

INSTRUCTIO NS TO CANDIDATES

Do not open this booklet until you are told to do so.
Write your name, register number and class on all the work you hand in.
Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.

Answer ALL questions.
Write your answers in the spaces provided on the question paper.
If working is neeeded for any question, it must be shown with the answer.
Omission of essenlial working will result in loss of marks.
Write the brand and rnodel of your calculator in the space provided below.

INFORMATION FOR CANDIDATES

You are expecterd to use a scientific calculator to evaluate explicit numerical expressions.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three sign ificant figures. Give answers in degrees to one decimal place.
For π, use either you r calculator value or 3.142 , unless the question requires the answer in terms of π.
The number of maks is given in brackets [] at the end of each question or part question.
The total of the marks for this paper is 40 .

$\frac{\text { Brand } / \text { Ma-del of }}{\text { Calculater }}$		
	For Examiner's Use	

Thisquestion paper consists of 10 printed pages, including the cover page.

Mathematical Formulae

Compound interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Geometry and Measurement

> Curved surface area of a cone $=\pi l$
> Surface area of a sphere $=4 \pi^{2}$
> Volume of a cone $=\frac{1}{3} \pi \pi^{2} h$
> Volume of a sphere $=\frac{4}{3} \pi \pi^{\prime}$
> Area of triangle $A B C=\frac{1}{2} a b \sin C$

Arc length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

Answer all the questions.

1 Solve $\frac{x}{3}-1=2 x$.

2 Jen sold her bicycle at $\$ 340$ and made a profit of 60%. Find the price at which she bought the bicycle.

Answer \$

3 Kiev randomly tosses an eight-sided die, numbered 1 to 8, five times. The mean of the results is 4.8 , median is 4 , and the mode is 4 . The difference between the smallest and largest result is 7 . Find the results of the five tosses.
\qquad , \qquad , \qquad , \qquad , \qquad

4 The variable q is directly proportional to the square of p. At a certain value of p, $q=12$. Find the value of q when this value of p is halved.

Answer q *

5 Factorise the following expressions completely.
(a) $5-20 b^{2}$

Answer (a)
(2)
(b) $2 x^{2}-21 y+3 x y-14 x$

Answer (b)

6 A box contains 12 red balls and x blue balls.
(a) Given that the probability of choosing a red ball is $\frac{4}{9}$, find the value of x.
\qquad
Answer (a) $x=$
(b) y green balls are added into the box. State the probability of choosing a green ballin terms of y.

Answer (b)

7 (a) Written as a product of its prime factorization, $1890=2^{x} \times 3^{y} \times 5 \times 7$. Find the values of x and y.
(b) Written as a product of its prime factorization, $264=2^{3} \times 3 \times 11$. Find the smallest positive integer k such that $264 k$ is a perfect square.
Answer
(a) $x=$ \qquad
\qquad
(b) $k=$ \qquad [1]

8 A lake of 2 km is represented on a map with a length of 10 cm .
(a) Find the scale of the map in the form $1: n$.

Answer (a) 1:_ (1)
(b) Find the length of an expressway on the map that represents an actual distance of 1480 m .

Answer (b)
cm
(c) Find the actual area of a park, in m^{2}, that is represented by $0.35 \mathrm{~cm}^{2}$ on the map.
(c)
m^{2}
(2)

9 Solve the following pair of simultaneous equations.

$$
\begin{aligned}
& 3 x-5 y=4 \\
& y-2 x=16
\end{aligned}
$$

$$
\begin{align*}
\text { Answer } & x \\
& = \\
& y \tag{3}
\end{align*}
$$

10 The dot diagram below shows the scores of the junior and senior rugby teams for a particular season. Each team played a total of 20 games.

Dot diagram for junior team

Dot diagram for senior team

(a) State the modal score of the junior team.
(b) Find the median score of the senior team.
(c) Which team had performed better in this season? Justify your answer.

Answer (a)
(b) $\ldots 11$
(c) \qquad team performed bener because \qquad
\qquad

11 In the diagram below, $A B$ is parallel $E D$ and $\triangle A B C$ is similar to $\triangle D E C$.
The line $C F$ is perpendicular to the straight line $A F E$.

(a) Find the length of $A D$.

Answer (a) \qquad cm
(b) Gi ven that the ratio of the length of $A F: C F=12: 5$, calculate the length of $C F$.

12 The diagram below shows the top view of an ornament. A regular nonagon $A B C D E F G H I$ forms the base of the pyramid and O is the center of the nonagon.

(a) Write down the value of θ.
(b) (i) The length of $F E$ is 6 cm . Find the perpendicular length from O to $F E$.
(ii) Hence calculate the area of the nonagon base.
(c) Given that the height of the pyramid is 15 cm , find the volume of the pyramid, leaving your answer to the nearest cm^{3}.

(b) (i) cm
(ii) $\ldots \mathrm{cm}^{2}$
(2)
(c) \qquad cm^{3}

-Esd ef Papero

MATHEMATICS

PAPER 2 [60 marks]

SEMESTER TWO EXAMINATION
4 October 2017
1 hour 30 minutes

Additional material: Graph paper
Writing Paper

INSTRUCTIONS TO CANDIDATES

Do not open this beoklet until you are told to do so.
Write your name, register number and class on all the work you hand in.
Write in dark blue or black pen.
You may use a pencilfor any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.

Answer ALL questions.

Write your answers inthe spaces on the separate writing paper provided.
If working is needed for any question, it must be shown with the answer.
Omission of essentialworking will result in loss of marks.
Write the brand and model of your calculator at the top right corner of your answer paper.

INFORMATION FORCANDIDATES

You are expected to use a scientific calculator to evaluate explicit numerical expressions.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either you \mathbf{r} calculator value or 3.142 , unless the question requires the answer in terms π.
The number of marks is given in brackets [] at the end of each question or part question.
The total number of imarks for this paper is 60 .

Mathematical Formulae

Compound interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Geometry and Measurement

> Curved surface area of a cone $=\pi /$
> Surface area of a sphere $=4 \pi \pi^{2}$

$$
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h
$$

Volume of a sphere $=\frac{4}{3} \pi r^{\prime}$
Area of triangle $\mathrm{ABC}=\frac{1}{2} a b \sin C$
Arc length $=r 0$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

Answer all the questions.

1 (a) Expand and simplify $2(1-x)+(3 x-1)^{2}$.
(b) S olve $\frac{4}{3} x+4=\frac{2-x}{3}$.
(c) Express $\frac{4}{2 x-3}-\frac{1}{x+2}$ as a single fraction in simplest form.

2 It is given that $x=\frac{1}{3} \sqrt{p-5 m}$.
(a) Express m in terms of x and p.
(b) Explain why x is not a real number when $p=4$ and $m=10$.
(c) Under what condition will x be a real number?

3 The grids in this sequence are made with matchsticks of equal length.

Grid 1

Grid number	1	2	3	4	\cdots	n
Number of matchsticks	4	7	10	13	\cdots	p

(a) State the number of matchsticks for grid number 6 .
(b) Write down, an expression in terms of n, for the value of p.
(c) A dam claims that he can form a grid with 302 matchsticks. Is his claim true?

Explain your answer.

The diagram shows two vertical buildings. B and C are the top of the taller and shorter building respectively. F and E are the foot of the taller and shorter building respectively. Dylan stands 15 m away from E.
(a) Given that $\angle C D E \equiv 65^{\circ}$, calculate the height of the shorter building.
(b) The height of the taller building is 30% more than that of the shorter building. Given that the distance between Alex and B is 44 m , find $\angle B A F$.

5 The membership fee for a fitness club is $\$ 80$ and the club has 100 members. The manager proposes to reduce the membership fee by $\$ x$ when the number of members reaches $100+4 x$.
(a) Write down an expression, in terms of x, for the total emount of membenship money collected under the new proposal.
(b) The total amount of money collected under the new proposal is $\$ 10800$. Write down an equation to represent this information, and show that it simplifies $10 x^{2}-55 x+700=0$.
(c) Solve the equation $x^{2}-55 x+700=0$.
(d) Find the possible now membership foes.

6 The table below shows the weekly wages, $\$ x$, of 100 private hire car drivers.

Weekly wages $(\$ x)$	$0 \leq x<200$	$200 \leq x<300$	$300 \leq x<400$	$400 \leq x \leq 500$
Number of drivers	20	30	p	14

(a) Find the value of p.
(b) (i) Calculate an estimate of the mean wages of the private hire car drivers.
(ii) Explain why the mean in (b)(i) is an estimate.
(c) A private car driver is selected at random. Find the probability that the driver eams a weekly wage of at least $\$ 200$.

7

The diagram shows a triangular playground $A B C$.
$A B=25 \mathrm{~m}, B C=24 \mathrm{~m}$ and $A C=7 \mathrm{~m}$.
(a) Prove that $A B C$ is a right-angled triangle.
(b) Find the area of triangle $A B C$.
(c) E-dwin stands at C and walks towards $A B$. Find the shortest possible distance Edwin can take.

The diagram shows a candle holder that can be modelled by removing a cylinder of radius 2 cm and height 10 cm from a solid hemisphere of radius 12 cm .
(a) A candle is placed into the hollow cylinder. Calculate the total surface area of the candle holder in contact with the candle.
(b) Calculate the total surface area of the candic holder.
(c) Calculate the volume of the candle holder.
(d) Candle holders are packed into a rectangular box of length 60 cm , width 48 cm and height 40 cm . If m number of candle holders are packed into the box, find the largest value of m.
(e) Using the value of m in (d), calculate the volume of empty space in the rectangular box.

9 The ster and leaf diagram below shows the number of story books read by childrenin two kindergartens in a particular year.

Jas Playhouse					Learning Space			
	9	7	7	0	5	8		
				1	2	2	7	
8	5	3	1	2	1	6	6	8
	6	6	3	3	0	8	9	9

Key: $1 \mid 0$ means 10 books
(a) S tate the median for
(i) Jas Playhouse, and
(ii) Learning Space.
(b) Mrs Ong claims that the children in Jas Playhouse read more story books.

Doyou agree with her? Justify with a reason.
(c) A new child joined Jas Playhouse. The new mean number of story books read by the children in Jas Playhouse becomes 23. Find the number of story books read by the new child.

10 Answer the whole of this question on a sheet of graph paper.

A company is launching a ncw product. The total profit, $\$ y$ million, when the price of each product is $\$ x$, is given by $y=40 x-4 x^{2}$.

Some corresponding values of x and y are given in the table below.

x	0	2	4	5	6	10	12
y	0	64	96	100	p	0	-96

(a) Calculate the value of p.
(b) Using a scale of 1 cm to represent 1 unit, draw a horizontal x-axis for $0 \leq x \leq 12$.

Using a scale of 1 cm to represent 10 units, draw a vertical y-axis for
$-100 \leq y \leq 100$.
On your axes, plot the points given in the table and join them with a smooth curve.
(c) Use your graph to estimate
(i) the price of each product in order to maximise total profit,
(ii) the total profit when the price of each product is $\$ 2.50$.
(d) The company targets to earn a profit of at least $\$ 80$ million. Write down the price range of each product.
(e) Is it advisable to price the product at \$11 each? Justify your answer.

Ead of Paper

Qn No.		Solutions	Marks
1.	$\begin{aligned} & \frac{x}{3}-1=2 x \\ & x-3=6 x \\ & 5 x=-3 \\ & x=-\frac{3}{5} \end{aligned}$		B1
2.	160% of cost price Cost price	$\begin{aligned} & =\$ 340 \\ & =\$ 340 \div 160 \times 100 \\ & =\$ 212.50 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
3.	Sum of results Results If only correct answer	$\begin{aligned} & =5 \times 4.8 \\ & =24 \\ & 1,4,4,7,8 \end{aligned}$	M1 Al [B2]
4.	$\text { When } q=12 \text {, }$ When p is halved, OR When p is halved,	$\begin{aligned} & q=k p^{2} \\ & 12=k p^{2} \\ & k=\frac{12}{p^{2}} \\ & q=k\left(\frac{p}{2}\right)^{2} \\ & q=\frac{12}{p^{2}}\left(\frac{p^{2}}{4}\right) \\ & q=3 \\ & q=k p^{2} \\ & q=k\left(\frac{p}{2}\right)^{2} \\ & q=0.25 k p^{2} \\ & q=0.25(12) \\ & q=3 \end{aligned}$	M1 A1 [M1] [Al]
5. (a)	$5-20 b^{2}$	$\begin{aligned} & =5\left(1-4 b^{2}\right) \\ & =5(1-2 b)(1+2 b) \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$

(b) $2 x^{2}-14 x-21 y+3 x y$

$$
\begin{aligned}
& =2 x(x-7)+3 y(x-7) \\
& =(2 x+3 y)(x-7)
\end{aligned}
$$

M1
6. (a) $P($ red $)=\frac{4}{9}$

$\frac{4}{9}=\frac{12}{12+x}$	Or using unitary method,	
$48+4 x=108$	4 units $=12$	M1
$x=15$	5 units $=15$	Al

(b) $\frac{y}{y+27}$

Wrong answer if student answer in terms of x
7. (a) $1890=2 \times 3^{3} \times 5 \times 7 \quad \mathrm{MI}$

Hence,
$x=1$ and $y=3$
(no marks if only x or y correct) Al
(b) $k=2 \times 3 \times 11$
$k=66$
(no marks if k is left in prime factors)
8. (a)

$$
\begin{aligned}
10 \mathrm{~cm} & : 2 \mathrm{~km} \\
1 \mathrm{~cm} & : 0.2 \mathrm{~km} \\
1 & : 20000
\end{aligned}
$$

(b) Actual length
$=1.480 \mathrm{~km}$
1.48 km
$-10 \times \frac{1.48}{2}$
$-7.4 \mathrm{~cm}$
(b) If $0.35 \mathrm{~cm}^{2}$,

$$
\begin{aligned}
100 \mathrm{~cm}^{2} & =4 \mathrm{~km}^{2} \\
0.35 \mathrm{~cm}^{2} & =4 \times \frac{0.35}{100} \\
& =0.014 \mathrm{~km}^{2} \\
& =14000 \mathrm{~m}^{2}
\end{aligned}
$$

9.	$\begin{aligned} & 3 x-5 y=4 \\ & y-2 x=16 \\ & y=16+2 x \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & \text { (2) } \\ & \text { (3) } \end{aligned}$	
	Sub (3) into (1)		
		$3 x-5(16+2 x)=4$	M1
		$3 x-80-10 x=4$	
		$-7 x=84$	
		$x=-12$	Al
		$y=-8$	AI

10. (a) Modal score $=53$
(b) Median score $\quad=0.5(56+57)$

$$
=56.5
$$

$\begin{array}{ll}\text { (c) Se nior team performed better as the median score, } 56.5 \text {, is } & \text { B1 } \\ \text { higher than that of the junior team which is } 54 . & \text { B1 }\end{array}$
higher than that of the junior team which is 54 .
B1 for stating median of junior team 54)
Students may justify the senior team did better using mean.
Mean $($ senior $)=56.1$ and Mean $($ junior $)=54.2$
11. (a) $\frac{A B}{D E}=\frac{A C}{D C}$
$\frac{15}{6}=\frac{A C}{5}$
$A C=\frac{15}{6} \times 5$
M1
$A C=12.5 \mathrm{~cm}$
$A D=12.5+5$
$A D=17.5 \mathrm{~cm}$
b. Le the length of $C F$ be $5 x$, then the length of $A F$ is $12 x$.

By' Pythagoras theorem,
$A E^{2}=A F^{2}+C F^{2}$
$12.5^{2}=(12 x)^{2}+(5 x)^{2}$
M1 (allow e.c.f.)

M1
(allow e.c.f)
$C F=5\left(\frac{12.5}{13}\right)$
$C F=4.80769$
$C E=4.81 \mathrm{~cm}(3 \mathrm{s.f})$
12. (a) $\theta=40^{\circ}$
(sum of \angle at a point $=360^{\circ}$)
B!
(b) $\angle O F E=\frac{180-40}{2} \quad$ (angles of isos trianglc)
(i) $\angle O F E=70^{\circ}$
$\tan 70^{\circ}=\frac{h}{3}$
(ii) Area of 1 triangle

$$
\begin{array}{rlrl}
h & =3 \tan 70^{\circ} & \mathrm{MI} \\
& =8.242432 & \mathrm{Al}
\end{array}
$$

Area of nonagon

$$
\begin{aligned}
& =\frac{1}{2}(6)\left(3 \tan 70^{\circ}\right) \quad \mathrm{MI} \\
& =9\left(9 \tan 70^{\circ}\right) \\
& =222.54567 \\
& =223 \mathrm{~cm}^{3}(3 \text { s.f })
\end{aligned}
$$

OR
bi. $0.5 \theta=20^{\circ}$

$$
\begin{gathered}
\tan 20^{\circ}=\frac{3}{h} \\
h=\frac{3}{\tan 20^{\circ}} \\
h=8.24 \mathrm{~cm}(3 \mathrm{s.f})
\end{gathered}
$$

(ii) A.rea of 1 triangle

$$
\begin{aligned}
& =\frac{1}{2}(6)\left(\frac{3}{\tan 20^{\circ}}\right) \\
& =9\left(\frac{9}{\tan 20^{\circ}}\right) \\
& =222.54567 \\
& =223 \mathrm{~cm}^{3}(38 . f)
\end{aligned}
$$

Area of nonagon
c. Vol of pyramid

$$
\begin{aligned}
& =\frac{1}{3} \times 222.54567 \times 15 \\
& =1112.72835 \mathrm{~cm}^{3} \\
& =1113 \mathrm{~cm}^{1}
\end{aligned}
$$

$$
\mathrm{BI}
$$

No marks awarded if students use 223 as base area, resulting in volume $=1115 \mathrm{~cm}^{3}$

2 Express Math SA2 2017 Paper 2 Marking Scheme

la	$2(1-x)+(3 x-1)^{2}$ $=2-2 x+9 x^{2}-6 x+1$ $=9 x^{2}-8 x+3$	M1 for $9 x^{2}-6 x+1$
b	$\frac{4}{3} x+4=\frac{2-x}{3}$ $4=\frac{2-x}{3}-\frac{4 x}{3}$ $4=\frac{2-x-4 x}{3}$ $12=2-5 x$ $5 x=-10$ $x=-2$	A1 for combining to OR single fraction
$\frac{4}{3} x+4=\frac{2-x}{3}$ $4 x+12=2-x$ $5 x=-10$ $x=-2$	A1	
$\frac{4}{2 x-3}-\frac{4}{x+2}$		
$=\frac{4(x+2)-(2 x-3)}{(2 x-3)(x+2)}$		
$=\frac{4 x+8-2 x+3}{(2 x-3)(x+2)}$		
$=\frac{2 x+1}{(2 x-3)(x+2)}$	M1 for multiplying 3 to	
c		

2a	$\begin{aligned} & x=\frac{1}{3} \sqrt{p-5 m} \\ & 3 x=\sqrt{p-5 m} \\ & 9 x^{2}=p-5 m \\ & 5 m=p-9 x^{2} \\ & m=\frac{p-9 x^{2}}{5} \end{aligned}$ OR $\begin{aligned} & x=\frac{1}{3} \sqrt{p-5 m} \\ & x^{2}=\frac{1}{9}(p-5 m) \\ & 9 x^{2}=p-5 m \\ & 5 m=p-9 x^{2} \\ & m=\frac{p-9 x^{2}}{5} \end{aligned}$	MI for multiplying 3 MI for square both sides AI M1 for square both sides M1 for multiplying 9 AI
b	When $p=4$ and $m=10$, $\begin{aligned} & x=\frac{1}{3} \sqrt{4-5(10)} \\ & x=\frac{1}{3} \sqrt{-46} \end{aligned}$ Since $\sqrt{-46}$ is undefined, x is not a real number when $p=4$ and $m=10$.	BI Accept if students write $p-5 m$ is negative AND $\sqrt{p-5 m}$ is undefined.
c	$\begin{aligned} & p-5 m \geq 0 \\ & \text { OR } p \geq 5 m \end{aligned}$	B1
3a	19	B1
b	$p=3 n+1$	B1
c	$\begin{aligned} & 3 n+1=302 \\ & 3 n=301 \\ & n=\frac{301}{3} \end{aligned}$ Since the value of n for 302 mutsheticks is not an interges. Adam's claim is not true.	MI for value of n (ect) Al

4a	$\begin{aligned} \tan 65^{\circ} & =\frac{C E}{15} \\ C E & =15 \tan 65 \\ & =32.167 \\ & =32.2 \mathrm{~m}(3 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & \text { Ml (soi) } \\ & \text { Al } \end{aligned}$
b	$\begin{aligned} B F \quad & =1.3 \times 32.167 \\ & =41.817 \\ \sin \angle B A F & =\frac{41.817}{44} \\ \angle B A F & =\sin ^{-1} \frac{41.817}{44} \\ & =71.876 \\ & =71.9^{\circ}(1 \mathrm{dp}) \end{aligned}$	M1 for $B F$ (deduct 1 mark from whole paper if student uses 32.2 m in working) (ecf) M1 (soi) (ecf) Al
5 a	$(80-x)(100+4 x)$	B1 (ignore subsequent working)
b	$\begin{aligned} & (80-x)(1 \mathrm{O} 0+4 x)=10800 \\ & 8000+32 \mathrm{O} x-100 x-4 x^{2}=10800 \\ & -4 x^{2}+220 x-2800=0 \\ & x^{2}-55 x+700=0 \end{aligned}$	M1 (ecf) M1 for expansion of LHS (ecf) M1 for simplifying equation
c	$\begin{aligned} & x^{2}-55 x+700=0 \\ & (x-20)(x-35)=0 \\ & x=20, \quad x=35 \end{aligned}$	M1 for factorisation A1 SCl if students just give final answers
d	New membership fees $=\$ 60$ or $\$ 45$	B1
6a	$p=100-20-30-14=36$	B1
bi	$\begin{aligned} \text { Mean } & =[\mathbf{2} 0(\mathbf{1 0 0})+30(250)+36(350)+14(450)] \div 100 \\ & =\$ 284 \end{aligned}$	$\begin{array}{\|l} \hline \text { M1 (ecf) } \\ \text { A1 } \end{array}$
bii	We do not kno w the exact weekly wages earned by the 100 private hire car driv'ers. OR We estimated that 20 earned $\$ 100,30$ earned $\$ 250,36$ earned $\$ 350$ and 1 集 eamed $\$ 450$.	B1
c	$\mathrm{P}(\text { driver earns at least } \$ 200)=\frac{80}{100}=\frac{4}{5}$	B1

7 a	$\begin{aligned} A B^{2} & =25^{2} \\ & =625 \\ A C^{2}+B C^{2} & =7^{2}+24^{2} \\ & =625 \end{aligned}$ Since $A B^{2}=A C^{2}+B C^{2}$, by the converse of Pythagoras, Theorem, $A B C$ is a right-angled triangle.	$\}_{\mathrm{Al} \text { for conclusion }} \mathrm{MI}$
b	Area of $\triangle A B C=\frac{1}{2} \times 24 \times 7=84 \mathrm{~m}^{2}$	B1
c	Let x be the shortest distance. $\begin{aligned} & 84=\frac{1}{2} \times 25 \times x \\ & x=6.72 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{Al} \end{aligned}$
8a	Surface area in contact $\begin{aligned} & =2 \pi(2)(10)+\pi\left(2^{2}\right) \\ & =138.23 \\ & =138 \mathrm{~cm}^{2}(3 \mathrm{sf}) \end{aligned}$	MI AI
b	Total surface area of candle holder $\begin{aligned} & =2 \pi(12)^{2}+2 \pi(2)(10)+\pi\left(12^{2}\right) \\ & =1482.83 \\ & =1480 \mathrm{~cm}^{2}(3 \mathrm{sf}) \end{aligned}$ OR Total surface area of candle holder $\begin{aligned} & =138.23+\pi\left(12^{2}\right)-\pi\left(2^{2}\right)+2 \pi\left(12^{2}\right) \\ & =1482.83 \\ & =1480 \mathrm{~cm}^{2}(3 \mathrm{sf}) \end{aligned}$	M1 for $2 \pi(12)^{2}+\pi\left(12^{2}\right)$ AI MI for $\pi\left(12^{2}\right)-\pi\left(2^{2}\right)+2 \pi\left(12^{2}\right)$ A!
c	Volume of candle holder $\begin{aligned} & =\frac{2}{3} \pi\left(12^{3}\right)-\pi\left(2^{2}\right)(10) \\ & =3493.45 \\ & =3490 \mathrm{~cm}^{3}(3 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & \text { MI for } \frac{2}{3} \pi\left(12^{2}\right) \\ & \text { M1 for } \left.\pi\left(2^{2}\right) \times 10\right) \\ & \text { AI } \end{aligned}$
d	T argest value of $m=2 \times 2 \times 3=12$	B1
e	Volume of empty space $\begin{aligned} & =60 \times 48 \times 40-12 \times 3493.45 \\ & =73278.6 \\ & =73.300 \mathrm{~cm}^{\prime}(3 \mathrm{sf}) \end{aligned}$	MI (deduct I mark from whole paper if student uses 3490 in working) (ec) AI

