Class:	Candidate Name:	Candidate Index Number:

SHUQUN SECONDARY SCHOOL 2017 End-of-Year Examination Secondary 1 Express

MATHEMATICS

Paper 1
05 October 2017

Candidates answer on the Question Paper
1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

Write your name, class and class index number in the spaces at the top of this page and all the work you hand in.
Write in blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips highlighters, glue or correction fluid.
Answer all questions.
If working is needed for any question, it must be shown with the answer.
Omission of essential working will result in loss of marks.
You are expected to use a scientific calculator to evaluate explicit numerical expressions.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 50 .

This question paper consists of $\mathbf{1 2}$ printed pages.
[Turn over]

Answer all questions.

1. A wooden block has a mass of 165 grams, correct to the nearest gram. Find the least possible mass of the wooden block.

Answer: \qquad g [1]
2. Write the following in order of size, starting with the smallest.

$$
83 \%,-0.8, \quad \frac{4}{5}, \quad 0.8 \dot{3}, \quad 0.8 \dot{3}
$$

Answer:
 , \qquad , \qquad ,' \qquad ,
 [1]

\qquad l
3. Given that $2 k<20$, write down
(a) the largest integer value of k,

Answer: \qquad
(b) the largest prime value of k.

Answer: \qquad [1]
4. Here is a recipe for a chocolate dessert.

| Serves 4 people | |
| :---: | :--- | :--- |
| | |
| 100 g | Flour |
| 75 g | Plain Chocolate |
| 50 g | Butter |
| 300 ml | Milk |
| 65 g | Sugar |
| 5 ml | Vanilla Essence |
| 2 | Eggs |

(a) Fiona is making the dessert for 14 people.

How many grams of butter does she need?

Answer: \qquad g [[1]
(b) Michael uses the same recipe with 1.5 litres of milk.

For how many people is he making the chocolate dessert?

Answer: \qquad people [1]
5. Write down the next term for each sequence.
(a) $14,10,6,2$, \qquad

Answer: \qquad [1]
(b) 1, 4, 9, 16, \qquad

Answer:
6. The temperature of a city at 0900 is $-6^{\circ} \mathrm{C}$.

The temperature at 1400 is $14^{\circ} \mathrm{C}$.
(a) Calculate the temperature difference of the city between 0900 and 1400 .

Answer: ${ }^{\circ} \mathrm{C}$ [1]
(b) Assuming that the temperature rises at a steady rate, find the temperature at 1100 .

Answer: ${ }^{\circ} \mathrm{C}$ [2]
7. An athlete runs 10000 metres in 40 minutes.

Calculate his average speed in kilometres per hour.

Answer:
8. (a) Express 360 as a product of its prime factors, giving your answer in index notation.

Answer:
(b) Hence, find the smallest positive integer z such that $360 z$ is a cube number.

Answer: $z=$ [1]
9. In the figure below, $E A B$ is parallel to $D C$.
$\angle E A D=(3 z+1)^{\circ}, \angle A D C=64^{\circ}, \angle D A C=y^{\circ}, \angle A C D=3 x^{\circ}, \angle A C B=4 x^{\circ}$ and $\angle A B C=110^{\circ}$.

(a) Find the value of x.

Answer: $x=$
(b) Find the value of y.

Answer: $y=$
(c) Find the value of z.
10. A telephone company charges customers for the number of minutes they called every month.
There is a fixed charge and a charge for each minute of calls made.

(a) Find the fixed charge.

Answer: \$
(b) On a particular month, Kamallesh's bill was $\$ 15$.

How many minutes did he call on his mobile phone?

Answer: \qquad
(c) Yesha used 1 hour and 4 minutes for a particular month.

Find the amount that she has to pay.

Answer: \$
11. (a) The diagram shows a pentagon $A B C D E$. Calculate the value of x.

Answer: $x=$
(b) Calculate the number of sides of a regular polygon if each of its exterior angle is 30°.
12. (a) Simplify the ratio $1.6 \mathrm{~kg}: 400 \mathrm{~g}$.

Answer: \qquad [1]
(b) If $p: q=\frac{3}{4}: 2$ and $p: r=\frac{1}{3}: \frac{1}{2}$, find $q: r$.

Answer:
13. (a) By rounding each number to 1 significant figure, estimate the value of

$$
29.83-3.05 \times 7.8
$$

Show your working.

Answer: \qquad
(b) Estimate the value of $\sqrt{50} \times \sqrt[3]{25}$.

Answer:
14. (a) Express $\frac{2}{5} \%$ as a fraction in the simplest form.

Answer: \qquad [1]
(b) Express $\$ 3$ as a percentage of 15 .

Answer: $\quad \%$ [1]
(c) Chris bought a bicycle in 2016. One year later, he sold it at a loss of 30\% at $\$ 581$. Calculate the price he paid for the bicycle in 2016.
15. (a) Solve $3(2 x-3)=4 x-1$.

Answer: $x=$
[2]
(b) If $n-2 y=\frac{3 y-n}{m}$, find the value of n when $y=5$ and $m=-3$.
16. A triangle $A B C$ is such that $A B=10 \mathrm{~cm}, B C=6 \mathrm{~cm}$ and $A C=8 \mathrm{~cm}$. The line segment $A B$ has been drawn below.

(a) Construct the triangle $A B C$.
(b) Measure and write down $\angle A C B$.

Answer: \qquad [1]
(c) Construct the angle bisector of $\angle A B C$.
(d) Construct the perpendicular bisector of $A B$.
(e) The perpendicular bisector of $A B$ meets the angle bisector of $\angle A B C$ at point M. Measure and write down the length of $B M$.

Answer: \qquad cm [1]

End of Paper

SHUQUN SECONDARY SCHOOL

 2017 End-of-Year Examination Secondary 1 Express
MATHEMATICS

PAPER 2

06 October 2017
Additional material: Writing paper
Graph paper (1 piece)
1 Hour 30 Minutes

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number in the spaces at the top of this page and on all the work you hand in.
Write in blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use staplers, paper clips, highlighters, glue or correction fluid.
Answer all questions.
If working is needed for any question, it must be shown with the answer.
Omission of essential working will result in loss of marks.
Calculators should be used where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is $\mathbf{5 0}$.

This question paper consists of 6 printed pages.

Answer all the questions.

1. (a) Factorise $4 a+8 a w-18 a x$.
(b) Simplify $\frac{2 x+4}{3}-\frac{1-x}{4}$.
2. Some porcelain bowls are stacked up as shown below. The heights when $1,2,3$ and 4 bowls are stacked up are $6 \mathrm{~cm}, 8.5 \mathrm{~cm}, 11 \mathrm{~cm}$ and 13.5 cm respectively.

Figure number: $n=1$
$n=2$
$n=3$
$n=4$
(a) Find the height when 5 bowls are stacked up.
[1]
(b) Express, in terms of n, the height when n bowls are stacked up.
[2]
(c) Given that the height of a stack of bowls is 131 cm , find the number of bowls in the stack.
3. (a) Jimmy bought 264 blue pens, 216 black pens and 204 red pens. He packed an equal number of each colour into small packets without any leftover.
(i) What was the maximum number of packets he could pack?
(ii) How many blue pens were there in each packet?
(b) Cheryl, Lewis and Mark visit the Singapore Botanic Gardens every 3 days, 2 weeks and 9 days respectively. If they meet one another today, how many days later will they meet at the Singapore Botanic Gardens again?
4. In the diagram below, $A B C D$ is a square and $A D G H$ is a parallelogram. The lines $C E A$ and $F B I$ are parallel lines.

(a) Find $\angle D A H$.
(b) Find $\angle C A H$.
(c) Find $\angle G F I$.
5. In the diagram below, $A B C D$ is a parallelogram where a semicircle $D M$ has been cut out from it. It is given that $A B=8 \mathrm{~cm}, A D=6.4 \mathrm{~cm}, C M=3 \mathrm{~cm}$ and $D L=5 \mathrm{~cm} . D L$ is perpendicular to $A B$.

(a) Find the radius r of the semicircle $D M$.
(b) Find the perimeter of the shaded region.
(c) Find the area of the shaded region.
6. Chloe drove a distance of 360 km from Point A to Point B at an average speed of u km / h.
(a) Write down the expression for the time, in hours, that she took for the journey.
(b) She then returned by the same route at an average speed of $2 u \mathrm{~km} / \mathrm{h}$. Write down the expression for the time, in hours, that she took for the return journey.
(c) Given that the difference between these two times was 2.5 hours, form an equation in u. Show that the equation can be reduced to $360=5 u$.
(d) Hence, solve the equation.
(e) Find the time, in hours, Chloe took for the return journey.
7. The volume ratio of water, syrup and ice in an iced lemon tea drink is $7: 2: 3$.
(a) Calculate the percentage of ice in the iced lemon tea drink.
(b) Calculate the volume of water in a 600 ml iced lemon tea drink.
(c) Given that the water costs $\$ 1.80$ per litre, the syrup costs $\$ 14.40$ per litre and the ice costs $\$ 2.20$ per litre, calculate the cost price of each 600 ml iced lemon tea drink.
(d) If the drink is sold at a profit of $\$ 0.50$, find the selling price after applying GST of 7%, correcting your answer to the nearest cent.
8. Figure 1 below shows a water trough with a uniform cross section of trapezium shape. It is given that $A B=35 \mathrm{~cm}, B C=40 \mathrm{~cm}, E F=21 \mathrm{~cm}$ and $H M=14 \mathrm{~cm}$.
(a) Find the volume of the water trough.
(b) Figure 2 shows an open cylindrical container of height 30 cm . When all the water from the fully filled water trough is poured into the cylindrical container, the water reaches its brim.
(i) Find the radius r of the cylindrical container, leaving your answer to 3 significant figures.
(ii) Find the total interior surface area of the open cylindrical container that is in contact with the water, leaving your answer to 3 significant figures.

Figure 1

Figure 2

9. Answer the whole of this question on a sheet of graph paper.

The table below shows the corresponding x and y values for the equation:
$y=-2 x+3$.

x	-2	-1	0	1	2
y	7	a	3	b	-1

(a) Find the values of a and b.
(b) Using a scale of 4 cm to represent 1 unit on the x-axis and 2 cm to represent 1 unit on the y-axis, draw the graph of $y=-2 x+3$ for $-2 \leq x \leq 2$.
(c) From the graph, find the value of x when $y=6$.
(d) Draw the line $y=2$ and state its gradient.
(e) Find the coordinates of the point where the two graphs intersect.

End of Paper

Answer Key to SQSS 1 EXP EOY P1 2017

Qn.	Answer	Marks
1.	164.5 g	B1
2.	$-0.8, \quad \frac{4}{5}, \quad 83 \%, \quad 0.8 \dot{3}, \quad 0 . \ddot{8} \dot{3}$	B1
3.	(a) 9	B1
	(b) 7	B1
4.	(a) 175 g	B1
	(b) 20 people	B1
5.	(a) -2	B1
	(b) 25	B1
6.	(a) $20^{\circ} \mathrm{C}$	B1
	$\begin{aligned} & \text { (b) } 5 \mathrm{~h}-20^{\circ} \mathrm{C} \\ & 2 \mathrm{~h}---8^{\circ} \mathrm{C} \\ & \text { Temperature at } 1100 \text { is } 2^{\circ} \mathrm{C} \text {. } \end{aligned}$	$\begin{gathered} 1 \mathrm{~h}--4^{\circ} \mathrm{C}-\mathrm{Ml} \\ \mathrm{Al} \\ \hline \end{gathered}$
7.	$\begin{aligned} & 10 \mathrm{~km}--\frac{2}{3} \mathrm{~h} \\ & \text { Average speed }=\frac{10 \mathrm{~km}}{2 / 3} \\ & =15 \mathrm{~km} / \mathrm{h} \end{aligned}$	10 km or $\frac{2}{3} \mathrm{~h}$ seen - M1 Applying s $=\mathrm{d} / \mathrm{t}-\mathrm{M} 1$ AI
8.	(a) $360=2^{3} \times 3^{2} \times 5$	Al (M1-for division method)
	(b) $z=75$	B1
9.	$\begin{aligned} & \text { (a) } 7 x=180-110 \\ & x=10 \end{aligned}$	B1
	(b) $y=180-64-3($ their 10$)=86$	B1
	$\begin{aligned} & \text { (c) } 3 z+1=64 \\ & z=21 \end{aligned}$	B1
10.	(a) $\$ 5$	B1
	(b) 40 min	B1
	(c) $\$ 21$	B1

11.	$\begin{aligned} & \text { (a) }(5-2) \times 180=540 \\ & x+2 x+90+122+100=540 \\ & 3 x=228 \\ & x=76 \end{aligned}$	M1 M1 A1
	(b) 12 sides	B1
12.	(a) $4: 1$	B1
	$p: q=\frac{3}{4}: 2$ $\begin{aligned} \text { (b) } \quad & =3: 8 \\ & =6: 16 \\ p: r & =\frac{1}{3}: \frac{1}{2} \\ = & 2: 3 \\ = & 6: 9 \\ q: r & =16: 9 \end{aligned}$	M1 (either $3: 8$ or $2: 3$ seen - ratio in integer) M1 (p:q:r or equivalent seen)
13.	(a) $30-3 \times 8$ $=6$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$
	$\text { (b) } \begin{aligned} & \quad \sqrt{49} \times \sqrt[3]{27} \\ & =21 \end{aligned}$	M1 A1 studyka
14.	(a) $\frac{1}{250}$	B1
	(b) 2000%	B1
	$\text { (c) } 70 \%--\$ 581$ $100 \%--\$ 830$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$
15.	$\begin{aligned} & \text { (a) } 3(2 x-3)=4 x-1 \\ & 6 x-9=4 x-1 \\ & 2 x=8 \\ & x=4 \end{aligned}$	M1 A1
	$\begin{aligned} n-2(5) & =\frac{3(5)-n}{-3} \\ n-10 & =\frac{15-n}{-3} \end{aligned}$ (b) $\begin{aligned} -3 n+30 & =15-n \\ -2 n & =-15 \\ n & =7.5 \end{aligned}$	M1 M1 Al

$\left.\begin{array}{|l|l|c|}\hline \text { 16. } & \text { (a) as seen below. } & \begin{array}{c}\mathrm{B} 1-\mathrm{AC}=8 \mathrm{~cm} \\ \mathrm{~B} 1-\mathrm{BC}=6 \mathrm{~cm}\end{array} \\ \text { (minus 1 mark if no working arc) }\end{array}\right]$

2017 SOSS 1Exp Maths EOY Paper 2 Answer Scheme

	$\angle S, I F / / A E)$		
5(a)	$\begin{aligned} & \text { Diameter }=8-3=5 \mathrm{~cm} \\ & r=2.5 \mathrm{~cm} \end{aligned}$	B1	
5(b)	Perimeter of shaded region $\begin{aligned} & =6.4+8+6.4+3+\frac{1}{2}(2 \pi \times 2.5) \\ & =31.65398 \ldots \\ & =31.7 \mathrm{~cm} \text { (to } 3 \text { s.f.) } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
5(c)	Area of the shaded region = Area of parallelogram - area of semicircle $\begin{aligned} & =8 \times 5-\frac{1}{2} \pi(2.5)^{2} \\ & =30.18252 \ldots \\ & \left.=30.2 \mathrm{~cm}^{2} \ldots \text { to } 3 \text { s.f. }\right) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
6(a)	Time taken $=\frac{360}{u}$ hours	B1	
6(b)	Time taken $=\frac{360}{2 u}$ hours	B1	
6(c)	$\begin{aligned} & \frac{360}{u}-\frac{360}{2 u}=2.5 \\ & \frac{720}{2 u}-\frac{360}{2 u}=\frac{5 u}{2 u} \\ & 720-360=5 u \\ & 360=5 u \text { (shown) } \end{aligned}$	M1 A1	
6(d)	$\begin{aligned} & \hline 5 u=360 \\ & u=72 \mathrm{~km} / \mathrm{h} \\ & \hline \end{aligned}$	B1	
6(e)	Time taken $=\frac{360}{2(72)}=2.5$ hours	B1	
7(a)	Percentage of ice $=\frac{3}{12} \times 100 \%=25 \%$	B1	
7(b)	Volume of water $=\frac{7}{12} \times 600=350 \mathrm{ml}$	B1	
7(c)	Volume of syrup $=\frac{2}{12} \times 600=100$ ml Volume of ice $=\frac{3}{12} \times 600=150 \mathrm{ml}$ Cost price $\begin{aligned} & =\frac{350}{1000} \times 1.80+\frac{100}{1000} \times 14.40+ \\ & \frac{150}{1000} \times 2.20 \\ & =\$ 0.63+\$ 1.44+\$ 0.33 \\ & =\$ 2.40 \end{aligned}$	M1 Al	
7(d)	$\begin{aligned} & \text { Selling price before GST } \\ & =\$ 2.40+\$ 0.50 \\ & =\$ 2.90 \\ & \text { Selling price after GST } \\ & =1.07 \times \$ 2.90 \\ & =\$ 3.103 \\ & =\$ 3.10 \text { (to the nearest cent) } \end{aligned}$	M1 Al	

8(a)	Volume of water trough $=$ area of trapezium cross section \times length of trough $\begin{aligned} & =\left[\frac{1}{2}(35+21) \times 14\right] \times 40 \\ & =15680 \mathrm{~cm}^{3} \end{aligned}$	$\begin{gathered} \mathrm{M} 1 \\ \mathrm{Al} \end{gathered}$	
8(b)(i)	Volume of water trough = volume of cylindrical container $=15680 \mathrm{~cm}^{3}$ $\pi r^{2}(30)=15680 \mathrm{~cm}^{3}$ $\begin{aligned} & r^{2}=\frac{15680}{30 \pi} \\ & r=\sqrt{\frac{15680}{30 \pi}} \\ & =12.898448 \ldots \\ & =12.9 \mathrm{~cm} \text { (to } 3 \text { s.f.) } \end{aligned}$	M1 A1	
8(b)(ii)	Total interior surface area $\begin{aligned} & =\pi r^{2}+2 \pi r h \\ & =\pi(12.9)^{2}+2 \pi(12.9)(30) \\ & =2954.3851 \ldots \\ & =2950 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) } \end{aligned}$	M1 A1	
9(a)	$\begin{aligned} & a=5 \\ & b=1 \end{aligned}$	$\begin{aligned} & \mathrm{Bl} \\ & \mathrm{~B} 1 \end{aligned}$	
9(b)	Refer to attached graph	P2	P2 for all 5 correct points plotted. (Award 1 mark for 3 correct points plotted) Cl for straight line accurately drawn
9(c)	$x=-1.5$	B1	
9(d)	Refer to attached graph (Line $y=2$) Gradient $=0$	B1 B1	
9(e)	Coordinates of point of intersection: $(0.5,2)$	B1	

