

TANJONG KATONG SECONDARY SCHOOL

End of Year Examination 2017 Secondary 1

MATHEMATICS		4048/01
CLASS	INDEX NUMBER	
CANDIDATE NAME		

Paper 1

4048/01

1 hour

Wednesday 11 Oct 2017

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all guestions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 40.

I	For Examiner's Use	!
8		

[Turn over

2

For Examiner's

Use

For
Examiner's
Use

3	Deborah made a loss of 15% when she sold her laptop for \$1785. If she wanted to make a profit of 25%, how much should she sell her laptop for?
	Answer \$[3]
4	 (a) Hannah cycles to school everyday. If she cycles at an average speed of 10 km/h, she will reach her school in 30 minutes. On a certain day, she left her home for school at 7 am. Calculate the average speed, in m/s, she needs to cycle at, if she is expected to reach her school at 7.25 am. (b) Given that 2x-3y/2 = x+3y/3, find the ratio of x:y.
	Answer (a)m/s[3] (b)[3]

4048/1/Sec1EndofYear17

4

For 5 Examiner's Use (a) Given that the *n*th term of the sequence 1, 4, 9, 16, ... is n^2 , state the *n*th term of the following sequence 1, $\frac{1}{4}$, $\frac{1}{9}$, $\frac{1}{16}$,...

For Examiner's Use

[1]

Answer (a)[1]

(b) Consider the following pattern in the table.

Line 1	$1 = 1 = 1^2$	
Line 2	$1+2+1$ = 4 = 2^2	
Line 3	$1+2+3+2+1 = 9 = 3^2$	
Line 4	$1+2+3+4+3+2+1 = 16 = 4^2$	
Line 5		

- (i) Write down Line 5 in the table above.
- (ii) Find the value of $1 + 2 + 3 + \dots + 499 + 500 + 499 + \dots + 3 + 2 + 1$.
- (iii) Given that 1 + 2 + 3 + ... + (p−1) + p + (p−1) + ... + 3 + 2 + 1 = 81,
 find the value of p.

(iii) *p* =[1]

4048/1/Sec1EndotYear17

5

(a) Simplify $\frac{5w^5}{3} \times \frac{1}{\sqrt[3]{216w^6}}$. For For 7 Examiner's Examiner's Use Use Factorise $5a^2 + 35ab - 3ab - 21b^2$ completely. (b) Answer[2] 8 (a) The pie chart shows the distribution of mathematics test grades of a class. (i) Given that there were 36 students in the class, how many students scored grade A? (ii) 10 students scored grade B. A Penny says that this pie chart is drawn wrongly. В 120° Explain with working how she came to the conclusion. С D Answer (a) (i).....students[1] (ii)[2] 4048/1/Sec1EndofYear17

6

BP~212

For

Examiner's

Use

7

For Examiner's Use

ŀ

(b) The table shows the number of hours spent on Facebook by a group of students in a day.

Number of hours	0	1	2	3	4	5	6
Number of students	4	x	7	6	5	4	2

(i) If the mode is 2, write down an inequality which must be satisfied by x.

(ii) If the mean number of hours spent by each student is 2.75, form an equation in x and solve it.

Answer (b) (i)																	L
(ii)	x	=	 	 	••	 •	 •	• •	•	• •	 	,	•		[:	3]	

4048/1/Sec1EndofYear17

-

9 In a triangle ABC,	$\angle ABC = 50^{\circ} \text{ and } BC = 7 \text{ cm}$	n.	
	en as shown below.		[Turn over
	label the triangle ABC in the	e answer space belov	w. [2]
(b) <i>A</i> , <i>B</i> and <i>C</i> m	ark the position of three sho	ps on a map.	
By constructin label [3]	ng the appropriate bisectors, it	mark the location of with	f the train station and 'S'
Answer (a) and (b)		-	
		-	
	A		B
	*	-	

4048/02

Friday 6 October 2017

1 hours 15 minutes

TANJONG KATONG SECONDARY SCHOOL Year-End Examination 2017 Secondary 1

CANDIDATE NAME		
CLASS	INDEX NUMBER]

MATHEMATICS

Paper 2

Additional Materials: Writing Paper Graph Paper

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in. Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

You are expected to use a scientific calculator to evaluate explicit numerical expressions.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 50.

[Turn over

1	(a)	Solve the inequalities $-10 \le 2x + 7 < 3$.	[2]
	(b)	Express $\frac{2}{w} - \frac{w}{3} + 1$ as a single fraction.	[2]
	(c)	The first 4 terms of a sequence are 8, 13, 18 and 23.	
		(i) Write down the 6th term.	[1]
		(ii) Find the <i>n</i> th term of this sequence.	[1]

2 (a) An *n*-sided polygon has 3 interior angles of 163° , 137° and 100° respectively.

(i) State in terms of <i>n</i> , the number of remaining interior angles.	[1]
The remaining interior angles are 160° each.	
(ii) Find the value of n.	[2]

(b) A one-dollar coin has a regular octagon ABCDEFGH inscribed in a circle as shown.

(i) Find the reflex angle ABC.

[2]

- (ii) Stating your reasons clearly, find
 - (a) angle BAC,
 - (b) angle *BAD*. [3]
- (iii) Find angle ADG. [1]

3 (a) Petrol costs 50x cents per litre.

	Alex bought some petrol and it cost him $2y$ dollars. Find an expression, in terms of x and y, for the number of litres of petrol Alex bought.					
(b)	Two towns, A and B, are 198 km apart.					
	(i) Simon travelled by car from A to B at an average speed of 66 km/h. How long did the journey take?	[1]				
	(ii) He travelled back by car from B to A in 5 hours 30 minutes.Find his average speed, in kilometres per hour, on his return journey.	[1]				
	(iii) Simon left A at 0730. He stayed in B for $\frac{3}{4}$ of an hour. At what time did he arrive back in A?	[1]				
	(iv) The car travelled 13 km on each litre of petrol.Find the least whole number of litres he needs to complete the journey from A to B and back again to A.	[2]				

4 Answer the whole of this question on a sheet of graph paper.

The values of x and y shown in the table below are related through a straight line.

x	-4	8	24
у	6	3	-1

- (a) Using a scale of 2 cm to represent 4 units, draw a horizontal x-axis for -4 ≤ x ≤ 24.
 Using a scale of 2 cm to represent 1 unit, draw a vertical y-axis for -1 ≤ y ≤ 6.
 On your axes, plot the points given in the table and join them with a straight line. [3]
- (b) Using your graph, find the

(i) value	of y when $x = 2$,	[1]
-----------	---------------------	-----

- (ii) the x-intercept, [1]
- (iii) gradient of the line. [2]

4

- 5 (a) Calculate the total surface area of a cuboid of dimensions 9 cm by 7 cm by 5 cm. [2]
 - (b) (i) Express 2016 as the product of its prime factors. [1]
 - (ii) Given that $\frac{2016}{k} = p^2$, where k and p are integers and p is as large as possible, find the values of k and of p. [2]
- 6 Gwen makes candles from blocks of coloured wax. Each block of wax is a cuboid measuring 30 cm by 20 cm by 20 cm as shown.

Each candle contains the colours red, green and yellow in the ratio 1:2:3 respectively and has a volume of 729 cm³.

Gwen only buys 1 block of each colour.

(a) What is the maximum number of candles that she can make? [3]

Gwen sells all the candles made in (a) and makes a profit of 65%.

(b) Given that each block of wax costs \$15.50, what is Gwen's selling price for each candle, leaving your answer to the nearest cent? [3]

7 It is reported that Bangkok city is sinking and it is accelerated with the rising water level.

SINKING BANGKOK

Bangkok could be under water in less than 15 years.

Bangkok city sinks 1 to 2 cm every year, correct to the nearest cm.

(a) Find the greatest possible distance the city will sink.	[1]
---	-----

(b) The report claims that 'Bangkok could be under water in less than 15 years.' By showing your working clearly, verify if the claim is true or false. [2] 8 Orange juice is poured into the mold (Figure 1) and frozen to form a popsicle (Figure 2). The uniform cross-section of the mold is made up of a trapezium *WXYZ* and a semi-circle with diameter *XY*.

The perpendicular length between WZ and XY is 9 cm. XY = 2 cm and WZ = 5 cm.

Figure 1

Figure 2

(a) Show that the cross-sectional area of the mold is 33.071 cm^2 . [2]

(b) The uniform thickness of the mold is 1.2 cm, calculate the volume of the mold. [1]

Wendy buys orange juice to makes orange popsicles for a charity event.

Item	T&K Orange Juice (330 ml)	T&K Orange Juice (1 L)
Price (before discount)	\$1.20	\$2.70
Promotion	10% discount	Buy 2 at \$4.65

The price of orange juice is given below.

Wendy estimates that there will be 350 popsicles sold. 90% of the mold is filled as orange juice expands when frozen.

She must make sure that she charges the lowest amount to cover her costs and raise \$400.

(c) Suggest a sensible amount for her to charge for one popsicle.

[4]

End of Paper

Secondary One	End-of-Year	Examination 2017	
Marking Schem	e		

	Solution	Marks	Remarks
1.	1.6 , $(-1.2)^2$, $\sqrt{1.3}$, 112%	B1	
	$1.0, (-1.2), \sqrt{1.3}, 11270$		
2. (a)	77.57509249	B1	
(.)	≈80	B1	soi
2. (b) (i)	Smallest $n = 22500$	B1	
2. (b) (ii)	Largest $n = 23499$	B1	
3.	Cost price = $\frac{1785}{85} \times 100 = 2100	B1	<u>1785</u> 85
	Selling price = $\frac{125}{100} \times 2100$	M1	$Cost price \times \frac{125}{100}$
	= \$2625	Al	
4. (a)	Distance = $\frac{1}{2} \times 10 = 5$ km	B1	5km or 5000m seen
	Speed = $\frac{5000\text{m}}{25 \times 60\text{s}}$	M1	distance time
	$= 3\frac{1}{3} \text{ m/s or } 3.3 \text{ m/s}$	Al	A0 for 3.33
4. (b)	3(2x-3y) = 2(x+3y)	Ml	Getting rid of denominator
	6x - 9y = 2x + 6y	B1	Either 15 year Ar seen
	15y = 4x	Al	Either $15y$ or $4x$ seen
	x: y = 15:4		
5. (a)	$\frac{1}{n^2}$	BI	
5. (b)(i)	$1 + 2 + 3 + 4 + 5 + 4 + 3 + 2 + 1 = 25 = 5^{2}$	B1	
5. (b)(ii)	25 0000	B1	B0 if 500 ²
5. (b) (iii)	<i>p</i> = 9	B1	
6. (a)(i)	$\angle ACB = \frac{180^\circ - 56^\circ}{2} = 62^\circ \text{ (Base } \angle \text{s of isos.} \Delta\text{)}$	Bl	Correct reasoning for (a) (i)
	$\angle BCD = 180^{\circ} - 62^{\circ} - 37^{\circ} = 81^{\circ}$ (adj. \angle s on a str.line)	B1	and (ii)
6. (a)(ii)	Draw line XY parallel to RS and PQ		
	$\angle XDC = 37^{\circ}(alt. \angle s)$	M1	Either alt/ int angles seen
	$\angle XDE = 103^\circ - 37^\circ = 66^\circ$	A1	
	$\angle DES = 66^{\circ}(alt, \angle s)$		

6. (b)	BC is not parallel to ED because	B1	$\angle CBE = 62^{\circ}$
	$\angle CBE = 62^\circ \neq \angle DES$, hence they are not equal		
	corresponding angle	B1 statement	Corresponding
		with reasons	angles $\angle CBE \neq \angle DES$
a			Alternative: Use of interior
			angle to prove
7()			
7.(a)	$\frac{5w^5}{3} \times \frac{1}{\sqrt[3]{216w^6}}$		
	$3 \sqrt[3]{216w^6}$	B 1	$6w^2$
	$5w^5$ 1	D1	0.0
	$=\frac{5\pi}{2}\times\frac{1}{6w^2}$, ·
	$=\frac{5w^3}{3} \times \frac{1}{6w^2}$ $=\frac{5w^3}{18}$		
	$=\frac{\partial W'}{\partial W}$	B1	
7.(b)	$5a^2 + 35ab - 3ab - 21b^2$	B1	Grouping method seen (either
	=5a(a+7b)-3b(a+7b)	D1	one of the factors)
	=(5a-3b)(a+7b)	B1	
8. (a) (i)	12 students	B1	
8. (a) (ii)		B1	Showing working
	Angle of sector rep B = $\frac{10}{36} \times 360^\circ = 100^\circ$		
2			
	The sector for students scoring B should be more		
	than 90°. In the pie chart, it looked less than 90°.	B1	
8.(b) (i)	$0 \le x \le 6$ or $0 \le x < 7$	B1	
8. (b) (ii)	$\frac{x+14+18+20+20+12}{2} = 2.75$	B1	Forming equation
	$\frac{28+x}{28+x} = 2.75$		and the strength
1. 1955			males in a grade
	$\frac{84+x}{28+x} = 2.75$		
	84 + x = 77 + 2.75x	M1	Attempt to group variable or
	1.75x = 7	A1	constant
98.1	x = 4	23.1	
	· · · ·		
9. (a) & (b)		G2	G1 arcs seen at C
			G1 info labelled
	C C		
		B1	Perpendicular Bisector
	$7 \mathrm{cm}$	B1	Angle Bisector
	50°	B1	Correctly label the position S
	A		

Qn		Working/Answer	Mark
1	a	$-10 \le 2x + 7 < 3$	
		$-17 \le 2x < -4$	B1 $-17 \le 2x$ or $2x < -4$
		$-8.5 \le x < -2$	BI
	b	2 w	
		$\left \frac{2}{w}-\frac{w}{3}+1\right $	
		$=\frac{6}{3w}-\frac{w^2}{3w}+\frac{3w}{3w}$	MI Common denominator
		5W 5W 5W	
		$6 - w^2 + 3w$	
		$=\frac{6-w^2+3w}{3w}$	A1 isw
	ci	33	B1
	cii	5n + 3	Bloe
	СП	511 - 5	Total: 6 marks
2	ai	n-3	B1
	aii	(n-2)180 = 400 + (their ai)160	MI
	an	n = 14	A1
		or	
		360-17-80-43	
		$\frac{360 - 17 - 80 - 43}{20} = 11$	M1 Finding remaining ext. angle
		n = 14	Al
	2bi	Reflex $\angle ABC = 360^\circ - 135^\circ$	B1 135 seen
		= 225°	B1 soi
	2biia	$\angle BAD = \frac{180 - 135}{2}$ (base angle of isos	
		$\frac{2}{2}$ (base alight of 1808	
		triangle)	
		= 22.5	BI
	2biib	$\angle BAD = 180 - 135$ (int. angle)	
		= 45	B1 B1 for all reasons stated correctly
	2biii	$\angle ADG = 45$	B1
			Total: 9 marks

3	a	200 <i>y</i>	2y
		<u>50x</u>	M1 $\frac{2y}{50x}$
		$=\frac{4y}{2}$	
		$=\frac{y}{x}$	A1
	bi	3 hours	198
			B1 $\frac{198}{66}$
	bii	36 km/h	
			B1 $\frac{198}{5.5}$
	1		5.5
	biii	1645 or 4:45 pm	B1 reject 04 45
	biv	396	B1 30.46
		13	
		= 31	BI
		£	Total: 7 marks
4	a	Straight line passes through plotted 3 "x"	G2 1 mark deducted for missing
		points correctly	point
		*	
		Labelling of axes and scale	G1
	bi	<i>y</i> = 4.5	B1
	bii	20	B1 reject (20, 0)
	biii	$m = -\frac{5}{20}$	M1
			41
		= -0.25	A1 soi
	an an a		Total: 7 marks
5	a	$2(9 \times 7 + 7 \times 5 + 9 \times 5)$	M1 Find area of min. of 2 sides
100	1	$= 286 \text{ cm}^2$	Al
	bi	$2^5 \times 3^2 \times 7$	
	bii	k = 14	Bl
		<i>p</i> = 12	Bl
			Total: 5 marks

6	a	Vol of yellow needed = 0.5 (729)	B1 Finding amt. of yellow wax needed
		= 364.5	
		12000	
		Max no of candles = $\frac{12000}{364.5}$	M1 Vol. of wax/Vol. of candle
		= 32	Al reject 33
	b	Selling price = $(15.50 \times 3 \times 165\%)/(\text{their a})$ = \$2.40	B1Find cost of wax \times 165%
		= \$2.40	M1 / (their a) A1 reject 2.4, 2.39
			Total: 6 marks
7	a	2.5	B1
	b	Each year the city sinks by $2.5 + 0.4$	B1 (their a) $+ 0.4$
		= 2.9	
		No of years $=\frac{50}{2.9}$	50/ their greatest sink
		2.9 = 17.2	50/ then greatest slik
		The claim is not true as it will take more than $\frac{1}{2}$	50
		17 years for Bangkok city to sink.	B1 $\frac{50}{2.9}$ and conclusion
			Total: 3 marks
8	a	area = $0.5\pi(1)^2 + 0.5(5+2)9$	B1 B1
L	<u> </u>	= 33.071 (shown)	D1 00 0000 100 0
	b	39.6849	B1 39.6852/39.7
	c	orange needed= 90% (their b) $\times 350$ = 12500.7435	B1
		$Cost = 6 \times 4.65 + 2.40 \times 90\%$	BI
		= 30.06	
		Price of each pop = $\frac{400 + their \cos t}{350}$	DI
		= 1.228 350	B1
			D1
		Wendy should charge 1.25, 1.30	B1
			Total: 7 marks