BP~43

Answer all the questions.

1 Calculate $\frac{0.237 \Box \sqrt{12.5894}}{0.5132 \Box 1.912^3}$, giving your answer correct to 3 decimal places.

				Answer		[2]
2	From	the foll	owing set of numbers	5		
			[]	$\frac{1}{\pi}$, 0, $\sqrt{3}$, $\sqrt[3]{64}$, π , 3	36	
	(a)	Write	down	1		
		(i)	all the integer(s),			
				Answer		[1]
		(ii)	all the irrational nu	mber(s).		
				Answer		[1]
		(iii)	all the perfect squa	re(s).		
				Answer		[1]
	(b)	Arran	ige the given set of m	umbers in descending ord	er.	
			Answer			[2]
3	Roun	d off th	e following numbers	to 3 significant figures.		
	(a)	851 5	29			
				Answer		[1]
	(b)	0.000	230127			
				Answer		[1]

(a) Find the highest common factor of 272 and 96.

Answer

(b)

Find $\sqrt[3]{1728}$ by using prime factorisation.

Answer

(a) Calculate the percentage increase in the price of the computer.

The original price of a computer is \$1 890. It was sold to a shop for \$2 190.

Answer%[2]

1.00

(b) In the shop, the marked price of the computer is \$2 888.A man bought it at a 10% discount during a sale.Find the amount of profit earned by the shop.

Answer

\$.....[2]

CHU ST. THERESA'S CONVENT SECONDARY ONE EXPRESS 2017 MID-YEAR EXAMINATION MATHEMATICS PAPER 1

4

BP~45

4 (a) Express $2\frac{3}{4}$ as a percentage. 6% [1] Answer Express 0.84% as a fraction in its simplest form. (b) Answer Find the fraction which is halfway between $\frac{2}{7}$ and $\frac{3}{7}$. (c) Answer 7 Factorise fully 9xy - 3y, (a) Answer (b) 3a(2-b)-12a(b+3).

CHIJ ST. THERESA'S CONVENT SECONDARY ONE EXPRESS 2017 MID-YEAR EXAMINATION MATHEMATICS PAPER 1 8 Simplify

(a) 6x - 3y + 2x + 8z - 2y,

(b)
$$\frac{1}{4}x - \frac{1}{2}y + \frac{1}{6}x - \frac{1}{3}y$$
,

Answer

Answer

5

(c) $\frac{a \Box 1}{2} \Box \frac{2a \Box 3}{6} \Box \frac{2(3 \Box a)}{3}$.

Answer

.....[3]

9 Cynthia has a box of paper clips.

12.5% of the paper clips are blue.50% of the remaining paper clips are green.The rest of the 210 paper clips are red.How many paper clips are there in the box altogether?

Answerclips [3]

10 Solve the following equations.

(a) 4x-5=x+3,

Answer $x = \dots$ [2]

Answer
$$x = \dots [3]$$

CHIJ ST. THERESA'S CONVENT SECONDARY ONE EXPRESS 2017 MID-YEAR EXAMINATION MATHEMATICS PAPER 1

(b) $\frac{4x}{5} + \frac{2(x-1)}{3} = 3$.

11 A shopkeeper bought 60 oranges for $\frac{x}{6}$ each. He then sold them for $\frac{x}{2}$ each.

(a) Find an expression, in terms of x, for the profit he makes if he sold all oranges. Give your expression in its simplest form.

			Answer	\$	[2]
(b)	Given that th	e shopkeeper made a	profit of \$60, for	m an equation in x and solve for	or x.
		e.	Answer	<i>x</i> =	[1]
(a)	Solve the ine	quality $-3x \leq -13$.			
			Answer		[1]
(b)	Hence, write (i) x is a	down the smallest va prime number,	alue of x which sa	tisfies $-3x \le -13$ if	
	(ii) <i>x</i> is a	perfect cube,	Answer	<i>x</i> =	[1]
	(iii) <i>x</i> is a	rational number,	Answer	<i>x</i> =	[1]
			Answer	<i>x</i> =	[1]

CHIJ ST. THERESA'S CONVENT SECONDARY ONE EXPRESS 2017 MID-YEAR EXAMINATION MATHEMATICS PAPER 1

13	It is gi	ven that $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$.		
	(a)	Find f when $u = 4$ and $v = 5$.		
			Answer	 [1]
	(b)	Find u when $f = 5$ and $v = 7$.		
			Answer	 [2]

14 Two different sizes of shampoo are shown below.The volumes of the shampoo and the prices are shown respectively.Which size of shampoo gives the better value? You must show all your working clearly.

[3]

END OF PAPER 1

CHIJ ST. THERESA'S CONVENT MID-YEAR EXAMINATION 2017 SECONDARY 1 EXPRESS

MATHEMATICS

Paper 2

3 May 2017 1 hour 30 minutes

Additional Material: Answer Paper

READ THESE INSTRUCTIONS FIRST

Write your answer and working on the Answer Paper provided. Write your index number, and name on all the work you hand in. Write in dark blue or black pen. You may use a pencil for any diagrams or graphs. Do not use paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in the loss of marks.

Calculators should be used where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms

of π .

At the end of the examination, staple all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 50.

This document consists of 4 printed pages.

Answer all the questions.

1	(a)	Writ	ten as a product of its prime factors, $180 \square 2^2 \square 3^2 \square 5$.	
		(i)	Find the smallest integer k such that $180k$ is a perfect cube.	[1]
		(ii)	(a) Express 108 as a product of its prime factors.	[1]
			(b) Hence, find the smallest positive value of x such that $108x$ is a multiple of x such that $108x$ such that	f 180. [1]
	(b)	Thre time	e lasers blink every 42 seconds, 60 seconds and 330 seconds respectively. The they blink together was 16 00. What time will all 3 lasers blink together again?	last [3]
2	(a)	Sim	plify $\frac{2k+1}{7} - \frac{3k-2}{2}$	[3]
	(b)	Solv	the equation $2x \Box [7 \Box (5x \Box 4)] \Box 6$.	[3]
			entre 16 and an electric line of the second se	an a
3	(a)	Both	liquids X and Y used in an experiment were at a temperature of $\Box 5.5$ °C.	
		(i)	Liquid X was heated until its temperature rose by 7.5°C. Write down its new temperature.	[1]
		(ii)	Liquid Y was cooled until its temperature fell by 10°C. Write down its new temperature.	[1]
		(iii)	Hence, find the difference between the final temperatures of the two liquids.	[1]
	(b)	The The on t	temperature in Singapore was taken on three successive days. temperature on the first day was 1.5°C higher than the second day, and the tem he second day was 4.5°C lower than the third day.	aperature
		The Finc	average temperature of the three days was 33.5°C. I the temperature on the second day.	[3]
			· · ·	

CHIJ ST. THERESA'S CONVENT SECONDARY ONE EXPRESS 2017 MID-YEAR MATHEMATICS EXAMINATION PAPER 2 The first four terms of a sequence are 3, 7, 11 and 15.

4

(a)

(i) Write down the 8th term of the sequence. [1] Find an expression, in terms of n, for the nth term. (ii) [1] One of the terms in the sequence is 131. Find the value of n for this term. [1] (iii) (b) Consider the following number pattern: 1 = 1 1 + 3= 4 1 + 3 + 5= 9 1+3+5+7 = 16Write down the 5th line and 6th line in the pattern. (i) [2] Write down the nth line in the pattern. [2] (ii) Is it possible to have a kth line of 1 + 3 + 5 + 7... = 305? Explain your answer. (iii) [1]

5 (a)		Expre	ess $3\frac{9}{11}$	
		(i)	as a recurring decimal,	[1]
		(ii)	as a decimal, correct to 5 significant figures.	[1]
	(b)	Evalı fracti	Late each of the following without the use of a calculator, leaving your an on. $23 \Box 1 \Box^2 12$	swer as a

(i)
$$\frac{23}{25} \square \frac{1}{5} \square \frac{12}{50}$$
 [2]

(ii)
$$-(-3)^2 \times \left| \frac{5}{3 + \frac{1}{2}} \right| \times \sqrt[3]{27}$$
 [2]

CHIJ ST. THERESA'S CONVENT SECONDARY ONE EXPRESS 2017 MID-YEAR MATHEMATICS EXAMINATION PAPER 2

Terrence is planning to bring his family for dinner at a restaurant.

6

7

(a)

Given that the cost of a bowl of noodles is \$7.90 and Terrence orders y number of bowls of noodles. (i) form an expression in y for the total amount Terrence paid, [1] (ii) form an inequality in y to determine how many bowls of noodles Terrence can buy if he has only \$50, and [1] (iii) solve the inequality in (a)(ii), and state the maximum number of bowls of noodles he can buy. [2] **(b)** The sum of three consecutive odd numbers is 141. Find the biggest number. [3] The sum of the ages of Cindy and her sister is 38. (c) Seven years ago, Cindy was thrice as old as her sister. Find Cindy's age now. [3] The marked price of a tour package to Japan is \$1480, inclusive of 7% GST, before the (a) NATAS Fair. During the NATAS Fair, the tour package to Japan is offered at 15% discount. The first 10 customers are also entitled to an additional discount of 10% on the discounted price. How much is the tour package to Japan excluding GST before the NATAS fair? (i) [2] Find the amount paid by the 7th customer. (ii) [3]

(b) Amu scored 36 out of 44 marks in Test A and 48 out of 56 marks in Test B. In which test did Amu do better? Explain your answer. [3]

~ End of paper ~

CHIJ ST. THERESA'S CONVENT SECONDARY ONE EXPRESS 2017 MID-YEAR MATHEMATICS EXAMINATION PAPER 2

			Answe	er all the questions.	
1	Ca	lculate -	$0.237 + \sqrt{12.5894}$, giving $0.5132 - 1.912^3$, giving	, your answer correct t	o 3 decimal places.
			= -0.584436	м	**. 2
				Answer	-0.584 M. [2]
2	Fre	om the fo	llowing set of numbers		a.
			$-\frac{1}{7}$	$0, \sqrt{3}, \sqrt[3]{64}, \pi,$	36
	(a)	Writ	e down		
		(i)	all the integer(s),		
				Answer	0, 3564, 36 BI [1]
		(ii)	all the irrational num	ber(s).	
				Answer	[3, π B] [1]
		(iii)	all the perfect square	(s).	
				Answer	3 JUL 36 BI [1]
	(b)	Arrar	nge the given set of num	bers in descending o	rder.
		BIfe	or 1st no = 36, and		
			last $na = -7$ Answer	36, 3564, TU	53,0,-7 82 [2]
3	Roun	d off the	following numbers to	3 significant figures	
	(a)	851 52	29		
				Answer	852 000 11 [1]
	(b)	0.0002	30127		
					0.000230 RI
				Answer	[1]
				Scanne	ed by CamScanner

16. [1]

3

(a)

4

Find the highest common factor of 272 and 96.

Answer

(b) Find $\sqrt[3]{1728}$ by using prime factorisation.

 $\frac{3}{1728} = \frac{3}{2^{6} \times 3^{3}} \quad MI. = 2^{2} \times 3 \qquad Answer \qquad 12 \quad [2] = 12$

The original price of a computer is \$1 890. It was sold to a shop for \$2 190.

(a) Calculate the percentage increase in the price of the computer.

Answer 15.9 %[2]

(b) In the shop, the marked price of the computer is \$2 888.
 A man bought it at a 10% discount during a sale.
 Find the amount of profit earned by the shop.

(a) Express $2\frac{3}{4}$ as a percentage.

	275. %	[1]
Answer	***************************************	[+]

71

(b) Express 0.84% as a fraction in its simplest form.

7 Factorise fully (a) 9xy-3y,

> Answer 3y(3x-1) [1] (b) 3a(2-b)-12a(b+3). = 3a[(2-b)-4(b+3)] M1. = 3a[2-b-4b-12]. M1 = 3a[-5b-10] = -15a(b+2) or -15a(b+2) or [5 15a(-b-2)ISa(-b-2) Scanned by CamScanner

.. [:

Simplify

(a) 6x - 3y + 2x + 8z - 2y,

(b)
$$\frac{1}{4}x - \frac{1}{2}y + \frac{1}{6}x - \frac{1}{3}y$$
,
 $= \frac{1}{4}x + \frac{1}{6}x - \frac{1}{2}y - \frac{1}{3}y$ M1.
 $= \frac{5x}{12} - \frac{5y}{6}$ or $\frac{5x - 10y}{12}$

8X-54+82

(c)
$$\frac{a-1}{2} - \frac{2a-3}{6} - \frac{2(3-a)}{3}$$
.
= $\frac{3(a-1)}{6} - \frac{2a-3}{6} - \frac{4(3-a)}{6}$ MI.
= $\frac{3a-3 - 2a+3 - 12 + 4a}{6}$ MI.
= $\frac{5a-12}{6}$ AI.
Scanned by CamScanner

5

Answer

Answer

The second se

Cynthia has a box of paper clips.

12.5% of the paper clips are blue.50% of the remaining paper clips are green.The rest of the 210 paper clips are red.How many paper clips are there in the box altogether?

480.clips [3] Answer

10 Solve the following equations.

(a)

$$4x-3=x+3$$
,
 $4x-x=5+3$ M1.
 $3x=8$
 $x=2\frac{2}{3}$

(b) $\frac{4x}{5} + \frac{2(x-1)}{3} = 3.$ 3(4x) + (o(x-1) = 3(15)) MI 12x + 10x = 45 + 10 MI 22x = 55 $\chi = 2.5$

Answer $x = \frac{2\frac{2}{3}}{2\frac{2}{3}}$ [2]

Answer
$$x = \frac{2.5}{100}$$
 M [3]

Scanned by CamScanner

[1]

[1]

7

A shopkeeper bought 60 oranges for \$\$\frac{x}{6}\$ each. He then sold them for \$\$\frac{x}{2}\$ each.
 (a) Find an expression, in terms of x, for the profit he makes if he sold all oranges. Give your expression in its simplest form.

$$\frac{2}{6} \times 60 = 410x$$
 MI
X x 10 = 520x MI

$$20x = 60$$

 $x = 3$.

Answer

(a) Solve the inequality $-3x \le -13$.

Answer

x7,43

3

(b) Hence, write down the smallest value of x which satisfies $-3x \le -13$ if (i) x is a prime number, 3x 7/3

Answer

Answer

Answer

= _____ [1]

(ii) x is a perfect cube,

perfect cube,

(iii) x is a rational number,

Scanned by CamScanner

7

13 It is given that
$$\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$$
.

Find f when u = 4 and v = 5. (a)

			Answer	$2\frac{2}{9}$ Al.	[1]
(b)	Find u when $f = 5$ and $v = 7$.				
	L=5-7	MI		2 E	
	$\frac{1}{4} = \frac{2}{35}$		Answer	17.5 M.	[2]
	u= 17.5				

2

Two different sizes of shampoo are shown below. 14 The volumes of the shampoo and the prices are shown respectively. Which size of shampoo gives the better value? You must show all your working clearly.

Signal Signal 300 mt \$7,80
Answer: $[$7.80+3] \times 5 = 13 [M] OF $($10.50+5) \times 3 = 6.30 [M]
the big bottle is cheaper EAT).
Scanned by CamScanner

2017	Secondary	One	Express	SA1	Answers:

1)a (i)	2×3×5 ² = 150	B1
- (11)	-\108 -2273	21
a(II)		81
	D/S	BI
D)	LUN = 2 ×3×5×7×11 = 4620	INIT .
	= 4020 4520s = 77 mins(1 h 17 mins)	B.41
	40205 - 77 mms (1 m 17 mms) 16 00 \rightarrow 17 17	
2121	2k+1 $3k-2$	AI
2/0/	7 2	
	$=\frac{2(2k+1)-7(3k-2)}{14}$	M1
	$=\frac{4k+2-21k+14}{2}$	M1
	14 16-17k	A1
	$=\frac{1}{14}$	
b)	2x - [7 - 5x + 4] = 6	M1
	2x - [11 - 5x] = 6	
	2x - 11 + 5x = 6	M1
	7x = 17	
	x = 2.43 or $2\frac{3}{7}$	Al
3)a)(i)	- 5.5+7.5 = 2°C	B1
(ii)	-5.5 – 10 = -15.5°C	B1
(iii)	17.5°C	B1
(b)	x - 3 + x - 4.5 + x = 100.5	M1
	3x = 108	M1
	x = 36	
	36 - 4.5 = 31.5°C	A1
4)a)(i)	31	B1
(11)	4n - 1	B1
(111)		B1
0)(1)	1 + 3 + 5 + 7 + 9 = 25 1 + 2 + 5 + 7 + 0 + 11 - 26	B1 D1
(ii)	$1+3+5+7+ + 2n - 1 - n^2$	
(11)	No. 305 is not a perfect square	B1
512) (i)	3 81 (with a dot on ton of 8 and 1)	A1
(ii)	3,8182	A1
(ii)	23 1 50	MI
S/(1)	$\frac{1}{25} - \frac{1}{25} \times \frac{1}{12}$	IVII
	$=\frac{23}{25}-\frac{2}{12}$	
	=113	A1
(11)	150	M1
	$-9 \times (\frac{3}{3.5}) \times 3$	INIT
	$= -9 \times 1\frac{3}{7} \times 3$	
	$= -38\frac{4}{-}$	A1
L	7	

6)a)(i)	\$7.90 v	A1
(iii)	7 90 v < 50	A1
(iii)	50	
()	$y \leq \frac{1}{7.90}$	M1
	<i>y</i> ≤ 6.33	A1
	<i>y</i> = 6	AI
b)	Let x be the smallest number	
	x + x + 2 + x + 4 = 141	
	3x + 6 = 141	M1
	3x = 135	
	x = 45	A1
	Biggest number = 49	A1
c)	Let Cindy's sister's age 7 years ago be x.	
	3x + x = 24	M1
	x = 6	A1
	18 + 7 = 25	A1
7)a)(i)	$\frac{1480}{107} \times 100 = \1383.18	M1/A1
(ii)	$\frac{85}{138318} \times 138318 = \117570	M1
		M1
	$\frac{1}{100} \times \frac{1}{100} \times 1383.18 = 1058.13	A1
	1.07 x \$1058.13 = \$1132.20	
b)	$\frac{36}{36} \times 100\% = 81.8\%$	M1
	44	M1
	$\frac{1}{56} \times 100\% = 85.7\%$	A1
and the course of the first section	Amu did better in test B.	- Andrehali -