ZHONGHUA SECONDARY SCHOOL
 PRELIMINARY EXAMINATION 2018 SECONDARY 4E/4N/5N

Candidate's Name
Class Register Number

MATHEMATICS

PAPER 1
4048/01
27 Aug 2018
2 hours

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use paper clips, glue or correction fluid.
Answer all questions.
The number of marks is given in brackets [] at the end of each question or part question.

If working is needed for any question, it must be shown with the answer. Omission of essential working will result in loss of marks.
The total of the marks for this paper is $\mathbf{8 0}$.
The use of an approved scientific calculator is expected, where appropriate. If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

Mathematical Formulae

Compound Interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\begin{gathered}
\text { Curved surface area of a cone }=\pi r l \\
\text { Surface area of a sphere }=4 \pi r^{2} \\
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3} \\
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C \\
\text { Arc length }=r \theta \text {, where } \theta \text { is in radians } \\
\text { Sector area }=\frac{1}{2} r^{2} \theta \text {, where } \theta \text { is in radians }
\end{gathered}
$$

Trigonometry

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\Sigma f x}{\Sigma f} \\
\text { Standard deviation } & =\sqrt{\frac{\Sigma f x^{2}}{\Sigma f}-\left(\frac{\Sigma f x}{\Sigma f}\right)^{2}}
\end{aligned}
$$

Answer all the questions.
1 (a) Calculate $\frac{3+\sqrt{-4^{2}+2 \times 11}}{5}$.
Write down the first 6 digits on your calculator display.

> Answer ... [1]
(b) Write your answer to part (a) correct to 3 decimal places.

Answer

2 These are the first five terms of a sequence.
$2018 \quad 2011 \quad 2004 \quad 1997 \quad 1990$
(a) Write down the tenth term in the sequence

Answer
(b) Write down an expression, in terms of n, for the nth term in the sequence.

Answer
(c) Explain why the number 3 does not appear in the sequence.

Show your working clearly.

Answer \qquad
\qquad
\qquad

3 (a) Factorise completely $48 x y-8 y$.

> Answer
[1]
(b) Factorise completely $x^{4}+3 x^{3}-4 x^{2}$.

Answer

4 Solve the equation $\quad x(x-3)=5\left(x^{2}-9\right)$.

Answer
[3]

5 Calculate the interior angle of a regular 10-sided polygon.
Show your working clearly.

6 (a) Given that $6^{m} \div 6^{-3}=6^{2}$, find the value of m.

$$
\text { Answer } m=\text {... [1] }
$$

(b) Arrange the following numbers in increasing value.

Show your working clearly.
0.0037×10^{6}
3.7×10^{5}
370×10^{-3}
37

Answer \qquad
\qquad
\qquad
smallest
largest
(c) Simplify $\sqrt[3]{8 x^{6}} \times \frac{1}{3 y^{-5}}$. Leave your answer in positive index form.

7 Ken invested \$12000 into a fund which pays compound interest of 4% per annum compounded half-yearly.

Calculate the total interest earned in 5 years.

Answer \$ \qquad
(a) Express $x^{2}-8 x+11$ in the form $(x-a)^{2}+b$.

Answer
(b) Hence solve the equation $x^{2}-8 x+11=0$, giving your answers correct to two decimal places.

Answer $x=$ \qquad or $x=$ \qquad
(c) Sketch the graph of $y=x^{2}-8 x+11$. Indicate the y-intercept and the turning point of the graph clearly. Answer

[2]
(d) Write down the equation of line of symmetry of the graph of $y=x^{2}-8 x+11$.

9 These box plots show the age distributions of the 200 employees in each of company A and company B.

(a) Find the range of the employee's age of company A.

Answer
(b) For each the following statements, write whether you agree or disagree.

Give a statistical reason which you use to support your decision.
(i) On average, company A has older employees than company B.

Answer \qquad because \qquad
\qquad
(ii) There are more employees who are below 30 years old in company A than in company B.

Answer \qquad because \qquad
\qquad
(c) An employee is randomly selected from company B.

Find the probability that the employee ages between 30 and 55 years old.

Answer

10 The size of television (TV) screens are measured diagonally in inches.
(1 inch $=2.54 \mathrm{~cm}$)
(a) A TV screen has dimension 40 cm by 60 cm . Find the size of the TV.

Give your answer correct to the nearest inch.

Answer \qquad inches
(b) An electronic store offers 20% discount storewide.

Ali wishes to buy a new 45 -inch TV which costs $\$ 2298$.
All TV sets have an additional $y \%$ off after a storewide discount.
He received a receipt with poor print quality and some numbers missing.

45-inch TV		$\$$	2298
After 20% off		$\$$	x
After $y \%$ off		$\$$	1562.64
Amount Paid		$\$$	

Find the value of x and y.

$$
\begin{aligned}
\text { Answer } & x=. ~ \\
& y \\
& =. ~
\end{aligned}
$$

[2]

11 (a) $\xi=\{$ integers $x: 2 \leq x \leq 10\}$
$F=\{$ factors of 18$\}$
$G=\{$ prime numbers $\}$
(i) List the elements in F^{\prime}.

Answer
(ii) State the number of elements in $F \cup G$.

> Answer
(iii) Explain why $\quad 2 \in(F \cap G)$.

Answer \qquad
\qquad
(b) On the Venn diagram shown below, shade the set $P \cap Q^{\prime}$.

Answer On the diagram
(c) On the diagram below, draw the set R such that $\quad R \cap S=\emptyset$.

Answer On the diagram

12 (i) $P Q R$ forms a right-angled triangle such that angle $P Q R=90^{\circ}$.
$S T$ is perpendicular to $P R$.

Name a triangle which is similar to triangle $P Q R$.

Answer Triangle.
(ii) Given further that $P Q=8 \mathrm{~cm}, Q R=6 \mathrm{~cm}$ and $P R=10 \mathrm{~cm}$, find the length of $S T$ where T is the midpoint of $P R$.
\qquad cm

13 The radius of a cylinder is increased by 25% and its height is decreased by 50%.
Calculate the percentage decrease in the volume of the cylinder.
Give your answer correct to 1 decimal place.

Answer \qquad \%

14 The following diagram shows a sketch of the line $l_{1}: y=\frac{3}{4} x-3$.
The line cuts the axes at A and B.

(a) Find the coordinates of A and B.

$$
\begin{align*}
& B(\ldots \ldots \ldots \ldots \ldots, \ldots \ldots \ldots \ldots . . \tag{2}
\end{align*}
$$

(b) The line l_{2} is a reflection of the line l_{1} along the y -axis.

Write down the equation of the line l_{2}.
Answer
(c) C is a point on y-axis, as shown on the diagram.

Calculate the exact value of $\cos \angle B A C$.
Answer
(d) Another line $l_{3}: y=\frac{3}{4} x+2$ can be drawn on the same axes.

Explain why the lines l_{1} and l_{3} do not meet.
Answer
\qquad
\qquad
\qquad
\qquad

15 Two geometrically similar containers have the following specifications.

	Container \boldsymbol{A}	Container \boldsymbol{B}
Height (m)	p	50
Cost of painting the base (\$)	120	480
Time taken to completely fill the container with water (to the nearest minute)	123 minutes	q hours r minutes

Find the values of p, q and r.

$$
\text { Answer } \begin{aligned}
& p=\ldots \ldots . ~
\end{aligned} .
$$

16 Given that y varies as x^{n}, write down the value of n in each of the following cases:
(a) y is the volume of a sphere of radius x,

$$
\text { Answer } n=
$$

(b) y and x are the sides of a rectangle of given area.

$$
\text { Answer } n=
$$

17 A train travels at a constant speed of $40 \mathrm{~m} / \mathrm{s}$ for 50 seconds.
It then slows down at a constant rate until it comes at rest in 20 seconds.
(a) On the axes, draw the speed-time graph for the journey.

Answer On the diagram
(b) Calculate the distance travelled by the train during the first 60 seconds.
\qquad

18 In the figure, $A B$ is parallel to $G C$ and $F E$.
Angle $C E F=149^{\circ}$ and angle $C B D=62^{\circ}$.
D is a point on $C E$ such that angle $A B D=90^{\circ}$.

Find, stating the reasons clearly,
(a) angle $B C D$,
\qquad
(b) angle $B D E$.

19 Sketch the graph of each of the following equations.
The point $(1,1)$ is plotted on each diagram.
(a) $y=2^{x}$

Answer On the diagram
(b) $y=\frac{1}{x^{2}}$

1]

20 The line $A B$ is drawn below.
$A \quad B$
(a) Construct triangle $A B C$ where angle $A B C=60^{\circ}$ and $B C=8 \mathrm{~cm}$.
(b) Construct the perpendicular bisector of $B C$.
(c) From C, construct a line that is equidistant from the lines $C A$ and $C B$.
(d) Find the reflex angle $A C B$.

21 A circle passes through A, B, C, D and E.
It is given that angle $A D B=34^{\circ}$, angle $D A E=28^{\circ}$ and angle $B C E=62^{\circ}$.

By stating the reasons clearly,
(a) show that $B D$ is a diameter of the circle, Answer

(b) show that $B E$ bisects angle $A B D$.

Answer

ZHONGHUA SECONDARY SCHOOL
 PRELIMINARY EXAMINATION 2018
 SECONDARY 4E/4N/5N

Candidate's Name	Class	Register Number

MATHEMATICS

4048/02
PAPER 2
Additional Materials: Writing paper, Graph paper (1 sheet)

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in.
Write in dark blue or black pen on both sides of the paper.
You may use an HB pencil for any diagrams or graphs.
Do not use paper clips, glue or correction fluid.
Answer all questions.
The number of marks is given in brackets [] at the end of each question or part question.

If working is needed for any question, it must be shown with the answer.
Omission of essential working will result in loss of marks.
The total of the marks for this paper is $\mathbf{1 0 0}$.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

This question paper consists of $\mathbf{1 1}$ printed pages (including this cover page)

Mathematical Formulae

Compound Interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

Curved surface area of a cone $=\pi r l$
Surface area of a sphere $=4 \pi r^{2}$
Volume of a cone $=\frac{1}{3} \pi r^{2} h$
Volume of a sphere $=\frac{4}{3} \pi r^{3}$
Area of triangle $A B C=\frac{1}{2} a b \sin C$
Arc length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

Statistics

$$
\text { Mean }=\frac{\Sigma f x}{\Sigma f}
$$

Standard deviation $=\sqrt{\frac{\Sigma f x^{2}}{\Sigma f}-\left(\frac{\Sigma f x}{\Sigma f}\right)^{2}}$

Answer all the questions.
1 (a) Simplify $\frac{5 x^{3}}{7 y^{3}} \div \frac{25 x}{49 y^{4}}$
(b) Simplify $\frac{9 x^{2}-1}{6 x^{2}+x-1}$
(c) Solve the inequality $2 x-1<3 x \leq \frac{2+3 x}{3}$.
(d) (i) Express as a single fraction in its simplest form

$$
\begin{equation*}
\frac{5}{x-7}-\frac{1}{x+1} \tag{2}
\end{equation*}
$$

(ii) Solve the equation

$$
\begin{equation*}
\frac{5}{x-7}-\frac{1}{x+1}=\frac{4}{5} \tag{4}
\end{equation*}
$$

2 (a) Carol and Pei are at a flower shop.
Carol buys three pots of mint and two pots of rosemary for $\$ 17.85$.
Pei buys five pots of mint and four pots of rosemary.
She pays with a $\$ 50$ note and receives change of $\$ 17.25$.
(i) Write down a pair of simultaneous equations to represent this information. Use m to represent the cost, in dollars, of a pot of mint and r to represent the cost, in dollars, of a pot of rosemary.
(ii) Solve your simultaneous equations to find m and r.
(iii) Work out the cost of two pots of mint and three pots of rosemary.
(b) Factorise $4 x^{2}+4 x y-x-y$.
(c) (i) Express 3850 as the product of its prime factors.
(ii) Given that $\frac{3850}{k}$ is a perfect square, find the smallest possible integer value of k.
(iii) The product of two 2-digit numbers is 3850 .

The highest common factor of these two numbers is 5 .
Find the two numbers.

The diagram shows a field, $P Q R S$.
P, Q, R and S are on level ground such that R is due east of Q.
The bearing of S from P is 105°.
$Q S$ is a straight path across the field.
$P Q=42 \mathrm{~m}, P S=48 \mathrm{~m}, Q R=35 \mathrm{~m}$.
(a) Calculate $Q S$.
(b) Find the bearing of S from Q.
(c) Calculate the area of the field $P Q R S$.
(d) A drone flies in a straight line from Q to S at a height of 20 m above ground.

A man standing at R looks up at the drone.
Calculate the largest angle of elevation of the drone from the man.

4 (a) The daily dietary requirements differ slightly for school-going children and adolescents, based on their age-range.
The table summarises their respective daily dietary requirements of fruit and vegetables by number of servings.

Age	Fruit	Vegetables
3-6 years old	1	1
7-12 years old	2	2
13-18 years old	2	2

(i) Represent the above information in a 3×2 matrix \mathbf{M}.
(ii) One serving of fruit weighs 145 g and one serving of vegetables weighs 150 g .
Represent the weight for one serving in a 2×1 column matrix \mathbf{N}.
(iii) Evaluate the matrix $\mathbf{T}=\mathbf{M N}$.
(iv) State what the elements of \mathbf{T} represent.
(b) The recommended period of time spent on physical activities for adolescents is one hour daily. 17-year-old Janet plots a route for her daily walk.
(i) The length of her route on a map is 8.2 cm .

The scale of the map is $1: 50000$.
Work out the number of kilometres Janet walks each day.
(ii) If Janet walks at a speed of 1.2 metres per second, will she be able to complete her route in an hour? Justify your answer with figures.

5 (a)

O is the centre of the circle $P Q R S$.
$R T$ is a tangent to the circle, and when produced, the line $P S$ meets the tangent at T. Angle $P Q R=103^{\circ}$, angle $S O P=120^{\circ}$ and angle $S T R=34^{\circ}$.
(i) Stating your reasons clearly, find
(a) angle $P O R$,
(b) angle $O S T$,
(ii) Show that angle $O P Q+$ angle $O R Q=103^{\circ}$.
(iii) Determine if quadrilateral OSTR is a trapezium. Justify your answer with appropriate reason(s).
(b)

The diagram shows a major segment, $A C B$, of radius 2 m with $A B=1.4 \mathrm{~m}$.
(i) Calculate angle $A O B$ in radians.
(ii) Calculate the perimeter of the major segment $A C B$.

6 (a) P is the point $(5,12) . Q$ is the point $(-5,0)$.
(i) Write down the column vector $\overrightarrow{P Q}$.
(ii) Find $|\overrightarrow{P Q}|$.
(iii) R is the point such that $\overrightarrow{P Q}=2 \overrightarrow{Q R}$. Find the coordinates of R.
(b)

$A B C D$ is a parallelogram.
$\overrightarrow{A B}=\mathbf{a}$ and $\overrightarrow{B C}=\mathbf{b}$.
E is a point on $A B$ such that $A E=3 E B$.
G is the midpoint of $A D$.
$F A$ is parallel to $D E$ such that $F A: D E=4: 5$.
(i) Express each of the following, as simply as possible, in terms of \mathbf{a} and/or \mathbf{b}.
(a) $\overrightarrow{A E}$,
(b) $\overrightarrow{D E}$,
(c) $\overrightarrow{F A}$.
(ii) Write down the value of $\frac{\text { area of } \triangle A F D}{\text { area of } \triangle A D E}$.
(iii) Determine if points F, G, and B lie on a straight line.

Justify your answer using vectors.

7 (a) The number of goals scored by France in the 2018 World Cup is shown in the table below.

Number of goals	0	1	2	3	4
Frequency	1	2	2	0	2

(i) Is mode an appropriate measure of average for this set of data? Justify your answer.
(ii) Calculate
(a) the mean number of goals scored per game,
(b) the standard deviation.
(iii) France played 7 games at the 2006 World Cup.

The results are summarised below.

Mean	1.29 goals per game
Standard Deviation	0.88 goals per game

Make two comparisons between the number of goals scored per game by France in the two World Cups.
(b) A packet of mixed nuts contains three different kinds of nuts: macadamia, almond, peanut.
There are a total of 10 macadamia nuts, 12 almond nuts, and 21 peanuts.
Mary picks two nuts at random without replacement.
(i) Draw a tree diagram to show the probabilities of the possible outcomes.
(ii) Find, as a fraction in its simplest form, the probability that
(a) the first nut taken is a macadamia nut,
(b) both nuts are peanuts,
(c) one almond nut and one macadamia nut was picked,
(d) both nuts are different.

8 Answer the whole of this question on a sheet of graph paper.
The variables x and y are connected by the equation

$$
y=4 x+\frac{25}{x^{2}}
$$

Some corresponding values of x and y are given in the table below.

x	1	1.25	1.5	2.0	2.5	3.0	3.5	4.0
y	p	21.0	17.1	14.3	14.0	14.8	16.0	17.6

(a) Calculate the value of p, to 1 decimal place.
(b) Using a scale of 2 cm to represent 0.5 unit, draw a horizontal x-axis for $0 \leq x \leq 4$. Using a scale of 2 cm to represent 5 units, draw a vertical y-axis for $0 \leq y \leq 30$.

On your axes, plot the points given in the table and join them with a smooth curve.
(c) Use your graph to find the solution(s) of the equation $4 x+\frac{25}{x^{2}}=25$ for $0 \leq x \leq 4$
(d) By drawing a tangent, find the gradient of the curve at $x=1.5$.
(e) By drawing a suitable straight line graph, solve $3 x^{3}+10 x^{2}-25=0$.

9 Ivy runs an online business delivering goods by post. The local postage rates are shown below.

Weight-Step Up to	Standard Regular (C5, C6 \& DL size envelope)	Standard Large (Up to C4 size envelope)	Non-Standard
20 g	$\$ 0.30$	$\$ 0.60$	$\$ 0.60$
40 g	$\$ 0.37$		$\$ 0.90$
100 g		$\$ 0.90$	$\$ 1.15$
250 g		$\$ 1.15$	$\$ 1.70$
500 g			$\$ 2.55$
1 kg			$\$ 3.55$
2 kg			

[Extracted from https://www.singpost.com/sites/default/files/PostageRates-MailingGuidelines.pdf]
(a) (i) For a particular delivery, Ivy used a C4 size envelope for her paper-based goods which weighed 150 g . Write down the cost of posting this package.
(ii) However, when Ivy attempted to deliver the package, she was informed that her package is considered a non-standard mail as it contained merchandise.
Calculate the additional amount she has to pay to deliver the package.

Ivy would like to expand her business to delivering to overseas customers.
The airmail rates for packages are shown below.

Destination	Small Packages*	
	Weight-Step Up To (max weight: $\mathbf{2 k g}$)	Postage Rate
Zone 1 Malaysia and Brunei	100 g	\$2.50
	250 g	\$3.90
	500 g	\$5.20
	per additional 100 g	\$1.10
Zone 2 Countries in the Asia \& The Pacific (except Australia, Japan \& New Zealand)	100 g	\$3.20
	250 g	\$6.80
	500 g	\$12.00
	per additional 100 g	\$2.50
Zone 3 Countries in the rest of the world, including Australia, Japan, New Zealand, Africa, The Americas, Europe \& The Middle East	100 g	\$4.70
	250 g	\$9.85
	500 g	\$17.00
	per additional 100 g	\$3.50

*Small Packages are mail containing goods or merchandise that are up to 2 kg in weight. The largest dimensions should not exceed 60 cm , with length, width and height combined not exceeding 90 cm .
[Extracted from https://www.singpost.com/sites/default/files/PostageRates-MailingGuidelines.pdf]
(b) (i) Calculate the cost of sending a package weighing 562 g to Australia.
(ii) Write down a possible set of dimensions of a small package, giving your answer in cm .
(iii) Ivy observed that the packages usually weigh from 210 g to 270 g . For ease of charging, Ivy would like to implement a fixed delivery charge, regardless of destination.

Assume that an equal amount of packages is delivered to each zone, and considering the range of weights of packages, determine a reasonable fixed delivery charge that Ivy should implement. Justify your answer with appropriate working.

ZHONGHUA SECONDARY SCHOOL
 PRELIMINARY EXAMINATION 2018
 SECONDARY 4E/4N/5N

Candidate's Name	Class	Register Number
MARKING SCHEME		

MATHEMATICS

4048/01
PAPER 1
27 Aug 2018
2 hours

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use paper clips, glue or correction fluid.
Answer all questions.
The number of marks is given in brackets [] at the end of each question or part question.

If working is needed for any question, it must be shown with the answer.
Omission of essential working will result in loss of marks.
The total of the marks for this paper is 80 .
The use of an approved scientific calculator is expected, where appropriate. If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

[^0]
Mathematical Formulae

Compound Interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\begin{gathered}
\text { Curved surface area of a cone }=\pi r l \\
\text { Surface area of a sphere }=4 \pi r^{2} \\
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3} \\
\text { Area of triangle } A B C=\frac{1}{2} a b \text { sin } \\
\text { Arc length }=r \theta \text {, where } \theta \text { is in radians } \\
\text { Sector area }=\frac{1}{2} r^{2} \theta \text {, where } \theta \text { is in radians }
\end{gathered}
$$

Trigonometry

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\Sigma f x}{\Sigma f} \\
\text { Standard deviation } & =\sqrt{\frac{\Sigma f x^{2}}{\Sigma f}-\left(\frac{\Sigma f x}{\Sigma f}\right)^{2}}
\end{aligned}
$$

Answer all the questions.

1. (a) Calculate $\frac{3+\sqrt{-4^{2}+2 \times 11}}{5}$.

Write down the first 6 digits on your calculator display.

$$
\begin{equation*}
\text { Answer } \quad 1.08989[\mathrm{~B} 1] \tag{1}
\end{equation*}
$$

(b) Write your answer to part (a) correct to 3 decimal places.

$$
\text { Answer } \quad 1.090[\mathrm{~B} 1\rfloor \quad[1]
$$

2. These are the first five terms of a sequence.

2018	2011	2004	1997	1990

(a) Write down the tenth term in the sequence.

$$
\text { Answer } \quad 1955[\mathrm{~B} 1]
$$

[1]
(b) Write down an expression, in terms of n, for the nth term in the sequence.

$$
\begin{array}{cc}
\text { Answer } & 2025-7 n \text { or } \\
& 2018-7(n-1)[\text { B1] }
\end{array}
$$

[1]
(c) Explain why the number 3 does not appear in the sequence:

Show your working clearly.

$$
\begin{aligned}
2025-7 n & =3 \\
2022 & =7 n \\
n & =\frac{2022}{7}[\text { B1 }]
\end{aligned}
$$

Answer Since $n=\frac{2022}{7}$ is not a positive integer or whole number [A1], the number 3 does not appear in the sequence. [2]

3 (a) Factorise completely $48 x y-8 y$.

$$
\begin{equation*}
\text { Answer } \quad 8 y(6 x-1)[\mathrm{Bl}] \tag{1}
\end{equation*}
$$

(b) Factorise completely $x^{4}+3 x^{3}-4 x^{2}$.

$$
\begin{aligned}
x^{4}+3 x^{3}-4 x^{2} & =x^{2}\left(x^{2}+3 x-4\right)\left[\text { M1 - factorise } x^{2}\right] \\
& =x^{2}(x+4)(x-1)
\end{aligned}
$$

$$
\begin{equation*}
\text { Answer } \quad x^{2}(x+4)(x-1)\lfloor\mathrm{A} 1\rfloor \tag{2}
\end{equation*}
$$

4 Solve the equation $x(x-3)=5\left(x^{2}-9\right)$.

Method 1:

$$
\begin{aligned}
& x(x-3)=5(x-3)(x+3)[\mathrm{M} 1] \\
& (x-3)(x-5(x+3))=0[\mathrm{M} 1] \\
& (x-3)(-4 x-15)=0
\end{aligned}
$$

Method 2;
$x^{2}-3 x=5 x^{2}-45[M 1]$
$-4 x^{2}-3 x+45=0$
$(-4 x-15)(x-3)=0[M 1]$

Answer

$$
\begin{equation*}
x=3 \text { or } x=-\frac{15}{4}[\mathrm{A1}] \tag{3}
\end{equation*}
$$

5 Calculate the interior angle of a regular 10-sided polygon.
Show your working clearly.

$$
\begin{aligned}
\text { int. angle } & =\frac{10-2}{10} \times 180^{\circ}[\mathrm{M} 1] \\
& =144^{\circ}
\end{aligned}
$$

6 (a) Given that $6^{m} \div 6^{-3}=6^{2}$, find the value of m.

$$
\begin{equation*}
\text { Answer } m=-1[\mathrm{~B} 1] \tag{1}
\end{equation*}
$$

(b) Arrange the following numbers in increasing value.

Show your working clearly.
0.0037×10^{6}
3.7×10^{5}
370×10^{-3}
37
$=3.7 \times 10^{3}$
$=3.7 \times 10^{-1}$
$=3.7 \times 10^{1}$
[M1 - conversion to multiplication of 3.7]
[A1 - correct order]

$$
\begin{array}{cccc}
\text { Answer } \begin{array}{c}
370 \times 10^{3},
\end{array} \quad 37, & 0.0037 * 10^{6} & 3.7 \times 10^{5} \tag{2}\\
\text { smallest } & & & \text { largest }
\end{array}
$$

(c) Simplify $\sqrt[3]{8 x^{6}} \times \frac{1}{3 y^{-5}}$. Leave your answer in postive index: form.

$$
\begin{aligned}
\sqrt[3]{8 x^{6}} \times \frac{1}{3} y^{5} & =2 x^{2} \times \frac{1}{3} y^{5}\left[\mathrm{~B} 1-2 x^{2} \text { seen }\right] \\
& =\frac{2}{3} x^{2} y^{5}
\end{aligned}
$$

Answer

$$
\begin{equation*}
\frac{2}{3} x^{2} y^{5} \quad[\mathrm{~A} 1] \tag{2}
\end{equation*}
$$

7 Ken invested $\$ 12000$ into a fund which pays compound interest of 4% per annum compounded half-yearly.
Calculate the total interest earned in 5 years.

$$
\begin{aligned}
\text { Total interest } & =12000\left(1+\frac{4 \%}{2}\right)^{10}-12000 & & {\left[\mathrm{~B} 1-\frac{4 \%}{2} \text { or } 2 \% \text { seen }\right] } \\
& =2627.93 & & {[\mathrm{~B} 1-\text { to the power of } 10] }
\end{aligned}
$$

Answer
$\$ 2627.93$ [A1]
[3]

8 (a) Express $x^{2}-8 x+11$ in the form $(x-a)^{2}+b$.
[B 1 - for value of a] [$\mathrm{B} 1-$ for value of $b]$

$$
\text { Answer } \quad(x-4)^{2}-5
$$

(b) Hence solve the equation $x^{2}-8 x+11=0$, giving your answers correct to two decimal places.
$x^{2}-8 x+11=0$
$(x-4)^{2}-5=0$
$x-4= \pm \sqrt{5}[$ M1]
[A1 - for both values of x]

$$
\text { Answer } \mathrm{x}=6.24 \quad \text { or } x=1.76
$$

(c) Sketch the graph of $y=x^{2}-8 x+11$.

Indicate the y-intercept and the turning point of the graph clearly.
Answer

[2]
(d) Write down the equation of line of symmetry of the graph of $y=x^{2}-8 x+11$.

$$
\begin{equation*}
\text { Answer } \quad x=4[\mathrm{~B} 1] \tag{1}
\end{equation*}
$$

9 These box plots show the age distributions of the 200 employees in each of company A and company B.

(a) Find the range of the employee's age of company A.

$$
\text { Answer } \quad 46 \text { years [B!] }
$$

(b) For each the following statements, write whether you agree or disagree.

Give a statistical reason which you use to support your decision
(i) On average, company A has older employees than company B.

Answer Agree because the median age of emplovees in company A is
higher than the median age of employees in.company B.
(ii) There are more employees who are below 30 years old in company A than in company B.
Answer Disagree because employees in both companies have equal lower quartule, therefore there are equal number of employees who are below 30 years old in both companies.
(c) An employee is randomly selected from company B.

Find the probability that the employee ages between 30 and 55 years old.

$$
\text { Answer } \quad 0.5[\mathrm{Bl}]
$$

10 The size of television (TV) screens are measured diagonally in inches.
(1 inch $=2.54 \mathrm{~cm}$)
(a) A TV screen has dimension 40 cm by 60 cm .

Find the size of the TV.
Give your answer correct to the nearest inch.

$$
\begin{aligned}
\text { size } & =\sqrt{\left(\frac{40}{2.54}\right)^{2}+\left(\frac{60}{2.54}\right)^{2}}[\mathrm{M} 1] \\
& =28.390
\end{aligned}
$$

Answer $\quad 28[\mathrm{Al}]$ inches
(b) An electronic store offers 20% discount storewide.

Ali wishes to buy a new 45 -inch TV which costs $\$ 2298$.
All TV sets have an additional $y \%$ off after a storewide discount.
He received a receipt with poor print quality and some numbers missing.

45-inch TV		$\$$	2298
After 20% off		$\$$	x
After $y \%$ off		$\$$	1562.64
Amount Paid			-

Find the value of x and y.

$$
\begin{aligned}
\text { Answer } & x=1838.40 \quad[\mathrm{~B} 1] \\
y & =15 \quad[\mathrm{~B} 1]
\end{aligned}
$$

11 (a) $\xi=\{$ integers $x: 2 \leq x \leq 10\}$
$F=\{$ factors of 18$\}$
$G=\{$ prime numbers $\}$
(i) List the elements in F^{\prime}.

Answer $\quad\{4,5,7,8,10\} \quad[\mathrm{B} 1] \quad[1]$
(ii) State the number of elements in $F \cup G$.

Answer
6 [B1]
[1]
(iii) Explain why $\quad 2 \in(F \cap G)$.

Answer Because 2 is a factor of 18 AND also aprime number. [B1]
(b) On the Venn diagram shown below, shade the set $P \cap Q^{\prime}$.

Answer On the diagram
(c) On the diagram below, draw the set R such that $R \cap S=\emptyset$.

12 (i) $P Q R$ forms a right-angled triangle such that angle $P Q R=90^{\circ}$. $S T$ is perpendicular to $P R$.

Name a triangle which is similar to triangle $P Q R$.
Answer Triangle PTS [B1]
(ii) Given further that $P Q=8 \mathrm{~cm}, Q R=6 \mathrm{~cm}$ and $\mathrm{PR}=10 \mathrm{~cm}$, find the length of $S T$ where T is the midpoint of $P R$.

$$
\begin{aligned}
\frac{P Q}{P T} & =\frac{Q R}{T S}[\mathrm{M} 1] \\
\frac{8}{5} & =\frac{6}{T S} \\
T S & =3.75
\end{aligned}
$$

$$
\text { Answer } \quad S T=3.75 \quad\lfloor\mathrm{~A} 1\rfloor \mathrm{cm}
$$

13 The radius of a cylinder is increased by 25% and its height is decreased by 50%.
Calculate the percentage decrease in the volume of the cylinder.
Give your answer correct to 1 decimal place.
Let the radius and the height of the cylinder be r and h respectively.

$$
\begin{aligned}
\% \text { change in volume } & =\frac{\pi(1.25 r)^{2}(0.5 h)-\pi r^{2} h}{\pi r^{2} h} \times 100 \%[\text { B1 }-1.25 r \text { or } 0.5 h \text { seen }] \\
& =-21.875 \%
\end{aligned}
$$

$$
\text { Answer } \quad 21.9 \quad[\mathrm{~A} 1] \quad \%
$$

14 The following diagram shows a sketch of the line $t_{1}: y=\frac{3}{4} x-3$.
The line cuts the axes at A and B.

(a) Find the coordinates of A and B.

$$
\begin{array}{lll}
\text { Answer } & \mathrm{A}(0,-3) & {[\mathrm{B} 1]} \\
& \mathrm{B}(4,0) & {[\mathrm{B} 1]}
\end{array}
$$

(b) The line l_{2} is a reflection of the line l_{1} along the y axis Write down the equation of the line l_{2}.

Answer

$$
\begin{equation*}
\left.\left.y=-\frac{3}{4} x-3 \quad \right\rvert\, \mathrm{B} 1\right] \tag{1}
\end{equation*}
$$

(c) C is a point on y-axis, as shown on the diagram.

Calculate the exact value of $\cos \angle B A C$.

$$
\text { Answer } \quad-\frac{3}{5} \quad[\mathrm{~B} 1]
$$

(d) Another line $l_{3}: y=\frac{3}{4} x+2$ can be drawn on the same axes.

Explain why the lines l_{1} and l_{3} do not meet.
Answer The line l_{1} and l_{3} have equal gradient. Therefore, they are parallel. [B1] As both lines are parallel and have different \boldsymbol{v}-intercepts both lines do not meet. [B1]
\qquad

15 Two geometrically similar containers have the following specifications.

	Container \boldsymbol{A}	Container \boldsymbol{B}
Height (m)	p	50
Cost of painting the base (\$)	120	480
Time taken to completely fill the container with water (to the nearest minute)	123 minutes	q hours r minutes

Find the values of p, q and r.

$$
\begin{aligned}
\left(\frac{p}{50}\right)^{2} & =\frac{120}{480}[\mathrm{M} 1] \\
p & =25
\end{aligned}
$$

Let the time taken to completely fill container B be T Minutes.

$$
\begin{aligned}
\left(\frac{25}{50}\right)^{3} & =\frac{123}{T}[\mathrm{M} 1] \\
T & =984 \\
T & =16 \text { hours } 24 \text { minutes }
\end{aligned}
$$

$$
\begin{aligned}
\text { Answer, } p & =25 \quad[\mathrm{Al}] \\
q & =16 \quad[\mathrm{Al}] \\
r & =24 \quad[\mathrm{Al}]
\end{aligned}
$$

16 Given that y varies as x^{n}, write down the value of n in each of the following cases:
(a) y is the volume of a sphere of radius x,

$$
\text { Answer } n=3\lfloor\mathrm{~B} 1\rfloor
$$

(b) y and x are the sides of a rectangle of given area.

$$
\begin{equation*}
\text { Answer } n=-1[\mathrm{~B} 1] \tag{1}
\end{equation*}
$$

17 A train travels at a constant speed of $40 \mathrm{~m} / \mathrm{s}$ for 50 seconds.
It then slows down at a constant rate until it comes at rest in 20 seconds.
(a) On the axes, draw the speed-time graph for the journey.

Answer On the diagram
(b) Calculate the distance travelled by the train during the first 60 seconds. distance travelled $=$ area under graph

$$
\begin{aligned}
& =(60 \times 40)-\frac{1}{2} \times 10 \times 20[\mathrm{M} 1] \\
& =2300 \mathrm{~m}
\end{aligned}
$$

$$
\text { Answer } \quad 2300[\mathrm{Al}] \mathrm{m}
$$

18 In the figure, $A B$ is parallel to $G C$ and $F E$.
Angle $C E F=149^{\circ}$ and angle $C B D=62^{\circ}$.
D is a point on $C E$ such that angle $A B D=90^{\circ}$.

Find, stating the reasons clearly,
(a) angle $B C D$,

$$
\begin{aligned}
\angle G C E+\angle C E F & =180^{\circ} \quad\left(\text { sum of int. } \angle \mathrm{s}=180^{\circ}, G C \| F E\right)[\mathrm{B} 1-\text { reason }] \\
\angle G C E+149^{\circ} & =180^{\circ} \\
\angle G C E & =31^{\circ}
\end{aligned}
$$

Let T be the intersection of GC and BD .

$$
\begin{aligned}
\angle B T C=\angle A B T & =90^{\circ}(\text { alt. } \angle 5, G C \| A B) \\
\angle B C G+\angle T B C & =90 \text { (complementary angles) }[\mathrm{M} 1] \\
\angle B C G+62^{\circ} & =90^{\circ} \\
\angle B C G & =28^{\circ}
\end{aligned}
$$

Therefore, $\angle B C D=59^{\circ}$
Answer 59 [A1] ${ }^{\circ}$
[3]
(b) angle $B D E$.

$$
\begin{aligned}
\angle B D E & =\angle C B D+\angle B C D \text { (sum of } 2 \text { int. } \angle \mathrm{s}=\text { exterior } \angle \text { of a triangle) [B1] } \\
& =62^{\circ}+59^{\circ} \\
& =121^{\circ}
\end{aligned}
$$

$$
\text { Answer } \quad 121[\mathrm{~A} 1] \circ
$$

19 Sketch the graph of each of the following equations.
The point $(1,1)$ is plotted on each diagram.
(a) $y=2^{x}$

answer On the Diagram
(b) $y-\frac{1}{x^{2}}$

Answer On the diagram

20 The line $A B$ is drawn below.

(a) Construct triangle $A B C$ where angle $A B C=60^{\circ}$ and $B C=8 \mathrm{~cm}$.
(b) Construct the perpendicular bisector of $B C$.
(c) From C, construct a line that is equidistant from the lines $C A$ and $C B$.
(d) Find the reflex angle $A C B$.
\qquad

21 A circle passes through A, B, C, D and E.
It is given that angle $A D B=34^{\circ}$, angle $D A E=28^{\circ}$ and angle $B C E=62^{\circ}$.

By stating the reasons clearly,
(a) show that $B D$ is a diameter of the circle,

Answer

$$
\begin{aligned}
\angle B C E+\angle B A E & =180^{\circ}(\angle \mathrm{s} \text { in opp. segments are supplementary })[\mathrm{B} 1] \\
62^{\circ}+\angle B A D+28^{\circ} & =180^{\circ} \\
\angle B A D & =90^{\circ}[\mathrm{A} 1]
\end{aligned}
$$

Since $B D$ is a chord and $\angle B A D=90^{\circ}, B D$ is a diameter of a circle. [AG] (angle in a semicircle) [B1]
(b) show that $B E$ bisects angle $A B D$.

Answer
$\angle D B E=\angle D A E(\angle \mathrm{~s}$ in the same segment are equal)[B1-reason] $=28^{\circ}$
$\angle B E A=\angle B D A(\angle s$ in the same segment are equal)

$$
=34^{\circ}
$$

$\angle A B E=180^{\circ}-\angle B A E-\angle B E A\left(\angle\right.$ sum of a triangle $\left.=180^{\circ}\right)$
$=180^{\circ}-\left(90^{\circ}+28^{\circ}\right)-34^{\circ}$

$$
=28^{\circ}[\mathrm{A} 1]
$$

Since $\angle A B E=\angle D B E=28^{\circ}, B E$ bisects angle $A B D$. [AG]

ZHONGHUA SECONDARY SCHOOL 4E/4N/5N
 PRELIMINARY EXAMINATIONS (2018)

Marking Scheme

Qn [14m]		Answer	Mark Allocated
1	(a)	$\begin{aligned} & \frac{5 x^{3}}{7 y^{3}} \div \frac{25 x}{49 y^{4}} \\ & =\frac{5 x^{3}}{7 y^{3}} \times \frac{49 y^{4}}{25 x} \\ & =\frac{7}{5} x^{2} y \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
	(b)	$\begin{aligned} & \frac{9 x^{2}-1}{6 x^{2}+x-1} \\ & =\frac{(3 x-1)(3 x+1)}{(3 x-1)(2 x+1)} \\ & =\frac{(3 x+1)}{(2 x+1)} \end{aligned}$	B1 - factorisation of $9 x^{2}-1$ B1 - factorisation of $6 x^{2}+x-1$ Al
	(c)	$\begin{aligned} & 2 x-1<3 x \leq \frac{2+3 x}{3} \\ & 2 x-1<3 x \text { and } 3 x \\ & 2 x-1<3 x \text { and } 9 x \\ & 2 x \text { and } \\ & x>-1 \text { and } \\ & x \therefore-1<x \leq \frac{1}{3} \end{aligned}$	B1, B1 - each correct inequality B1
	(d)(i)	$\begin{aligned} & \frac{5}{x-7}-\frac{1}{x+1} \\ & =\frac{5(x+1)-(x-7)}{(x-7)(x+1)} \\ & =\frac{5 x+5-x+7}{(x-7)(x+1)} \\ & =\frac{4 x+12}{(x-7)(x+1)} \end{aligned}$	M1 - taking common denominator A1
	(d)(ii)	$\begin{gathered} \frac{5}{x-7}-\frac{1}{x+1}=\frac{4}{5} \\ \frac{4 x+12}{(x-7)(x+1)}=\frac{4}{5} \\ \frac{x+3}{(x-7)(x+1)}=\frac{1}{5} \\ 5 x+15=x^{2}-6 x-7 \end{gathered}$	M1-ft from their (d)(i)

| $x=\frac{-(-11) \pm \sqrt{(-11)^{2}-4(1)(-22)}}{2(1)}$ | |
| :---: | :---: | :--- |
| $x=12.7$ or $-1.73(3$ sig fig $)$ | M1 - reduce to quadratic
 M1 - substitution of
 values seen
 A1 - both roots |

Qn [11m]		Answer	Mark Allocated
2	(a)(i)	$\begin{aligned} & 3 m+2 r=17.85 \\ & 5 m+4 r=32.75 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { B1 } \end{array}$
	(a)(ii)	$\begin{aligned} & 3 m+2 r=17.85-- \text { (1) } \\ & 5 m+4 r=32.75-- \text { (2) } \end{aligned}$ $\begin{array}{ll} \text { (1) } \times 2: & 6 m+4 r=35.7 \cdots--(3) \\ \text { (3) }- \text { (2) }: & m=2.95 \\ & r=4.5 \\ \hline \end{array}$	$\begin{array}{\|l\|} \mathrm{B} 1 \\ \mathrm{BI} \end{array}$
	(a)(iii)	\$19.40	$\mathrm{B} 1-\mathrm{B} 0$ if not written to 2 d.p.
	(b)	$\begin{aligned} & 4 x^{2}+4 x y-x-y \\ & =4 x(x+y)-(x+y) \\ & =(4 x-1)(x+y) \end{aligned}$	$\begin{array}{\|l} \mathrm{M} 1 \\ \mathrm{Al} \\ \hline \end{array}$
	(c)(i)	$2 \times 5^{2} \times 7 \times 11$	B1
	(c)(ii)	154	B1
	(c)(iii)	55 and 70	B1, B1

Qn [12m]		Answer	Mark Allocated
3	(a)	$\angle Q P S=180^{\circ}-105^{\circ}=75^{\circ} \text { (adj. } \angle \mathrm{s} \text { on a st. line) }$ By cosine rule, $\begin{aligned} & Q S^{2}=42^{2}+48^{2}-2(42)(48) \cos 75^{\circ} \\ & Q S^{2}=3024.44161 \\ & Q S=54.9949=55.0 \mathrm{~m}(3 \mathrm{sig} . \text { fig. }) \end{aligned}$	M1 - seen or implied M1 - applying Cosine rule A1
	(b)	By sine rule, $\begin{aligned} & \frac{\sin \angle P Q S}{48}=\frac{\sin 75^{\circ}}{54.9949} \\ & \sin \angle P Q S=0.84306 \\ & \angle P Q S=57.4655 \end{aligned}$ Bearing of S from Q $=057.5^{\circ}(1 \mathrm{dec} . \mathrm{pl} .)$	M1 - applying Sine rule A1 - finding $\angle P Q S$ A1 - answer statement must be seen
	(c)	Area of $\triangle P Q S=\frac{1}{2} \times 42 \times 48 \times \sin 75^{\circ}=973.653 \mathrm{~m}^{2}$ Area of $\triangle Q R S$ $\begin{aligned} & =\frac{1}{2} \times 54.9949 \times 35 \times \sin (90-57.4655)^{\circ} \\ & =517.591 \mathrm{~m}^{2} \end{aligned}$ Area of field $P Q R S=1491.24=1490 \mathrm{~m}^{2}$ (3 sig. fig.)	$\begin{array}{\|l} \hline \text { M1 } \\ \text { M1 - for } \\ \quad(90-\text { the ir } \angle P Q S) \\ \text { A1 } \\ \hline \end{array}$

(d)	Let h be the shortest distance from R to $Q S$.	
	$\frac{1}{2} \times Q S \times h=517.59$ or $\sin \angle S Q R=\frac{h}{35}$ $h=18.823=18.8 \mathrm{~m}(3$ sig. fig.) Let angle of elevation be θ. M1 (or trigo ratio) $\tan \theta=\frac{20}{18.823}$ $\theta=46.736=46.7^{\circ}(1$ dec. p1. $)$ M1 - calculating angle of elevation Largest angle of elevation $=46.7^{\circ}(1$ dec. pl. $)$	A1 - answer statement

Qn [7m]		Answer	Mark Allocated
4	(a)(i)	$\left(\begin{array}{ll} 1 & 1 \\ 2 & 2 \\ 2 & 2 \end{array}\right)$	B1
	(a)(ii)	$\binom{145}{150}$	B1
	(a)(iii)	$\begin{aligned} \mathrm{T} & =\left(\begin{array}{ll} 1 & 1 \\ 2 & 2 \\ 2 & 2 \end{array}\right)\binom{145}{150} \\ & =\left(\begin{array}{l} 295 \\ 590 \\ 590 \end{array}\right) \end{aligned}$	B1
	(a)(iv)	The elements of T represent the total weight of fruits and vegetables consumed by school-going children and adolescents, based on their age-range.	B1
	(b)(i)	No. of kilometers Jatet walks $\begin{aligned} & =8.2 \times 0.5 \mathrm{~km} \\ & =4.1 \mathrm{~km} \end{aligned}$	B1
	(b)(ii)	Janet's walking speed in $\mathrm{km} / \mathrm{h}=1.2 \times \frac{3600}{1000}=4.32 \mathrm{~km} / \mathrm{h}$ Since Janet walks at a speed of 4.32 km in 1 hour, and $4.32 \mathrm{~km}>4.1 \mathrm{~km}$, she will be able to complete her toute in 1 hour. OR Speed $=1.2 \mathrm{~m} / \mathrm{s}$ Distance $=4.1 \mathrm{~km}=4100 \mathrm{~m}$ Time taken $=\frac{4100}{1.2}$ seconds $\begin{aligned} & =\frac{4_{100}^{1.2}}{1.2} \div 60 \text { minutes } \\ & =56.94 \mathrm{~min} \end{aligned}$ Since Janet took 56.94 min which is $<60 \mathrm{~min}$ (1 hr), she will be able to complete her route in 1 hour.	M1 - conversion to km / h A1 - concluding statement seen M1 - conversion to min A1 - concluding statement seen

Qn [11m]		Answer	Mark Allocated
5	(a)(i)(a)	Reflex $\angle P O R=103^{\circ} \times 2=206^{\circ}$ (angle at centre $=$ twice of angle at circumference) $\angle P O R=360^{\circ}-206^{\circ}=154^{\circ}$ (angles at a point)	M1 A1
	(a)(i)(b)	$\begin{aligned} & \angle O R T=90^{\circ} \text { (tangent perpendicular to radius) } \\ & \angle R O S=206^{\circ}-120^{\circ}=86^{\circ} \\ & \angle O S T=360^{\circ}-86^{\circ}-90^{\circ}-34^{\circ}=150^{\circ} \end{aligned}$ OR $\angle O S P=\left(180^{\circ}-120^{\circ}\right) \div 2=30^{\circ}(\angle$ sum of triangle, base angles of isosceles triangle) $\angle O S T=180^{\circ}-30^{\circ}=150^{\circ}$	M1 - reason stated A1 M1 - reason stated Al
	(a)(ii)	$\begin{aligned} & \angle O P S=\left(180^{\circ}-120^{\circ}\right) \div 2=30^{\circ} \\ & \angle O R S=\left(180^{\circ}-86^{\circ}\right) \div 2=47^{\circ} \\ & \angle Q P S+\angle Q R S=180^{\circ}(\text { angles in opposite segment }) \\ & \angle O P Q+\angle O P S+\angle O R Q+\angle O R S=180^{\circ} \\ & \angle O P Q+30^{\circ}+\angle O R Q+47^{\circ}=180^{\circ} \\ & \angle O P Q+\angle O R Q=103^{\circ} \text { (shown) } \\ & O R \\ & \left.\left.\angle P O R=154^{\circ} \text { (from (a) (i) }\right)(\text { a })\right) \\ & \angle O P Q+\angle O R Q+154^{\circ}+103^{\circ}=360^{\circ} \text { (angle sum of } \\ & \text { quadrilateral) } \\ & \angle O P Q+\angle O R Q=103^{\circ} \text { (shown) } \end{aligned}$	Bl - for both angles B1 - reason stated, leading to conclusion B1 - reason stated B1
	(a)(iii)	Since $\angle R O S+\angle T R O=86^{\circ}+90^{\circ} \neq 180^{\circ}, O R$ is not parallel to $R T$. Therefore, OSTR is not a trapezium as it does not have a pair of parallel sides.	B1
	(b)(i)	By cosine rule, $\begin{aligned} & \cos \angle A O B=\frac{2^{2}+2^{2}-1.4^{2}}{2(2)(2)}=\frac{151}{200} \\ & \angle A O B=0.71514=0.715 \text { radians (} 3 \text { sig. fig.) } \end{aligned}$	M1 - correct application of cosine rule Al
	(b)(ii)	$\begin{aligned} \text { Reflex } \angle P O Q=2 \pi-0.71514 & =5.5680 \\ \text { Perimeter of major segment } & =2(5.5680)+1.4 \\ & =12.5 \mathrm{~m}(3 \text { sig. fig. }) \end{aligned}$	M1 - seen or implied, their (bi) $\mathrm{A} 1$

Qn [12m]		Answer	Mark Allocated
6	(a)(i)	$\overrightarrow{P Q}=\binom{-10}{-12}$	B1
	(a)(ii)	$\begin{aligned} \|\overrightarrow{P Q}\| & =\sqrt{(-12)^{2}+(-10)^{2}} \\ & =15.6 \text { units }(3 \text { sig. fig. }) \end{aligned}$	M1 - ft from their (i) Al - correct answer only
	(a)(iii)	$\begin{aligned} & \overrightarrow{Q R}=\frac{1}{2} \overrightarrow{P Q}=\binom{-5}{-6} \\ & \overrightarrow{O R}=\overrightarrow{O Q}+\overrightarrow{Q R} \\ & \overrightarrow{O R}=\binom{-5}{0}+\binom{-5}{-6}=\binom{-10}{-6} \end{aligned}$ Coordinates of $R=(-10,-6)$	M1 - ft from their (i) Al-coordinates must be stated
	(b)(i)(a)	$\overrightarrow{A E}=\frac{3}{4} \mathbf{a}$	B1
	(b)(i)(b)	$\overrightarrow{D E}=\overrightarrow{D A}+\overrightarrow{A E}=-\mathbf{b}+\frac{3}{4} \mathbf{a}$	B1
	(b)(i)(c)	$\overrightarrow{F A}=\frac{4}{5}\left(-\mathbf{b}+\frac{3}{4} \mathbf{a}\right)=-\frac{4}{5} \mathbf{b}+\frac{3}{5} \mathbf{a}$	B1
	(b)(ii)	$\frac{\text { area of } \triangle A F D}{\text { area of } \triangle A D E}=\frac{4}{5}$	B. 1
	(b)(iii)	$\begin{aligned} & \overrightarrow{F B}=\overrightarrow{F A}+\overrightarrow{A B}=-\frac{4}{5} \mathbf{b}+\frac{3}{5} \mathbf{a}+\mathbf{a} \\ & =\frac{8}{5} \mathbf{a}-\frac{4}{5} \mathbf{b} \\ & =\frac{8}{5}\left(\mathbf{a}-\frac{1}{2} \mathbf{b}\right) \\ & \overrightarrow{G B}=\overrightarrow{G A}+\overrightarrow{A B}=-\frac{1}{2} \mathbf{b}+\mathbf{a} \\ & \overrightarrow{F G}=-\frac{3}{10} \mathbf{b}+\frac{3}{5} \mathbf{a} \end{aligned}$ Since $\mathrm{FB}=-8 / 5 \mathrm{~GB}, \mathrm{FB}$ is parallel to GB, B is a common point, therefore F, G and B lie on a straight line.	M2 - find any two vectors A1 - concluding statement

Qn [13m]	Answer	Mark Allocated
7	(a)(i)	No, because the highest frequency occurs 3 times.

(b)(i)		B2 - Correct tree diagram with all probabilities correct B1 - for branches for first selection correct $\begin{aligned} & 1^{\text {st }} \text { selection: } \\ & \frac{10}{43}, \frac{12}{43}, \frac{21}{43} \\ & 2^{\text {nd }} \text { selection: } \\ & \frac{9}{42}, \frac{12}{42}, \frac{21}{42}, \frac{10}{42}, \frac{11}{42}, \frac{21}{42}, \\ & \frac{10}{42}, \frac{12}{42}, \frac{20}{42} \end{aligned}$
(b)(ii)(a)	$\frac{10}{43}$	B1
(b)(ii)(b)	$\frac{21}{43} \times \frac{20}{42}=\frac{10}{43}$	B1
(b)(ii)(c)	$\begin{aligned} & \frac{12}{43} \times \frac{10}{42} \times 2 \\ & =\frac{40}{301} \end{aligned}$	M1 - ft from tree diagram A1
(b)(ii)(d)	$\begin{aligned} & 1-\left(\frac{10}{43} \times \frac{19}{42}\right)-\left(\frac{12}{43} \times \frac{11}{42}\right)-\left(\frac{21}{43} \times \frac{20}{42}\right) \\ & =\frac{194}{301} \end{aligned}$	M1 A1

Qn [9m]		Answer	Mark Allocated
9	(a)(1)	\$0.90	B1
	(a)(1i)	Cost of mailing non-standard mail $=\$ 1.15$ Additional amount $=\$ 1.15-\$ 0.90=\$ 0.25$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$
	(b)(i)	\$17.00 + \$3.50 = \$20.50	B1
	(b)(ii)	Any set of 3 reasonable measurements, each not exceeding 60 cm , total not exceeding 90 cm e.g. 20 cm by 30 cm by 40 cm [B1] e.g. 1 cm by 1 cm by 1 cm [B0]	B1
	(b)(iii)	Mean cost of packages from 210 g up to 250 g	M1 - select costs across
		$=(\$ 3.90+\$ 6.80+\$ 9.85) \div 3$ $=\$ 6.85$	all 3 zones
		OR Median cost of packages from 210 g up to 250 g $=\$ 6.80$	M1 - select costs across weight categories
		Mean cost of packages heavier than 250 g up to 270 g $=(\$ 5.20+\$ 12.00+\$ 17.00) \div 3$	M1 - using mean or median
		= \$11.40 OR Median cost of packages heavier than 250 g up to 270 g $=\$ 12.00$	-
		Mean cost across weight categories $\begin{aligned} & =(\$ 6.85+\$ 11.40) \div 2 \\ & =\$ 9.125 \end{aligned}$ OR Median cost across weight categories $\begin{aligned} & =(\$ 6.80+\$ 12.00) \div 2 \\ & =\$ 9.40 \end{aligned}$	
		Ivy could charge $\$ 9.20$ as it is an average of the cost of airmailing an average package across two weight categories.	A1 - conclusion, justified by calculations, answer correct to 2 d.p.

[^0]: This question paper consists of 17 printed pages (including this cover page)

