SIR

С	la	S	5:

Candidate Name:

Candidate Index Number:

SHUQUN SECONDARY SCHOOL 2017 End-Of-Year Examination Secondary Three Express

ADDITIONAL MATHEMATICS

4 October 2017

4047

Additional Materials: Answer Paper Graph Paper 2 hours 30 minutes

READ THESE INSTRUCTIONS FIRST

Write your name, class and class index number in the spaces at the top of this page and all the work you hand in.

Write in blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question, it must be shown with the answer.

Omission of essential working will result in loss of marks.

You are expected to use a scientific calculator to evaluate explicit numerical expressions. If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question. The total of marks for this paper is 100.

This question paper consists of 7 printed pages.

[Turn over

Mathematical formulae

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Binomial expansion

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n},$$

where *n* is a positive integer and $\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)...(n-r+1)}{r!}$

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$
$$\sec^2 A = 1 + \tan^2 A$$
$$\csc^2 A = 1 + \cot^2 A$$

 $\sin(A\pm B) = \sin A \cos B \pm \cos A \sin B$

 $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2\sin A\cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$\tan 2A = \frac{2\tan A}{1-\tan^2 A}$$

Formulae of $\triangle ABC$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc\cos A$$
$$\Delta = \frac{1}{2}ab\sin c$$

SQSS 2017 Sec 3 AM EOY

3

Answer all the questions.

1	(a)	Solve the inequality $(3x-1)(2x+3)+10x > 0$.	[3]
	(b)	Write $\frac{5\sqrt{2} + \sqrt{14}}{3\sqrt{2} - \sqrt{14}}$ in the form $a + b\sqrt{7}$, where a and b are integers.	[3]
2	The	function f is given by $f(x) = 2\sin 2x - 1$ for $0^\circ \le x \le 180^\circ$.	
	(i)	State the amplitude of f .	[1]
	(ii)	State the period of f .	[1]
	(iii)	Find the x -coordinates of the points where the curve meets the x -axis.	[2]
	(iv)	Sketch the graph of $y = 2\sin 2x - 1$, for $0^\circ \le x \le 180^\circ$.	[2]
3	(a)	The function $f(x) = x^3 - 6x^2 + ax + b$, where <i>a</i> and <i>b</i> are constants, is exactly divisible by $x - 3$ and leaves a remainder of -55 when divided by $x + 2$. Find the value of <i>a</i> and of <i>b</i> .	[4]
	(b)	Solve the equation $2\log_2(x-2) - \log_2(x+5) + 3 = 0$.	[5]
4	(a)	A man bought a new car. After x months, its value \$ V is given by $V = 120000e^{-px}$, where p is a constant.	
		(i) Find the value of the car at the time when the man bought it.	[1]
		The value of the car after 5 years is \$ 48 000. Calculate	
		 the expected value, to the nearest dollar, of the car after 8 years of purchase, 	[3]
		(iii) the age of the car, to the nearest month, when the expected value of the car will be \$ 12 000.	[2]
	(b)	Express $\frac{8x^2 + 3x + 1}{x(2x+1)^2}$ in partial fractions.	[4]

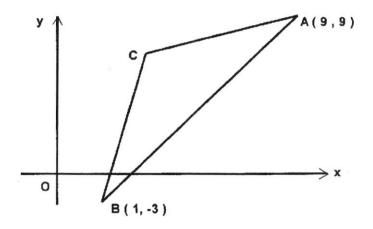
BP~256

5 (a) Given that $\tan A = 8$, $\cos B = \frac{7}{\sqrt{65}}$, A is acute and that A and B lie in different quadrants, find without the use of calculator, the exact values of (i) $\tan(90^\circ - A)$, [1]

(ii)
$$\sin B$$
. [2]

(b) Sketch the graph of
$$y = |2x-1|$$
 for $-3 \le x \le 5$. [3]

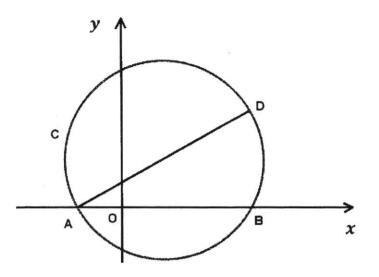
(c) Solve
$$|3x-4| = 5x$$
. [3]


6	(a)	(i)	Expand and simplify the first 4 terms, in decending	
			powers of x, in the expansion of $\left(2-\frac{1}{x}\right)^6$.	[2]
		(ii)	Hence find the coefficient of x^{-1} in the expansion of	

$$\left(1-2x+x^2\right)\left(2-\frac{1}{x}\right)^{\circ}.$$
[3]

(b) Find in terms of *a*, the term independent of *x*, in the expansion of
$$\left(\frac{a}{x} + x\right)^{20}$$
. [3]

PROCEED TO NEXT PAGE


7 Solutions to this question by accurate drawing will not be accepted.

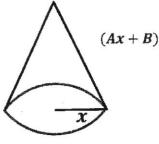
The diagram, which is not drawn to scale, shows a triangle *ABC* in which the point *A* is (9,9) and the point *B* is (1,-3). The point *C* lies on the perpendicular bisector of *AB* and the equation of the line *BC* is y = 8x - 11. Find

	(i)	the equation of the perpendicular bisector of AB,	[4]
	(ii)	the coordinates of C.	[2]
	The	point D is such that ACBD is a rhombus.	
	(iii)	Find the coordinates of D.	[2]
	(iv)	Show that $AB = 2CD$.	[2]
8	(a)	Solve the simultaneous equations	
		$3^x \cdot \sqrt{3^y} = 81,$	[5]
		$\log_2(8) = 3 + \log_2(4x - y)$	
	(b)	Given that $\log_3(9a) - \log_9(9b) = 2$, express <i>b</i> in terms of <i>a</i> .	[4]
	(c)	Find the value(s) of m for which the straight line	• ••
		mx + y + 6 = 0 is always a tangent to the curve $y = x^2 + 3x + 2m$.	[4]
9	(a)	By using appropriate substitution, or otherwise, solve the	101
		equation $3^{2x+2} + 1 = 2(3^{x+1})$.	[5]
	(b)	Find the smallest integer value of k for which $kx^2 + 8x + 3$ is always positive for all values of x.	[3]

10 The equation of the circle, C, as shown in the diagram below is $x^2 + y^2 - 6x - 10y - 135 = 0$.

- (i) Find the coordinates of the centre and the radius of the circle, C. [2]
- (ii) Given that the circle cuts the x-axis at the points A and B. Find the length of the line segment AB. [3]

Given that D is a point on the circle such that the line segment AD is the diameter of the circle. Find


- (iii) the coordinates of D, [1]
- (iv) the equation of the circle which is the reflection of C about the y-axis.

PROCEED TO NEXT PAGE

11 (a) Answer the whole of this question on a piece of graph paper.

The diagram, below, is the shape of a solid cone, with radius x cm and slant height (Ax + B) cm, where A and B are constants. It has a total surface area of $y \text{ cm}^2$.

(Formula : Curved surface area of cone = πrl)

Values of x and y are given below.

	x	0.5	1.0	1.5	2.0	2.5	3.0		
	y	2.36	7.85	16.49	28.27	43.20	61.26		
	(i)	Show the	at $\frac{y}{x} = x$	$\pi(A+1)$	$\alpha + \pi B$.				[2]
	(ii)	On the g line grap		aper, pk	ot $\frac{y}{x}$ aga	ainst x a	and draw	a straight	[2]
	Use	your grap	h to es	timate,					
	(iii)	the value	e of A	and of 1	3,				[3]
	(iv)	the base	radius	for whic	y = 10	∂x			[1]
(b)	The β. Fi	roots of th nd	ne quad	Iratic eq	uation a	$x^2 - 4x - 4x$	+ 5 = 0 a	are α and	
	(i)	the sum	of the r	oots,					[1]
	(ii)	the prod	uct of th	ne roots					[1]
	(iii)	Hence, f $\frac{1}{\alpha^2}$ and		quadrat	ic equat	tion who	se roots	are	
		~	Ρ						[3]

End of Paper

SAL

SHUQUN SECONDARY SCHOOL

MATHEMATICS DEPARTMENT

SECONDARY 3 EXPRESS

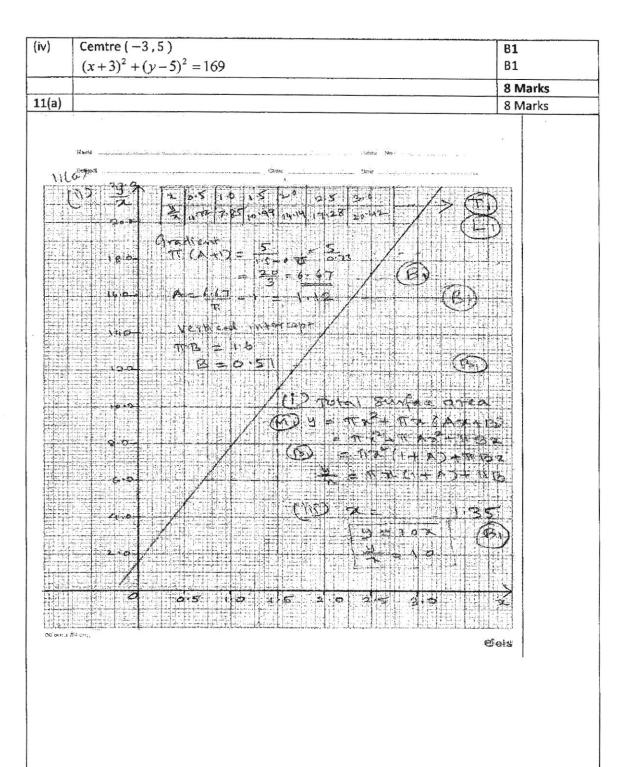
ADDITIONAL MATHEMATICS

END-OF-YEAR Examination 2017

Marking scheme

		1
1 (a)	(3x-1)(2x+3) + 10x > 0	
	$6x^2 + 7x - 3 + 10x > 0$	
	$6x^2 + 17x - 3 > 0$	M1
	(6x-1)(x+3) > 0	
	$x < -3$ or $x > \frac{-3}{6}$	A2
1(b)	$x < -3 \text{or} x > \frac{1}{6}$ $\frac{5\sqrt{2} + \sqrt{14}}{3\sqrt{2} - \sqrt{14}} = \frac{5\sqrt{2} + \sqrt{14}}{3\sqrt{2} - \sqrt{14}} \times \frac{3\sqrt{2} + \sqrt{14}}{3\sqrt{2} + \sqrt{14}}$	
	$\frac{1}{3\sqrt{2} - \sqrt{14}} = \frac{1}{3\sqrt{2} - \sqrt{14}} \times \frac{1}{3\sqrt{2} + \sqrt{14}}$	M1
	$15 \times 2 + 3\sqrt{28} + 5\sqrt{28} + 14$	
	=	M1
	$44 + 16\sqrt{7}$	
	$=\frac{44+16\sqrt{7}}{4}$	
	$=11+4\sqrt{7}$	A1
		6 Marks
2(i)	Amplitude = 2	A1
(ii)	Period = 180°	A1
(iii)	$\sin 2x = \frac{1}{2}$	
	-	
	$2x = 30^{\circ}, 150^{\circ}$	
	$x = 15^{\circ}, 75^{\circ}$	A2
(iv)		Shape 1
		Points on axes
	0/1	1 Mark
		IMAR
		6 Marks
		O IVIARKS

2(2)		
3(a)	$f(x) = x^3 - 6x^2 + ax + b$	
	f(3) = 0	
	27 - 54 + 3a + b = 0	
	3a + b = 27	M1
	f(-2) = -55	
	-8-24-2a+b=-55	
	-2a+b=-23	M1
	<i>a</i> = 10	A1
	b = -3	A1
3(b)	$2\log_2(x-2) - \log_2(x+5) + 3\log_2 2 = \log_2 1$	
	$\log_2(x-2)^2 - \log_2(x+5) + \log_2 2^3 = \log_2 1$	M1
	$\log_{2}\left[\frac{(x-2)^{2} \times 8}{(x+5)}\right] = \log_{2} 1$	
	$8(x-2)^2$	M1
	$\frac{8(x-2)^2}{(x+5)} = 1$	MT
	$8(x^2 - 4x + 4) = x + 5$	
	$8x^2 - 33x + 27 = 0$	
		B1
	$x = 3$ or $\frac{9}{8} = 1.125$	
	x = 1.125 is rejected	B1, only if
	x = 3	rejected
		A1
		9 Marks
1		
1		
L	1	1


4(a) (i)	V = \$ 120 000.	A1
(ii)	After 5 years, that is after 60 months	
	$48000 = 120000e^{-60p}$	M1
	-f0a 48000 2	
	$e^{-60p} = \frac{48000}{120000} = \frac{2}{5}$	
	$(0 - 1)^2$	
	$-60p = \ln(\frac{2}{5})$	100 m
	p = 0.0152715	B1
	Value after 8 years	
	$V = 120000e^{-96p}$	
	$= 120000e_{-96\times0.0152715}$	
	= 27699.87063	
	= \$27700	A1
(iii)	$12000 = 120000e^{-px}$	M1
	$e^{-px} = \frac{1}{10}$	
	$x = \frac{-\ln 10}{-p} = \frac{\ln 10}{0.0152715}$	
	-	
	=150.7766	
	151 months	A1
4(b)	$\frac{8x^2 + 3x + 1}{x(2x+1)^2} = \frac{A}{x} + \frac{B}{2x+1} + \frac{C}{(2x+1)^2}$	
		M1
	$8x^{2} + 3x + 1 = A(2x + 1)^{2} + Bx(2x + 1) + Cx$	1994-58
		M1
	When $x = 0$, $A = 1$	
	When $x = -\frac{1}{2}$, $C = -3$	M1
	Comparing the coefficients of x^2	
	8 = 4A + 2B	
	<i>B</i> = 2	M1
	$8x^2 + 3x + 1$ 1 2 3	
	$\frac{8x^2 + 3x + 1}{x(2x+1)^2} = \frac{1}{x} + \frac{2}{2x+1} - \frac{3}{(2x+1)^2}$	
		10 Marks
	· · · · · · · · · · · · · · · · · · ·	

5 (a)(i)	$\tan(90^\circ - A) = \frac{1}{8}$	A1
(ii)	Angle B lies in the fourth quadrant Vertical or opposite side = -4	M1
	$\sin B = -\frac{4}{\sqrt{65}}$	A1
(b)		Shape 1 marks y-intercept
		Point on
		x-axis 1 Mark
		+
(c)	$3x - 4 = \pm 5x$	M1
	$3x - 4 = -5x$ $x = \frac{1}{2}$	A1
	-	A1
	3x - 4 = 5x	Only if it is
	x = -2	rejected
	Re jected	9 Marks
		3 IVIANS
6(a) (i)	$\left(2 - \frac{1}{x}\right)^{6} = 2^{6} + \binom{6}{1} 2^{5} \left[-\frac{1}{x}\right] + \binom{6}{2} 2^{4} \left[-\frac{1}{x}\right]^{2} + \binom{6}{3} 2^{3} \left[-\frac{1}{x}\right]^{3} + \dots$	M1
	$64 - 6 \times 32 \times \frac{1}{x} + 15 \times 16 \times \frac{1}{x^2} - 20 \times 8 \times \frac{1}{x^3} + \dots$	
	$= 64 - \frac{192}{x} + \frac{240}{x^2} - \frac{160}{x^3} + \dots$ $(1 - 2x + x^2) \left(2 - \frac{1}{x}\right)^6 = (1 - 2x + x^2)(64 - \frac{192}{x} + \frac{240}{x^2} - \frac{160}{x^3} + \dots$	81
(ii)		M1
	Coefficient of x^{-1} = 1(-192) - 2(240) + 1(-160)	M1
	= -832	A1

(b)		1
(0)	$(a)^{20}$	
	$\left(\frac{a}{x}+x\right)^{20}$	
	Generalterm	
	$T_{r+1} = {\binom{20}{r}} {\left(\frac{a}{x}\right)^{20-r}} x^r$	
	$= \binom{20}{r} \frac{a^{20-r}}{x^{20-r}} \times x^{r}$	
	$= \binom{20}{r} a^{20-r} x^{2r-20}$	
	For the term independednt of x 2r - 20 = 0	
	r = 10	M1
	Indoendent term	
	$T_{11} = \begin{pmatrix} 20\\10 \end{pmatrix} a^{10}$	B1
	Or 184756 <i>a</i> ¹⁰	
1		1
		B1
		B1 8 Marks
		B1 8 Marks
7(i)	Mid point of $AB = \left(\frac{1+9}{2}, \frac{-3+9}{2}\right) = (5, 3)$	
7(i)	Mid point of $AB = \left(\frac{1+9}{2}, \frac{-3+9}{2}\right) = (5, 3)$ Gradient of $AB = \frac{9+3}{9-1} = \frac{3}{2}$	8 Marks
7(i)	Gradient of $AB = \frac{9+3}{9-1} = \frac{3}{2}$	8 Marks M1
7(i)	Gradient of $AB = \frac{9+3}{9-1} = \frac{3}{2}$	8 Marks M1 M1
7(i)	Gradient of $AB = \frac{9+3}{9-1} = \frac{3}{2}$	8 Marks M1 M1
7(i)	Gradient of $AB = \frac{9+3}{9-1} = \frac{3}{2}$ Gradient of the perpendicular $= -\frac{2}{3}$ $y = -\frac{2}{3}x + C$	8 Marks M1 M1
7(i)	Gradient of $AB = \frac{9+3}{9-1} = \frac{3}{2}$ Gradient of the perpendicular $= -\frac{2}{3}$ $y = -\frac{2}{3}x + C$ It passes through (5,3) So $C = \frac{19}{3}$ Equation of the perpendicular bisector	8 Marks M1 M1 B1
7(i)	Gradient of $AB = \frac{9+3}{9-1} = \frac{3}{2}$ Gradient of the perpendicular $= -\frac{2}{3}$ $y = -\frac{2}{3}x + C$ It passes through (5,3) So $C = \frac{19}{3}$ Equation of the perpendicular bisector	8 Marks M1 M1
7(i)	Gradient of $AB = \frac{9+3}{9-1} = \frac{3}{2}$ Gradient of the perpendicular $= -\frac{2}{3}$ $y = -\frac{2}{3}x + C$ It passes through (5,3) So $C = \frac{19}{3}$	8 Marks M1 M1 B1
	Gradient of $AB = \frac{9+3}{9-1} = \frac{3}{2}$ Gradient of the perpendicular $= -\frac{2}{3}$ $y = -\frac{2}{3}x + C$ It passes through (5,3) So $C = \frac{19}{3}$ Equation of the perpendicular bisector $y = -\frac{2}{3}x + \frac{19}{3}$ Or $3y + 2x = 19$	8 Marks M1 M1 B1
7(i) (ii)	Gradient of $AB = \frac{9+3}{9-1} = \frac{3}{2}$ Gradient of the perpendicular $= -\frac{2}{3}$ $y = -\frac{2}{3}x + C$ It passes through (5,3) So $C = \frac{19}{3}$ Equation of the perpendicular bisector $y = -\frac{2}{3}x + \frac{19}{3}$ Or $3y + 2x = 19$ To find the coordinates of <i>C</i> , solve simultaneously	8 Marks M1 M1 B1
	Gradient of $AB = \frac{9+3}{9-1} = \frac{3}{2}$ Gradient of the perpendicular $= -\frac{2}{3}$ $y = -\frac{2}{3}x + C$ It passes through (5,3) So $C = \frac{19}{3}$ Equation of the perpendicular bisector $y = -\frac{2}{3}x + \frac{19}{3}$ Or $3y + 2x = 19$	8 Marks M1 M1 B1 B1
	Gradient of $AB = \frac{9+3}{9-1} = \frac{3}{2}$ Gradient of the perpendicular $= -\frac{2}{3}$ $y = -\frac{2}{3}x + C$ It passes through (5,3) So $C = \frac{19}{3}$ Equation of the perpendicular bisector $y = -\frac{2}{3}x + \frac{19}{3}$ Or $3y + 2x = 19$ To find the coordinates of <i>C</i> , solve simultaneously $y = 8x - 11$ and $y = -\frac{2}{3}x + \frac{19}{3}$	8 Marks M1 M1 B1 B1

(:::)	ACDD is a shamburg	
(iii)	ACBD is a rhombus Diagonals bisect each other	
	If $D(a, b)$, then	
	$\left(\frac{a+2}{2},\frac{b+5}{2}\right) = (5,3)$	M1
	a = 8 and $b = 1$	
	D(8,1)	B1
(iv)	$AB = \sqrt{(9-1)^2 + (9+3)^2} = \sqrt{208} = 2\sqrt{52}$	M1
	$CD = \sqrt{(8-2)^2 + (1-5)^2} = \sqrt{52}$	
		B1
	AB = 2CD	
		10 Marks
8(a)	1	
	$3^x \times 3^{\frac{1}{2}^y} = 3^4$	
	1	M1
	$x + \frac{1}{2}y = 4 (1)$	
	$\log_2 8 = 3\log_2 2 + \log_2 (4x - y)$	M1
	8 = 8(4x - y)	
	$4x - y = 1, \dots, (2)$	M1
	Solving	
	x = 1.5	
	y = 5	A2
(b)		
(0)	$\log_3(9a) - \frac{\log_3(9b)}{\log_3 9} = 2\log_3 3$	M1
	$\log_3(9a) - \frac{1}{2}\log_3(9b) = \log_3 9$	
1	$\log_3(9u) = \frac{1}{2}\log_3(9u) = \log_3(9u)$	
	$\log \left(\frac{9a}{2}\right)$ $\log \theta$	M1
	$\log_3(\frac{9a}{\sqrt{9b}}) = \log_2 9$	
	9a	
	$\frac{9a}{\sqrt{9b}} = 9$	
	$a = \sqrt{9b}$ $a^2 = 9b$ $b = \frac{1}{9}a^2$	M1
	$a^2 = 9b$	
	$b = \frac{1}{2}a^2$	B1
	9	

(c)	$x^2 + 3x + 2m = -mx - 6$	
	$x^{2} + (3+m)x + (2m+6) = 0$	M1
	$(3+m)^2 - 4(1)(2m+6) = 0$	B1
	$m^2 - 2m - 15 = 0$	
	(m-5)(m+3) = 0	
	m = 5 or -3	A2
		13 Marks
9(a)	225 22 2/25 20 1 2	M1
5(4)	$3^{2x} \times 3^2 - 2(3^x \times 3) + 1 = 0$	M1
	$9(3^x)^2 - 6(3^x) + 1 = 0$	9
	$9t^2 - 6t + 1 = 0$	
	$(3t-1)^2 = 0$	M1
		B1
	$t = \frac{1}{3}$	
	$3^3 = 3^{-1}$	A1
	x = -1	
(b)	For the function to be positive $P^2 = 4(h)(2) = 0$	B1
	$8^2 - 4(k)(3) < 0$ 64 < 12k	Ы
	AND Y THE THE AND A VERIFICATION	
	$k > \frac{64}{12} = 5\frac{1}{3}$	B1
	Smallest positive integer = 6	B1
		8 Marks
10(:)		
10(i)	Centre (3,5) Radius = 13 units	A1 A1
(ii)	$x^2 - 6x - 135 = 0$	
	(x-15)(x+9) = 0	
	x = 15 or -9	
	A(-9,0)	
	B(15.0)	B1 B1
	<i>AB</i> = 24	A1
(iii)	$\left(\frac{a-9}{2}, \frac{b+0}{2}\right) = (3,5)$	
	<i>a</i> = 15	
	b = 10	
		A1

	$x^2 - 4x + 5 = 0$	A1
(i)	$\alpha + \beta = 4$	
(ii)	$\alpha\beta = 5$	A1
(iii) S	Sum of the roots =	
	$\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{\alpha^2 \beta^2} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{(\alpha\beta)^2} = \frac{16 - 10}{25} = \frac{6}{25}$	M1
F	Product of the roots =	
	$\frac{1}{\alpha^2} \times \frac{1}{\beta^2} = \frac{1}{25}$	M1
	Equation	
	$x^{2} - x(\frac{6}{25}) + \frac{1}{25} = 0$ $25x^{2} - 6x + 1 = 0$	81
	$25x^2 - 6x + 1 = 0$	
		13 Marks