	GAN ENG SENG SCHOOL End-of-Year Examination 2017		GESS
CANDIDATE NAME			
CLASS		INDEX NUMBER	

MATHEMATICS

Paper 1

09 October 2017 1 hour

Sec 1 Express

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your class, index number and name on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use a soft pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction fluid/tape.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

THE USE OF ELECTRONIC CALCULATORS IS NOT ALLOWED.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures.

Give answers in degrees to one decimal place.

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 50.

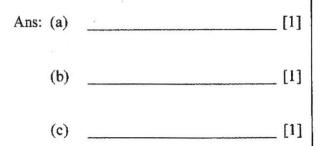
	For Examiner's Use
Total	50

For Examiner's

Use

Answer all the questions

1 Consider the following numbers and expressions


 $4, \sqrt{3}, \frac{\pi}{\pi}, -3, \sqrt{49},$

Write down all

(a) the perfect square(s),

(b) the prime number(s),

(c) the irrational number(s).

2 Evaluate the following.

 $1\frac{2}{3} \div \left(2\frac{1}{3} - \sqrt[3]{27}\right)$

Ans:

[3]

(a) Given x = 60 and $y = 2 \times 3^2 \times 5^3 \times 7^2$, find the lowest common 3 For Examiner's Use multiple of x and y in index notation. Ans: _____ [2] (b) Given $2 \times 3^2 \times 4 \times 5^3 \times k$ is a perfect cube, find the smallest value of k. Ans: _____ [1] Estimate the value of $\frac{\sqrt{63} - 4.03}{99.68}$. 4 Ans: _____ [2]

For Examiner's Use

5 (a) Express $\frac{2a+b}{3} + \frac{a-b}{5}$ as a single fraction.

[2]

[2]

Ans:

(b) Find the value of $\frac{xy+y}{y-x}$ when x = -1 and y = 2.

Ans:

6	 The price of a plate of chicken chop is twice the price of a bowl of fishball noodles. The bowl of fishball noodles costs \$2 more than a can of soft drink, which costs \$p. (a) Express the price of a bowl of fishball noodles in terms of p. (b) Hence, express the price a plate of chicken chop in terms of p. 	For Examiner's Use
	Ans: (a) \$ [1]	
	(b) \$ [1]	
7	Factorise the expression $2ab + 4a - 4ab$ completely.	
	Ans: [2]	
8	Solve the equation $\frac{2}{y} = \frac{4}{3y-1}$.	
	Ans: $y = $ [2]	

 (b) Hence, find the ratio of e³: d². Ans: (a) [1] (b) [1] 0 Find the smallest integer that satisfies the inequality 3q > 5-q. 	
Ans: (a) [1] (b) [1] 0 Find the smallest integer that satisfies the inequality 3 <i>q</i> > 5− <i>q</i> .	Fo Exami
(b) [1] 0 Find the smallest integer that satisfies the inequality $3q > 5-q$.	Us
(b) [1] 0 Find the smallest integer that satisfies the inequality $3q > 5-q$.	
(b) [1] 0 Find the smallest integer that satisfies the inequality $3q > 5-q$.	
(b) [1] 0 Find the smallest integer that satisfies the inequality $3q > 5-q$.	
(b) [1] 0 Find the smallest integer that satisfies the inequality $3q > 5-q$.	
(b) [1] b Find the smallest integer that satisfies the inequality $3q > 5-q$.	
(b) [1] 0 Find the smallest integer that satisfies the inequality $3q > 5-q$.	
(b) [1] 0 Find the smallest integer that satisfies the inequality $3q > 5-q$.	
(b) [1] 0 Find the smallest integer that satisfies the inequality $3q > 5-q$.	
(b) [1] 0 Find the smallest integer that satisfies the inequality $3q > 5-q$.	
9 Find the smallest integer that satisfies the inequality $3q > 5-q$.	
0 Find the smallest integer that satisfies the inequality $3q > 5-q$.	
Ans: [2]	

- 11 The general term of a sequence is $T_n = n(n+1)$.
 - (a) Write down the first 4 terms of the sequence
 - (b) The first 4 terms of another sequence are 1, 3, 6, 10.
 - (i) Suggest a formula for the general term of the new sequence.
 - (ii) Find the 10th term of the new sequence

(b)(i) [1]

(ii)_____ [1]

For Examiner's Use

For Examiner's Use

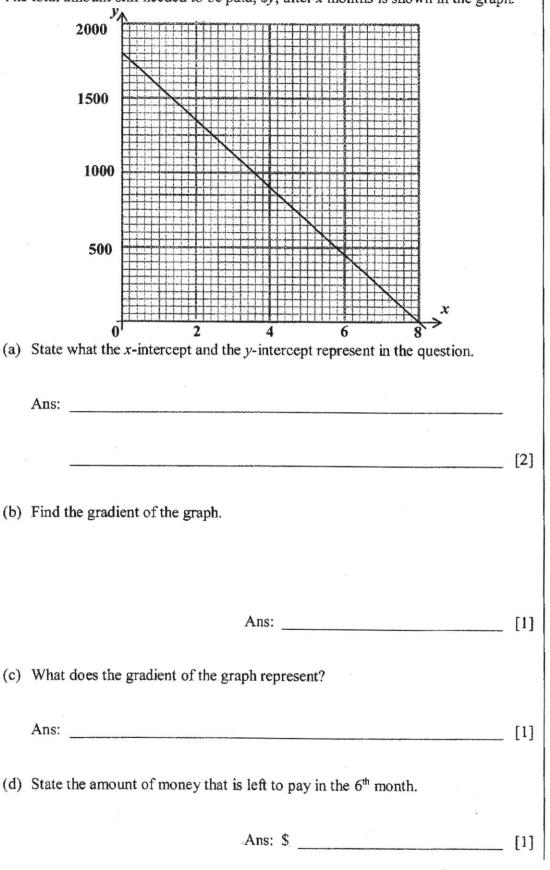
12

- Amelia is currently subscribed to a mobile data plan from telco M2 which charges her a constant rate according to how much data she uses. In a month, she used 4 Giga Bytes (GB) of data and was billed a fee of \$30. (1GB = 1000MB)
- (a) What is the cost of data per GB for the data plan from M2?
- (b) Another telco Songtel offers a different data plan which charges 0.7 cents/MB of data for the first 3GB, and 0.8 cents/MB for any additional data used. Her current data plan is up for renewal. If she continues to use 4GB of data per month, should she continue her plan with M2 or should she switch to Songtel? Explain your answer with relevant data.

Ans: (a) \$____/GB [1] (b) _______ _________ ________[2] Aloysius made a custom guitar for \$1500. He sells it to Zachary at a profit of 40%Zachary in turn sells it to a purchaser for \$2625.

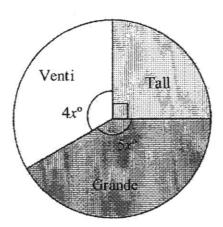
For Examiner's Use

- (a) How much did Zachary pay Aloysius for the guitar?
- (b) Find Zachary's percentage profit.


Ans: (a) [1]

⁽b) _____% [2]

For

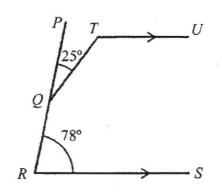

Use

10

15 The café Moonbucks sells its coffee in three sizes, Tall, Grande and Venti. The pie chart represents the number of cups for each size sold on a particular day. The total number of cups sold was 120. Find

For Examiner's Use

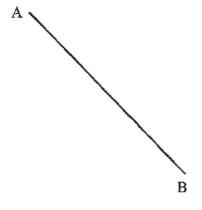
- (a) the value of x,
- (b) the percentage of Grande cups of coffee sold.



(b) _____%[2]

16 In the diagram below, TU is parallel to RS, and PQR is a straight line. $\angle QRS = 78^{\circ}$ and $\angle PQT = 25^{\circ}$. Find reflex $\angle QTU$, stating your reasons clearly.

12

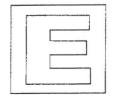

For Exeminer's Use

17 (a) Construct $\triangle ABC$ with AB = 6 cm, BC = 9 cm, and AC = 7.5 cm. AB has already been drawn.

(b) Construct

- (i) The perpendicular bisector of AB.
- (ii) The bisector of angle ABC.

Ans: (a) Draw in space above [1]


- (b)(i) _____ Draw in space above [1]
 - (ii) Draw in space above [1]

END OF PAPER

For Examiner's Use

1	(a)	4, π/π	n	For
H. An	(b)	√49		Examin
	(b)	√3		Use
<u>aniikii</u> 2	Lon tanen rit	1	N C	
-		$-2\frac{1}{2}$		
3	(a)	$LCM = 2^2 \times 3^2 \times 5^3$		
		× 7 ²		
	(b)	k=3		
4	CONTRACTORY	4		
		0.04 or $\frac{1}{25}$		
5	(a)	13a + 2b	\sim \sim \sim \sim \sim	
		15		
8.08	(b)	0	1 Am	
6	(a)	\$(p + 2)	\downarrow \langle \langle \langle \langle \langle \langle \rangle \langle \langle \rangle \langle \rangle \langle \rangle \langle \rangle \langle \rangle	
	(b)	(p+2) OR		
		\$(2p+4)		
7	(a)	-2a(b2) OR		
		2a(-b+2)	\wedge \wedge $/ \wedge$	
8		y = 1		
9	(a)	c:d = 2:5		
	(b)	8:25		
10		2		
11	(a)	$T_1 = 2$	N N	
		$T_2 = 6$		
		$T_3 = 12$	B	
		T = 20		
	(bi)	$T_n = \frac{n(n+1)}{2}$		
		n - 2		
	(bii)	55		
12	(a)	\$7.50/GB	(a) Triangle ABC drawn, labelled and with correct	
	(b)	Ans: She should	dimensions (angles ±1°, length ±0.1cm), with	
		switch to Songtel as it	construction lines shown	
		is cheaper for 4GB of		
		$\frac{\text{data}}{M2}$ (\$29) compared to	(bi) Perpendicular bisector of AB properly	
13	(a)	M2 (\$30)	constructed with construction lines shown	18
13	(a) (b)	\$2100 25%		
14	(0) (a)	x-intercept: Number of	(bii) Angle bisector of angle ABC properly	02
1.4	(")	instalments OR	constructed with construction lines shown	
		Number of months to		
		finish payment		
		y-intercept: price of		
		the uPhone		
	(b)	-225		
	(c)	Monthly instalment of		
		\$225		
	(d)	\$450		
15		x = 30		
	(b)	$41\frac{2}{-10}\%$		
		413%		
16		Reflex ∠QTU	A GARGE MANAGEMENT CONTRACTOR OF A REAL PROVIDED AND ANY ANY MODULE CONTRACTOR OF A DESCRIPTION OF A	
		= 233°	*	

14

GAN ENG SENG SCHOOL End of Year Examination 2017

CANDIDATE NAME

CLASS

MATHEMATICS

Paper 2

10 October 2017 1 hour 15 minutes

INDEX

NUMBER

Sec 1 Express

Additional Materials: Writing Paper

Graph Paper

READ THESE INSTRUCTIONS FIRST

Write your class, index number and name on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use a soft pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction fluid/tape.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

Calculators should be used where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 50.

	For Examiner's Use
Total	50

[1]

Answer all the questions.

1

Evaluate

$$-\frac{14.72+1.2}{\frac{15}{4} \div \left(-\frac{8}{5}\right)}$$

leaving your answer to

(a)	1 decimal place,	[1]
-----	------------------	-----

4 significant figures. (b)

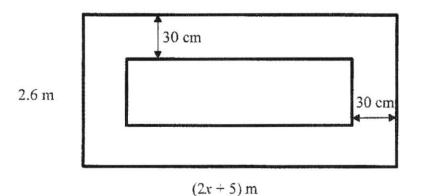
2	(a)	Express 42 875 as a product of its prime factors.	[1]
	(b)	Hence, evaluate $\sqrt[3]{42.875}$.	[1]

3 Ms. Chu bought 80 correction tapes, 480 highlighters and 120 blue pens. She wants to pack all the stationery into identical gift packs to make as many gift packs for this year's Youth Day Celebration. [2]

Calculate the greatest number of gift packs. (a)

(b) The other Secondary 1 form teachers would like to make the same gift pack for their classes. Using your answer in (a), calculate the number of blue pens required for this year's Youth Day Celebration. You may assume that each class has exactly 40 [2] students and there are 7 classes in the Secondary 1 cohort.

- Paper
 Weighting (%)

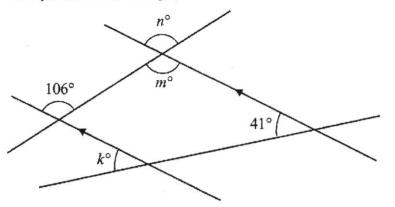

 1
 2x y + 10

 2
 3y 2x 6

 3
 ?

 Total
 100
- 4 The End-Of-Year Examination for a language paper consists of 3 papers.

- (a) Find an expression in terms of x and y for the weighting of Paper
 3. [2]
- (b) If the weighting for Paper 3 is 30%, find the value of y. [2]
- 5 An artist uses a rectangular canvas which measures (2x+5)m by 2.6 m. She leaves a border of 30 cm along the edges of the canvas as shown in the diagram below.



- (a) Show that the area of the canvas can be expressed as $(5.2x+13) \text{ m}^2$. [1]
- (b) Given that the area is 44.2 m^2 , find the length of the canvas. [3]
- (c) Find the area of the border. [2]

[3]

Find the values of the unknown angles in the diagram below.

State your reasons clearly.

- 5 interior angles in a heptagon are 130° each. The remaining
 2 angles are in the ratio of 1:4. Find the largest exterior angle of this heptagon. [3]
- Janel was cycling at an average speed of 12 km/h for 36 minutes before cycling over a pothole and falling down. She spent 10 minutes resting before cycling 5 km back home in 25 minutes. Calculate
 (a) the distance travelled, in km, before she fell down, [2]
 (b) the average speed, in km/h, for the whole journey. Leave your answer to 3 significant figures. [3]

GESS 1EXP EM P2 EOY 17 CSM

6

[2]

Table 1 shows the weekly basic earnings by a driver from *GrubCar* using a *Grub* rental car, a personal car and a vehicle from other car rental companies. *Grubcar* provides private hire cars and ride hailing services.

. 9

Source of car	Weekly Earnings		
	(if at least 10 trips have been completed in		
	1 week)		
Grub Rentals	\$500		
Your personal car	\$150		
Other car rental companies	\$100		

Table 1

Table 2 shows the *incentives that a *GrubCar* driver will earn for the month of September 2017.

Target	From Grub Rentals or if you		
(total trips in September 2017)	use your personal car		
170 trips and above	\$450		
140 – 169 trips	\$340		
100 to 139	\$225		
70 – 99 trips	\$175		
40 – 69 trips	\$100		
	10.2		

- Table 2
- (a) Mr. Lee just joined GrubCar as a driver. Upon signing the agreement, he realised that 20% of his total earnings (weekly basic earnings with incentives) will be taken by GrubCar. Calculate the deduction in Mr. Lee's salary if his salary was \$1 840 in September.

*Incentives: A reward that makes one work harder for.

(b) Mr. Tan, another GrubCar driver said the following statement to Mr. Lee.

> "A GrubCar driver may earn \$4 000 as his total earnings for the month of September."

> Use the information given in Table 1 and Table 2 to justify if Mr. Tan's statement is accurate.

Note: You may assume that the month of September has 4 weeks.

[4]

HiLo, a beverage drink company conducted a survey to find out how many times a person consumes its Cheese Tea drink in one month.

No. of times	0	1	2	3	4	≥ 5
Frequency	15	19	27	x	5	4

(a) Describe the meaning of the t	first column in the table.
-----------------------------------	----------------------------

No. of times0Frequency15

- (b) Write down the value of x if 100 people had participated in this survey.
- (c) Express the number of people who consumes at least 5 times or more as a percentage of the total number of people who consumed at most 2 Cheese Tea drinks in one month.
 Leave your answer to 3 significant figures.

10

[1]

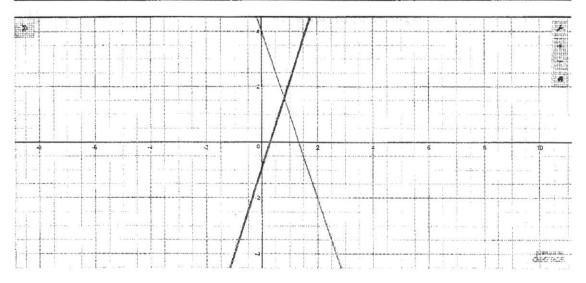
[2]

[2]

7

11 Answer this entire question on a piece of graph paper.

The table below shows some values of x and the corresponding values of y for the linear function y = -3x + 4.


x	-2	0	4
У	а	4	Ь

- (a) Find the values of a and of b. [2]
 (b) Using a scale of 2 cm to 1 unit for on the x-axis and 1 cm to 1 unit for the y-axis, draw the graph for the linear function y = -3x+4 for -2 ≤ x ≤ 4. [3]
 (c) Using your graph, find the value of x when y = 1 for y = -3x + 4. [1]
 (d) (i) On the same axes, draw a straight line that passes through
- (d) (i) On the same axes, draw a straight line that passes through the points (1, 2) and (-1, -4). [1]
 - (ii) Hence, find the intersection point of the 2 lines. [1]
- (e) Find the gradient of the straight line drawn in (d)(i). [2]

END OF PAPER

FINAL ANSWERS

1(a)	6.8	1(b)	6.793
2(a)	$5^{3} \times 7^{3}$	2(b)	35
3(a)	40	3(b)	840
4(a)	96 – 2y	4(b)	33
5(a)	Area = $2.6(2x + 5)$ = $(5.2x + 13) m^2$ (shown)	5(b)	17
6	$k^{o} = 41 (corr. angles)$ $m^{o} = 106 (alt. angles)$ $n^{o} = 106 (vert. opp. angles)$	7	130°
8(a)	7.2 km	8(b)	10.3 km/h
9(a)	\$368	9(b)	NIL
10(a)	It means that 15 people who were surveyed have not tried HiLo's Cheese Tea	10(c)	6.55%
.11(a)	a = 10 b = -8	11(b)	Last page of answers.
11(c)	x = 1	11d(i)	NIL
11(d)(ii)	(0.8, 1.5)	11(e)	3

8