deg, then convert to ans in π	
4(c)	$5\sin A\cos A + 2\sin A = 0$		
	$\sin A(5\cos A + 2) = 0$	M1 Factorise	
	$\sin A = 0$ $A = 0^{\circ}, 180^{\circ}, 360^{\circ}$	A1 All 3 ans	
	V 2 V 1 V 1 V 2 V 2 V 2 V 2 V 2 V 2 V 2	1.0	
	or $\cos A = -0.4$ $A = 113.6^{\circ}, 246.4^{\circ}$	A2	4
		TOTAL	12
5(i)	<i>y</i> ^	G1 Shape & y-int (lg 2 o.e.)	
2(1)		(g 2 010.)	
	y = lg(y + 2)	G1 asymptote & x-int	
	0.301		
	-2 /-1 O x		
			2
	:1]		_
5(ii)	$10^{-x+2} = (x+2)^4$		
\$6C 100KD	$\lg(x+2)^4 = -x + 2$	B1 Take lg on both sides	
	$4\lg(x+2) = -x + 2$	B1 Bring down index	
	$\lg(x+2) = -\frac{1}{4}x + \frac{1}{2}$		
	, –		
	$y = -\frac{1}{4}x + \frac{1}{2}$	B1 o.e.	3
	4 2		3
		TOTAL	5

2017 Sec 3 End of Year Add Maths P2

No.	Solution	Remarks	
6(i)	C(4,8)	B1	
U(I)	$AB = \sqrt{(7-1)^2 + (12-4)^2}$	B1 Pythagoras' Theorem / Length formula with	
	= 10 units	substitution	
	Radius = 5 units	B1	
	Eqn of circle: $(x-4)^2 + (y-8)^2 = 25$	B1 √ isw	4
	Or $x^2 + y^2 - 8x - 16y + 55 = 0$		
6(ii)	$\mathbf{m}_{CP} = \frac{8-5}{4-8} = -\frac{3}{4}$	(must be from m _{CP})	
	Equation of tangent:	M1 Perp gradient seen	
	20	ivii Teip gradient seen	
	$y-5=\frac{4}{3}(x-8)$	M1 Finding Equation	
	$y = \frac{4}{3}x - \frac{17}{3}$ or $3y = 4x - 17$	A1 o.e.	3
		TOTAL	7
7(a)(i)	$\tan \theta = \frac{-6 - 0}{-1 - 2}$	M1 Relate tan θ to grad	
	$\frac{1}{-1-2}$	Or $\tan \alpha = 2$	
	$\tan \theta = -2$	$\theta = 180^{\circ} - \alpha$	_
	<i>θ</i> = 116.6°	Al to l dp	2
7(a)(ii)	xy = -2[(x+1) - 2]	M1 Find eqn of line &	
	xy = -2x + 2	correct axes seen	
	$y = -2 + \frac{2}{x}$	A1 o.e. [y must be subject]	2
7(b)(i)		7.	
1(0)(-)	x 2 3 4 5 6	T1	
	$\frac{y}{x}$ 1.1 3.9 7.0 9.8 12.8		
	$\frac{y}{x} = ax + b$ and a straight line drawn	L1 with vert int seen	2
7(b)(ii)	b = -4.7	B1 -4.8 to -4.6(fr graph)	
	$a = \frac{9.8 - (-4.7)}{10.00000000000000000000000000000000000$	B1 Calculate grad	
	5-0	B1 2.86 to 2.96(fr graph)	3
7(b)(iii)			
	$\frac{y}{x^2} = a + \frac{b}{x}$	B1 Eqn of str line	
	Plot $\frac{y}{x^2}$ against $\frac{1}{x}$, from the straight line obtained,	B1 Explanation	
	the gradient = b and the vertical intercept = a		2
		1	t

2017 Sec 3 End of Year Add Maths P2

No.	Solution	Remarks	
8(i)	π	B1 Accept 180°	1
8(ii)	3	B1	1
8(iii)	p = -1, q = 3	B2	2
8(iv)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	G1 Shape G1 Max pts, Min pt G1 The other 2 pts	3
		TOTAL	7

2017 Sec 3 End of Year Add Maths P2

1	$(-4+2, -5+\frac{1}{3}\times8)$	D1 f	
X	$(-2, -2\frac{1}{3})$ $R(-4, -5) = 6$ 8	B1 for x B1 for y	2
9(ii) E	Eqn of QR : $y+5 = -\frac{13}{6}(x+4)$ 6y = -13x - 82	B1 Grad seen	
Е	Eqn of PQ : $12y = -5x + 46$ (given) 2(-13x - 82) = -5x + 46 21x = 210	B1 Eqn seen	
	$x = -10$ $y = (130-82) \div 6$ $y = 8$	B1 Manipulation seen to get ans	3
9(iii) A	$Area = \frac{1}{2} \begin{vmatrix} 2 & -10 & -4 & 2 \\ 3 & 8 & -5 & 3 \end{vmatrix}$	B1	
	$= \frac{1}{2} \{ (16+50-12) - (-30-32-50) \}$ = 63 units ²	M1 Correct manipulation	3
	$m_{PQ} = -\frac{5}{12}$ $m_{PR} = \frac{3 - (-5)}{2 - (-4)} = \frac{4}{3}$	B1	3
	Since $m_{PQ} \times m_{PR} = -\frac{5}{12} \times \frac{4}{3} \neq -1$ $\angle QPR \neq 90^{\circ}$, QR is not the diameter	B1 Correct conclusion	
	Not possible as it does not obey theorem- angle in semicircle	with reason TOTAL	10