St. Gabriel's Secondary School
 2017 Second Semestral Examination

Subject	$:$ Mathematics
Paper	$\vdots 1$
Level/Stream	$:$ Sec 2 Express
Duration	\vdots 1 hour 15 minutes
Date	$:$ 4 October 2017
Setter(s)	$:$ Mdm Lai Angel

READ THE SE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in.
Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use st:aples, paper clips, glue or correction fluid.
Answer all thequestions.
If working is needed for any question, it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to 3 significant figures. Give answers in degrees to 1 decimal place. For π, use either your calculator value or 3.142, unless the question requires the answer in terms of π.

The number ofmarks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 50 .

For Examiner's Use		
Subtotal		
Number of marks deducted for ' P ' (capped at 3)		

This question paper consists of 11 printed pages including this cover page.

Answer all the questions.
1 (a) Round 9.8765 correct to 1 significant figure.

> Answer
(b) Write the following in order of size, largest first.

$$
0.5,0.5^{3}, \sqrt[3]{0.5}, \frac{5}{7}
$$

Answer
\qquad

2 Mr Koh has a new motorbike. The capacity of the motorbike's petrol tank and the petrol consumption stated by the manufacturer are as follows.

Capacity of petrol tank: 20 litres Petrol consumption (Amount of petrol used) : 7.0 litres 100 km

Mr Koh started his joumey on his motorbike with a full tank of petrol. After riding for 200 km , he refuelled the petrol tank completely by pumping 16 litres of petrol.

Find
(a) the amount of petrol lef in the petrol tank after Mr Koh had completed 200 km ,
Answer litres
(b) the actual petrol consumption of Mr Koh's motorbike.

Answer \qquad

3 (a) Factorise $2 x^{2}+13 x+15$.

> Answer
(b) Hence, without using a calculator, write down the two factors of 21315 .

Answer and

4 Express each of the following as a single fraction in its simplest form.
(a) $\frac{2 x+1}{3}-\frac{x}{5}$

Answer

(b) $\frac{6}{x^{2}-4}-\frac{3}{x-2}$

5 If $m: n=2: 5$ and $n: p=2: 5$, show that $\frac{m+n+p}{p}=\frac{39}{25}$.

Answer

6 It is given that y is inversely proportional to the square root of x. The difference in the value of y when $x=4$ and $x=9$ is 3 .

Find
(a) an equation connecting x and y,

> Answer
(b) the value of x when $y=3$.

7

The diagram shows the graph of $y=x^{2}+b x-10$.
Find
(a) the value of b,

$$
\text { Answer } \quad b=
$$

(b) the coordinates of the minimum point of the graph.
\qquad

8 (a) Factorise $12 x^{2}-6 x y-20 w x+10 w y$.

Answer

(b) Expand $(7+5 y)^{2}-(7-5 y)^{2}$.

studykaki.com

In the diagram, triangle $P Q R$ is similar to triangle $T U V$.
Angle $Q P R=50^{\circ}$, angle $T U V=(m+15)^{\circ}$ and angle $U V T=(2 m-8)^{\circ}$. $P Q=3.2 \mathrm{~cm}, T U=5.6 \mathrm{~cm}$ and $T V=4.8 \mathrm{~cm}$.
(a) Calculate the value of m.

$$
\text { Answer } \quad m=
$$

(b) Find the length of $P R$.

Give yo ur answer correct to 1 decimal place.

Answer $\quad P R=$ \qquad cm
(c) A stedent, Sam, thinks that since triangle $P Q R$ is similar to triangle $T U V$, therefore the area of triangle $P Q R$: area of triangle $T U V$ is $16: 49$. Explain if Sam is correct. Show working to support your answer. Anst ver \qquad
\qquad
\qquad
\qquad
\qquad

10 Daniel is x years old and Gabriel is y years old.
The sum of ages of Daniel and Gabriel is 30 years old.
(a) Form an equation connecting x and y.

Answer
(b) One year ago, Gabricl was three times as old as Daniel.

Form another equation connecting x and y and express it in the simplest form.

> Answer
(c) Draw the graphs of the two equations in parts (a) and (b) on the grid below.

(d) From the graphs, find the ages of Danicl and Ciabricl.
Answer Denlel: year old

Gabriel:
years old

11 The diagram shows an empty container with height 1.7 m .
It consists of a cylindrical drum and a hemispherical base of radius 0.5 m .

(a) Taking $\pi=\frac{22}{7}$, find the volume of the container.

Answer m^{3}
(b) The container is filled with water at a rate of 70 litres per minute.

Given that $1 \mathrm{~m}^{3}=1000$ litres, find the time needed for the water to fill the container completely.
\min

12 The dot diagram shows the marks scored by x students for a Mathematics quiz.

(a) Find the value of x.

$$
\text { Answer } x=
$$

(b) Write down the median mark.

> Answer
(c) (i) Calculate the mean mark.

Give your answer corroct to the nearest whole number.

Answer
(ii) Explain if the mean mark, in part (b)(i), accurately reflocts the results of all students in the class.

Answer \qquad
\qquad
\qquad

The diagram shows the net of a right square pyramid. The base area is $196 \mathrm{~cm}^{2}$ and the heigh t of the triangle is 25 cm .

Find
(a) the length of a side of the base,

Answer

cm
(b) the surface area of the pyramid,
\qquad
Answer
cm^{2}
(c) the volume of the pyramid.
cm^{3}

Answer all the questions.
1 A bag contains different-coloured sweets, of which 4 are orange, 5 are white, 6 are purple and 3 are green. A sweet is chosen at random from the bag.

Find the probability of choosing
(a) a purple sweet,
(b) a sweet that is not green,
(c) a pink sweet.

2

Quadrilateral $E F G H$ is congruent to quadrilateral $K L M N$.
Find
(a) the length of $E F$,
(b) angle $E H G$.

3 Air from a hand pump is used to fill up a large spherical balloon. Each time when the pump is pressed, $360 \pi \mathrm{~cm}^{3}$ of air is pumped into the balloon. The pump was pressed 100 times to fully inflate the balloon.
(a) Find the radius of the balloon when it is fully inflated.
(b) Calculate the surface area of the fully inflated balloon.

4 The hourly Pollution Standard Index (PSI) in a city was measured over a period of ten hours on a particular day. The results were recorded in the table below.

Time	1 pm	2 pm	3 pm	4 pm	5 pm	6 pm	7 pm	8 pm	9 pm	10 pm
PSI	97	95	103	x	92	106	98	100	103	98

(a) Find the value of x such that the mean of the PSI is 99 .
(b) Find the smallest integer value of x such that the median of the PSI is 99 .
(c) Find the value of x such that the mode of the PSI is 103.

5

Trapezium $W X Y Z$ is a reduction of trapezium $A B C D$. It is given that $B C=6.45 \mathrm{~cm}$, $X Y=4.3 \mathrm{~cm}$ and $C D=8.4 \mathrm{~cm}$.

Find
(a) the scale factor of the reduction,
(b) the length of $Z Y$.

6

Figure 1

Figure 2

Figure 3

The diagram shows a sequence of figures formed using stars of equal size.
(a) Draw Figure 4.
(b) Write down an expression. in terms of n, for the number of stars in the Figure n.
(c) There are 2986 stars in Figure K. Find the value of K.

7

The diagram shows two triangles, $A B C$ and $A B D$, which are not drawn to scale. $D B=8 \mathrm{~cm}, A B=6 \mathrm{~cm}, B C=7 \mathrm{~cm}$ and $A C=9 \mathrm{~cm} . A B$ is perpendicular to $D B$.
(a) Calculate angle BAD.
(b) Determine if $D B C$ is a straight line. Show your working clearly.

8 A jungle explorer is planning an expedition. She investigates three possible routes.
(a) Write down an expression, in terms of v, for the number of days that she will take if she chooses
(i) route P, which is 600 km long and she expects to cover $v \mathrm{~km}$ per day,
(ii) route Q, which is the same distance as route P, but has more difficult terrain conditions and she would only expect to cover $(v-5) \mathrm{km}$ per day,
(iii) route R, which is 120 km longer than route P, but has easier conditions and she would expect to cover $(v+5) \mathrm{km}$ per day.
(b) She estimates that route R will take 24 days less than route Q.

Write down an equation in v to represent this information, and show that it reduces to

$$
\begin{equation*}
v^{2}+5 v-300=0 \tag{3}
\end{equation*}
$$

(c) Sol ve the equation $v^{2}+5 v-300=0$.
(d) Ca lculate the number of days she would need to complete route P.

9 Answer the whole of this question on a sheet of graph paper.
The table below gives some values of x and the corresponding values of y, where

$$
y=2 x^{2}-8 x+7
$$

x	-1	0	1	2	3	4	5
y	17	7	1	m	1	7	17

(a) Calculate the value of m.
(b) Using a scale of 2 cm to represent I unit, draw a horizontal x-axis for $-1 \leq x \leq 5$.
Using a scale of 1 cm to represent 1 unit, draw a vertical y-axis for $-3 \leq y \leq 17$.

On your axes, plot the points given in the table and join them with a smooth curve.
(c) From your graph, find the values of x when $y=3$.
(d) On your graph, draw the line of symmetry and write down its equation.
(e) (i) On the same axes, draw the graph of $y=2 x-1$ for $-1 \leq x \leq 5$.
(ii) Hence, write down the coordinates of the points of intersection of the graphs $y=2 x^{2}-8 x+7$ and $y=2 x-1$.

End of Paper

SA2 2017 Sec 2 Express Mathematics Paper 1 Marking Scheme

	407miay		T
1a	$\begin{aligned} & 10 \\ & \sqrt[3]{0.5}, \frac{5}{7}, 0.5,0.5^{3} \end{aligned}$		
2a	Amount of petrol left $=4$ litres Actual petrol consumption $=8$ litres $/ 100 \mathrm{~km}$		
3a	$\begin{aligned} & 2 x^{2}+13 x+15 \\ = & (x+5)(2 x+3) \\ & 21315 \\ = & (100+5)[2(100)+3] \\ = & 105(203) \\ \therefore & \text { the two fsctors are } 105 \text { and } 203 . \end{aligned}$		
$4 a$ $4 b$	$\begin{aligned} & \frac{7 x+5}{15} \\ & =\frac{6}{x^{2}-4}-\frac{3}{x-2} \\ & =\frac{6-3 x-6}{(x-2)(x+2)} \\ & =-\frac{3 x}{(x-2)(x+2)} \text { or }-\frac{3}{x^{2}-4} \end{aligned}$		studykal
5	$\begin{aligned} & n=\frac{5}{2} m \ldots \ldots \ldots . .(1) \text { or } \frac{m}{n}=\frac{2}{5} \\ & n=\frac{2}{5} p \ldots \ldots \ldots .(2) \text { or } \frac{m}{p}=\frac{2}{5} \end{aligned}$ Sub (1) intes (2), $\begin{aligned} & \frac{5}{2} m=\frac{2}{5} p \\ & \frac{m}{p}=\frac{4}{25} \end{aligned}$		

\begin{tabular}{|c|c|c|c|}
\hline \& 10 \& 4034.es \&

\hline \& $$
\begin{aligned}
\frac{m+n+p}{p} & =\frac{m}{p}+\frac{n}{p}+\frac{p}{p} \\
& =\frac{4}{25}+\frac{2}{5}+1 \\
& =\frac{39}{25}
\end{aligned}
$$ \& \&

\hline $6 a$

6b \& | $y=\frac{k}{\sqrt{x}}$ where k is a constant $\begin{aligned} & 3=\frac{k}{\sqrt{4}}-\frac{k}{\sqrt{9}} \\ & k=18 \end{aligned}$ |
| :--- |
| \therefore the equation is $y=\frac{18}{\sqrt{x}}$ $x=36$ | \& \&

\hline 7 a

7 lb \& | $\begin{aligned} & y=(x+2)(x-5) \\ &=x^{2}-3 x-10 \\ & \therefore b \text { is }-3 . \end{aligned}$ |
| :--- |
| x-coordinate: $\begin{aligned} & \frac{-2+5}{2} \\ = & \frac{3}{2} \text { or } 1 \frac{1}{2} \text { or } 1.5 \end{aligned}$ |
| y-coordinate: |
| Sub $x=1.5$, $\begin{aligned} y & =(1.5)^{2}-3(1.5)-10 \\ & =-\frac{49}{4} \text { or }-12 \frac{1}{4} \text { or }-12.25 \end{aligned}$ |
| \therefore coordinates of minimum point is $\left(\frac{3}{2},-\frac{49}{4}\right)$. | \& \&

\hline $8 a$

$8 b$ \& $$
\begin{aligned}
& 12 x^{2}-6 x y-20 w x+10 w y \\
= & 6 x(2 x-y)-10 w(2 x-y) \\
= & 2(3 x-5 w)(2 x-y) \\
& (7+5 y)^{2}-(7-5 y)^{2} \\
= & {[(7+5 y)-(7-5 y)][(7+5 y)+(7-5 y)] }
\end{aligned}
$$ \& \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& M40 \& - \&

\hline 10 c

10 d \& | |
| :--- |
| Danicl is 8 years old. |
| Gabriel is 22 years old. | \& \&

\hline 11a \& | Volume of container |
| :--- |
| $=$ Volume of cylinder + Volume of hemisphere $\begin{aligned} & \frac{1}{2} \times \frac{4}{3} \times \frac{22}{7} \times 0.5^{3}+\frac{22}{7} \times 0.5^{2} \times(1.7-0.5) \\ & =\frac{253}{210} \mathrm{~m}^{3} \end{aligned}$ |
| $70 l \rightarrow 1 \mathrm{~min}$ |
| $1 l \rightarrow \frac{1}{70} \mathrm{~min}$ |
| $\frac{253}{210} \times 10001 \rightarrow \frac{1}{70} \times \frac{253}{210} \times 1000 \mathrm{~min}$ |
| $\frac{25300}{21} 1 \rightarrow 17.2 \min (3$ s.f. $)$ or $17 \frac{31}{147} \min$ |
| \therefore it takes 17.2 min to fill the container fully. | \& \&

\hline $12 a$
$12 b$

$12 c$ \& | $x=21$ |
| :--- |
| Median mark $=10$ |
| Mean mark $\begin{aligned} & {[1(0)+1(1)+1(3)+1(8)+3(9)+4(10)+4(11)} \\ & \quad+2(12)+1(13)+2(14)+15]+21 \end{aligned}$ | \& \&

\hline
\end{tabular}

5

2017 SGSS MATHS 2E SA 2 Paper 2 ANSWER \& Marking Scheme

		$\nu^{2}+5 v-300=0$ (shown)		
	(c)	$\begin{aligned} & (v-15)(v+20)=0 \\ & v=15 \text { or } v=-20 \\ & \hline \end{aligned}$		
	(d)	$v=-20(\text { rejected })$ No. of day s required for route $P=\frac{600}{15}=40$		
7wne	(a)	$\begin{aligned} m & =2(2)^{2}-8(2)+7 \\ & =-1 \end{aligned}$		
	(b)	See attached araph below: Correct points plotted Correct scale Smoothness of graph		
	(c)	$x=0.6 \pm 0.1 \text { or } x=3.4 \pm 0.1$ (Note: Exact answer is 0.59 or 3.41)		
	(d)	See attached graph below: Line $x=2$ drawn $x=2$		
	(e)(i)	See attached grsph below: $y=2 x-1 \text { drawn }$		
	(e)(ii)	(1,1) and (4,7)		

