

SECONDARY 4 PRELIMINARY EXAMINATION

MATHEMATICS Paper 1

4048/01

2 hours

28 AUGUST 2018 (Tuesday)

CANDIDATE NAME	

CLASS

 1	

INDEX
NUMBER

READ THESE INSTRUCTIONS FIRST

Do not turn over the page until you are told to do so.

Write your name, class and index number in the spaces above.

Write in dark blue or black pen in the space provided for each question.

You may use a pencil for any diagrams or graphs.

Do not use paper clips, highlighters, glue or correction fluid.

INFORMATION FOR CANDIDATES

Answer all the questions.

Write your answers in the space provided.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of a scientific calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your answer scripts securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 80.

This document consists of 24 printed pages including the Cover Sheet.

For E	For Examiner's Use			
Q1	1			
Q2	1 .			
Q3	2			
Q4	2			
Q5	2			
Q6	2			
Q7	2			
Q8	4			
Q9	2			
Q10	3			
Q11	3			
Q12	3			
Q13	3			
Q14	3			
Q15	3			
Q16	2			
Q17	4			
Q18	5			
Q19	6			
Q20	5			
Q21	3			
Q22	7			
Q23	9			
Q24	3			
Total	/ 8	0		

Mathematical Formulae

Compound Interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^{r}$$

Mensuration

Curved surface area of a cone = πrl Surface area of a sphere = $4\pi r^2$ Volume of a cone = $\frac{1}{3}\pi r^2 h$ Volume of a sphere = $\frac{4}{3}\pi r^3$ Area of triangle ABC = $\frac{1}{2}ab \sin C$ Arc length = $r\theta$, where θ is in radians Sector area = $\frac{1}{2}r^2\theta$, where θ is in radians

Trigonometry

 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $a^2 = b^2 + c^2 - 2bc \cos A$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation = $\sqrt{\frac{\sum fx^{2}}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^{2}}$

569 3

Answer all the questions.

1 Factorise $5(3x-y)^2 - (3x-y)$ completely.

2 The enrolment for a school in 2017 was 3450. This was 15% more than the enrolment in 2016. Calculate the enrolment in 2016.

3 Ms Chew invested \$P in a bank that pays compound interest at the rate of 4 % per annum compounded half yearly. If she received \$6341.21 from the bank after 6 years, find the value of P, giving your answer to the nearest whole number.

[Turn over

4 (a) Express 315 as a product of its prime factors.

(b) Find the smallest whole number by which 315 must be multiplied to obtain a perfect square.

5 Given that $4^{\left(\frac{1}{2n}\right)} \div 64^{-2} = 2^5$, find the value of *n*.

¥

Answer $n = \dots$ [2]

6 Given that OABC is a parallelogram such that $\overrightarrow{AB} = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$ and A(5, 1). Find \overrightarrow{OB} .

7 A map is drawn to a scale of 1 : 50000.

(a) Two towns are 24 km apart. Calculate, in centimetres, their distance apart on the map.

(b) On the map, a farm has an area of 20 cm². Calculate, in square kilometres, the actual area of the farm.

 8 The diagram below shows 2 congruent equilateral triangles PQS and SQR with sides 7 cm. Point P has coordinates (2.48, 4.48).
 The base SQ of the equilateral triangle PSQ is parallel to the x-axis. Find the coordinates of R and S, giving your answers correct to two decimal places.

Answer R = (.....)

S = (.....) [4]

9 Jenny drew a bar chart to compare the enrolment (number of students) in school 1, 2 and 3.

State one aspect of the bar chart that may be misleading and explain how this may lead to a misinterpretation of the graph.

Answer

.....[2]

10 Given that $3xy + x = \sqrt{3yz + x^2}$, express x in terms of y and z.

Answer $x = \dots$ [3]

11 (a) Solve the inequalities $4 \le 7 - \frac{x+3}{2} < \frac{13}{2}$.

Answer (a)......[2]

(b) Write down all the integers that satisfy $4 \le 7 - \frac{x+3}{2} < \frac{13}{2}$.

Answer (b).....[1]

12 In the figure below, line L_1 cuts the x-axis at P(8, 0) and the y-axis at Q(0, 4). On the same axes line L_2 meets line L_1 at A(2, a). Line L_2 is parallel to the x-axis.

(a) Write down the equation of line L_1 .

(b) Calculate the value of a.

Answer $a = \dots$ [1]

(c) Write down the value of
$$\frac{QA}{AP}$$
.

BP~578

13 The diagram shows a circle ABCD with BC = BD. CDE is a straight line. Given that angle $ABD = 28^{\circ}$ and angle $ACB = 25^{\circ}$,

(b) Hence, find angle BAD, giving reasons for your answer.

Answer.....° [2]

14 The box-and-whisker plots show the distribution of heights of girls in 2 schools.

					School X School Y
140 145	150 Height	155 (cm)	160	165	

(a) Find the median height for School X.

Answercm [1]

(b) Find the interquartile range for School Y.

Answercm [1]

Janet said the girls in School X are generally taller than the girls in School Y. (c) Do you agree? Give a reason for your answer.

Answer

[1]

- 15 The Venn diagram shows the number of elements of sets A, B and C. Given that n(A) = 27 and $n(A \cup B)' = 4$
 - (a) find the value of x and y,

- Answer $x = \dots$ [1]

(b) shade the region $A \cap B'$.

[1]

16 AB, BC and CD are adjacent sides of a regular polygon. Given that $\angle CAB = 10^\circ$,

calculate

(a) the exterior angle of the polygon,

Answer^o [1]

(b) the number of sides of the polygon.

[Turn over

BP~582

The above diagrams show the maximum number of intersections obtained from 1, 2, 3 and 4 lines respectively.

Number of	Maximum	Maximum	Maximum number
lines, n	number of line	number of	of regions, R
	segments, E	intersections, P	
1	1	0	2 = 1+1
2	$2^2 = 4$	$1 = \frac{2(1)}{2}$	4 = 1+3
3	$3^2 = 9$	$3 = \frac{3(2)}{2}$	7 = 1+6
4		$6 = \frac{4(3)}{2}$	11 = 1+10
5		$10 = \frac{5(4)}{2}$	
6	$6^2 = 36$	$15 = \frac{6(5)}{2}$	22 = 1+21

- (a) Complete the above table.
- (b) What is the maximum number of intersections P obtained from n straight lines in terms of n?

Answer $P = \dots$ [1]

(c) What is the maximum number of regions R obtained by using n straight lines in terms of n?

Answer $R = \dots$ [1]

(d) Hence, write down an expression connecting R, E and P.

17

[1]

18 Two solid cones are geometrically similar. The diameters of the base of the smaller cone and the base of the larger cone are 9 cm and 15 cm respectively. The heights of the smaller cone and the larger cone are h cm and 15 cm respectively.

(a) Find the value of h.

(b) If it costs \$9 to paint the smaller cone with 1 coat of paint, how much does it cost to paint the larger cone with 1 coat of the same kind of paint?

(c) Given that the mass of the larger cone is 25 g, find the mass of the smaller cone, assuming that both cones are made of the same kind of material.

Answerg [2]

Turn over

[1]

19

(a) Express $-x^2 - 6x - 7$ in the form $-(x+a)^2 + b$,

Answer

(b) hence, solve $-x^2 - 6x - 7 = 0$, showing your working clearly. Give your answers correct to two decimal places.

(c) Sketch the graph of $y = -x^2 - 6x - 7$,

(d) With reference to graph drawn above, explain why there is no solution for the equation $-x^2 - 6x - 7 = 3$.

......[1]

[1]

20 A box contains 4 red balls and 3 green balls. One ball is drawn at random. If a green ball is drawn, it will not be replaced, a second ball is then drawn. If a red ball is drawn, it will be replaced, a second ball is then drawn from the box. Complete the probability tree diagram to show the probabilities of possible outcomes.

Find the probability that

(i) the two balls are of different colours,

Answer [2]

(ii) at least 2 green balls are left in the box after the second draw.

Answer [2] **********

18584

21 A train slows down to a stop on entering a station P as shown in the velocity-time graph. After a brief stop of 60 s, it starts to move off with an acceleration of $1\frac{1}{3}$ m/s² for 30 s before it gets out of station P. It then continues its journey with this velocity until it reaches another station Q.

(a) Find the deceleration of the train when it enters the station P.

Answerm/s² [1]

(b) Calculate the total distance travelled by the train in its first 3 minutes journey.

[1]

.

(c) On the axes below, sketch an acceleration-time graph of the train for the whole 3 minutes of its motion.

Figure 1 shows a vertical cross-section of a rectangular tank that stands on a horizontal table represented by XY. The tank is 12 cm high and has a square base of side 20 cm and contains 3000 cm³ of water. Calculate

(a) (i) the volume of the tank,

(ii) the depth of the water.

The tank is now tilted about a base edge through C, so that some of the water spills out until the position shown in Figure 2 below. Calculate

(b) Calculate

.

(i) the volume of water remaining in the tank,

(ii) angle BCZ,

Answer° [2]

(iii) BZ, the vertical height of B above the table where Z is the foot of the perpendicular of B to YZ.

[Turn over

The diagram shows a rectangular field where PQ = 150 m and QR = 90 m. Jason starts from P and walks towards Q at a constant speed of 1.5 m/s. At the same time, John starts from Q and walks towards R at a constant speed of 0.5 m/s.

(a) Write down in terms of t (where t < 100s)

(i) the distance of Jason from Q after t seconds,

(ii) the distance of John from Q after t seconds.

(b) Given that after t seconds, the two men are h m apart, show that

$$h^2 = 2.5t^2 - 450t + 22500.$$

Answer

[2]

(c) Find the distance between the two men one minute after the start.

(d) Find the value of t when the two men are 100 m apart.

,

Answers [2]

(c) Hence, find the distance that Jason is from Q when the two men are 100 m apart.

 (a) The diagram shows a plot of land ABCD with a pond P at a corner and two lampposts V and W. S is the fixed position of a stick placed in the pond. A gardener wants to plant a tree T equidistant from the two lamp posts V and W and also equidistant from the lines VS and WS. By appropriate constructions, mark the point T on the diagram below. [2]

(b) Measure the bearing of W from S.

Answer⁰ [1]

End of Paper

SECONDARY 4 PRELIMINARY EXAMINATION

MATHEMATICS Paper 2

4048/02

11 SEPTEMBER 2018 (Tuesday)

2 hours 30 minutes

CANDIDATE			
NAME			

CLASS

INDEX NUMBER

For Ex	amine	r's Use
Q1	9	
Q2	8	
Q3	6	
Q4	7	
Q5	10	
Q6	11	
Q7	9	
Q8	11	
Q9	13	
Q10	16	
Total	/	100

READ	THESE	INSTR	UCTIONS	FIRST
NEAD	ILLOL	TINDIT	oc mono	LIKDI

Do not turn over the page until you are told to do so.

Write your name, class and index number on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use paper clips, highlighters, glue or correction fluid.

INFORMATION FOR CANDIDATES

Answer all the questions.

Write your answers on the separate writing paper provided.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The use of a scientific calculator is expected, where appropriate.

If working is needed for any question it must be shown with the answer. Omission of essential working will result in loss of marks.

At the end of the examination, fasten all your answer scripts securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 100.

This document consists of $\underline{11}$ printed pages including the Cover Sheet.

Mathematical Formulae

Compound Interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = $\pi r l$

Surface area of a sphere = $4\pi r^2$

Volume of a cone = $\frac{1}{3}\pi r^2 h$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle $ABC = \frac{1}{2}ab \sin C$

Arc length = $r\theta$, where θ is in radians

Sector area = $\frac{1}{2}r^2\theta$, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

(a) The following table shows some information on the population of a country in 2016 and 2017. The total population of the country consists of residents and non-residents.

Year	Total population	Residents	Non-residents
2016	55.9 million	x	y
2017	56.1 million	54.45 million	1.65 million

[1 million people = 1×10^6 people]

From 2016 to 2017, the number of non-residents decreased by 1.6%.

- (i) Find the value of y, expressing your answer as k million, where k is a constant correct to 3 decimal places. [1]
 (ii) Hence, find the value of x, giving your answer in standard form correct to 2 decimal places. [2]
- (b) P is proportional to Q^n , where *n* is an integer.

State the value of *n* when

(i)	P units is the force between two particles which is inversely	
	proportional to the square of the distance Q mm between them,	[1]
(ii)	$P \text{ m}^3$ is the volume of a sphere with radius $Q \text{ m}$,	[1]

(iii) $P \text{ cm}^3$ is the volume of a cone with radius \tilde{Q} cm and a fixed height. [1]

(c) Express as a single fraction in its simplest form

$$\frac{2}{2c-b} - \frac{3c-11b}{5b^2 - 20c^2} \,. \tag{3}$$

2. Jenny bought some jars of cookies for \$900. She paid n for each jar of cookies.

((a)	Write down an expression, in terms of n , for the number of jars of cookies she bought.	[1]
•	(b)	Jenny found that 2 jars of cookies were spoilt and could not be sold. Jenny sold each remaining jar of cookies for \$3 more than she paid for it. Write down an expression, in terms of n , for the total sum of money she received from the sale of the jars of cookies.	[1]
((c)	Given that she made a profit of \$92 from the sale of the jars of cookies, form an equation in <i>n</i> and show that it reduces to $n^2 + 49n - 1350 = 0$.	[2]
((d)	Solve $n^2 + 49n - 1350 = 0$, giving your solutions correct to 3 decimal places.	[2]
((e)	Hence, find the selling price of each jar of cookies sold by Jenny, giving your solution correct to the nearest cent.	[2]

3. The diagram shows a tent. The cross-section of the tent forms a pentagon ABCDE with two vertical sides of height 2.5 m and two slant sides of equal length 6 m. It is also given that the length of the tent CR is 12 m and the width of the tent AE is 7.5 m.

Find

- (a) the area of the cross section ABCDE,
- (b) the angle of elevation of R from A.
- 4. (a) Explain, with mathematical calculations, why it is not possible to fold a sector of area 115 cm² into a cone of base radius 8 cm.
 - (b) In the diagram below, WZY is a semicircle with centre O, radius 7 cm and angle ZOX = 0.93 radians. WZX is a sector of another circle with centre W and radius 12.5 cm.

Find the perimeter of the shaded area.

[4]

[2] [4]

[3]

595 5

5. In the diagram, A, B and C lie on a circle with centre O. (a) The tangents at A and B meet at D. It is given that angle $AOB = (8y-6)^\circ$, angle $ACB = (2x+5y)^\circ$ and angle $ADB = (10y - 8x)^\circ$.

- (i) Stating your reasons clearly, show that $(8y-6)^{\circ}+(10y-8x)^{\circ}=180^{\circ}$ [3]
- Hence, by solving a pair of simultaneous equations, find the value (ii) of x and of y. [3]
- (b) The diagram shows a circle PQRST, with centre O. XY is a tangent to the circle at Q. It is given that angle $QOR = 36^{\circ}$. TOR and POS are straight lines.

Find, giving reasons for your answer, angle RSQ. (i) [1] [3]

Prove that triangle PTS and triangle RST are congruent. (ii)

[Turn over

6. In the diagram, WXYZ is a quadrilateral such that $\overrightarrow{XY} = \mathbf{a}, \overrightarrow{XW} = \mathbf{b}$ and $\overrightarrow{XW} = \frac{2}{3} \overrightarrow{YZ}$. *V* is a point on *WY* such that $5\overrightarrow{VY} = 3\overrightarrow{WY}$.

(a)	What is the special name given to the quadrilateral <i>WXYZ</i> ?	[1]			
(b)	Express, as simply as possible, in terms of a and b , (i) \overrightarrow{WY} , (ii) \overrightarrow{XZ} , (iii) \overrightarrow{XV} .	[1] [1] [2]			
(c)	Explain why X, V and Z lie on a straight line. [2]				
(d)	Prove that triangle <i>XWV</i> and triangle <i>ZYV</i> are similar. [2]				
(e)	Find (i) $\frac{\text{Area of triangle } XWV}{\frac{1}{2}}$,	[1]			
	(ii) Area of triangle ZWV (iii) Area of triangle ZWV	[1]			
	Area of triangle ZYV	[1]			

7. (a) The cash price of a waffle maker is \$149.

Rose wants to start a waffle shop business and buys 5 waffle makers on hire purchase. She pays a deposit of 15% of the cash price followed by 24 equal monthly instalments with interest charged at a flat rate of 1.5% per annum.

Calculate the amount of the monthly instalment, correct to the nearest cent.

[2]

(b) Rose offers three types of waffle fillings at her shop: chocolate, cheese and blueberry.

The price of each type of waffle is shown in the table below.

Chocolate	Cheese	Blueberry	
\$1.80	\$2.50	\$1.50	

The table below shows the sale of waffles at Rose's shop for the months of June and July.

Month/ Fillings	Chocolate	Cheese	Blueberry
June	52	8	27
July	48	13	21

(i)	Represent the prices of each type of waffle in a column matrix P .	[1]
(ii)	Represent the sale of waffles at Rose's shop for the months of June and July in a 2×3 matrix W .	[1]
(iii)	Evaluate the matrix $\mathbf{R} = \mathbf{W}\mathbf{P}$.	[2]
(iv)	State what the elements of R represent.	[1]
(v)	By multiplying matrix \mathbf{W} with a row matrix find the matrix that	

By multiplying matrix w with a row matrix, find the matrix that represents the total number of each type of waffles Rose sold in June and July.

598 8

8. The masses of 80 eggs collected at Farm A are recorded. The cumulative frequency curve below shows the distribution of their masses.

- (a) Use the curve to estimate
 - (i) the median mass,
 - (ii) the 30th percentile,
 - (iii) the interquartile range.
- (b) The distribution of the masses of the eggs can be represented by the grouped frequency table below.

Mass (x g)	$25 < x \le 35$	35 < <i>x</i> ≤ 45	45 < <i>x</i> ≤ 55	55 <x≤65< th=""></x≤65<>
Frequency	6	m	30	32

- (i) Show that the value of m is 12.
- (ii) A worker in Farm A select two eggs at random, one after another, without replacement.
 Find, as a fraction in its simplest form, the probability that both eggs are more than 55g.

[1]

[2]

[1]

[1]

[2]

8 (c) The masses of eggs at Farm B are also measured and recorded. Information relating to the masses of eggs at Farm B are given below.

(i) A worker at Farm B says to a worker at Farm A:

"The masses of the eggs at my farm are more consistent than the masses of the eggs at your farm."

Do you agree with the worker at Farm B? Explain with mathematical calculations.

 (ii) The worker at Farm B realises that the weighing machine is spoilt. Hence the mass of each egg should be 1g more than the measured mass.
 State the correct mean and standard deviation of the masses of

[2]

[2]

9. Answer the whole of this question on a sheet of graph paper.

The variables x and y are connected by the equation

eggs at Farm B.

$$y = \frac{x}{4} \left(8 - 6x + x^2 \right).$$

Some corresponding values of x and y, correct to 2 decimal places, are given in the table below.

x	-1	0	0.5	1	1.5	2	2.5	3	5
у	-3.75	0	k	0.75	0.47	0	-0.47	-0.75	3.75

(a)	Calcul	ate the value of k.	[1]		
(b)	Using a scale of 2 cm to represent 1 unit, draw a horizontal x-axis for $-1 \le x \le 5$.				
	Using $-4 \le y$	a scale of 2 cm to represent 1 unit, draw a vertical y-axis for $y \le 4$.			
	On you smooth	ur axes, plot the points given in the table and join them with a h curve.	[3]		
(c)	The eq	juation $x^3 - 6x^2 + 8x = -12$ has only one solution.			
	Explai	n how this can be seen from your graph.	[2]		
(d)	By drawing a tangent, find the gradient of the curve at the point (1, 0.75).				
(e)	(i)	Line L has gradient -0.5 and passes through the point $(3, 1)$.			
		Draw line L on the same axes for $-1 \le x \le 5$.	[2]		
	(ii)	Write down the <i>x</i> -coordinate of the point where the two graphs	• •		
		intersect.	[1]		
	(iii)	This value of x is a solution of a cubic equation. Write down the	• •		
		cubic equation in the form $x^3 + Px^2 + Ox + R = 0$, where P. O and			
		R are integers.	[2]		

[Turn over

10. A soda can may be modelled as a cylinder with a closed top and a hollow hemisphere hollowed in at the base of the can as shown in the diagram below.

Information about the model of the soda can is given below.

Height (H) = 12.4 cm

Inner Diameter (D_1) of base = 6.7 cm

Outer diameter (D_2) of base = 7.9 cm

Mass of empty can = 15g

 D_1 D_2

- (a) Using the model of the soda can in the diagram above, calculate
 - (i) the total surface area, in square centimetres, of the soda can.
 - (ii) the volume, in cubic centimetres, of the soda can.

[5]

[3]

10 (b) Harry uses a shopping basket to transport the soda cans filled with carbonated drink.

The soda cans will be placed with the base of the can lying on the base of the basket then stacked up vertically within the basket.

For safety reasons, all the soda cans must be contained inside the shopping basket. The maximum load that the shopping basket can carry is 55 pounds.

The shopping basket can be modelled by a frustrum of a inverted pyramid as shown in the diagram below.

The frustrum above is obtained by removing the top portion of an inverted right rectangular pyramid. The flat rectangular base of the frustum has length 40 cm and width 25 cm. The remaining vertical height is 27 cm. The flat rectangular top of the frustum is 48 cm by 30 cm.

Other Useful Information

- Density of carbonated drink = 1.3 g/cm^3
- 1 pound is equivalent to 0.45 kg
- Mass = Volume × Density
- Safety information: Soda can is filled with carbonated drink up to a maximum of 90% of its total volume.

Assuming that each soda can is filled with carbonated drink to the maximum safe volume, find the maximum number of soda cans Harry can transport with the shopping basket at any one time. Justify your answer with mathematical calculations.

[8]

END OF PAPER 2

ANSWER KEY

Qn	Answer/Solution
1.	(3x - y)[5(3x - y) - 1]
	= (3x - y)[15x - 5y - 1]
2.	115% represents 3450.
	100% represents $100 \times 2450 = 3000$
	$\frac{100}{115} \times 3430 = 3000$
3.	$\begin{bmatrix} 4/ \end{bmatrix}^{6\times 2}$
	$6341.21 = P \left[1 + \frac{\sqrt{2}}{1 + \sqrt{2}} \right]$
	$6341.21 = P(1.02)^{12}$
	P = \$5000
4.	a) $315 = 3^2 \times 5 \times 7$
	b) $3^2 \times 5 \times 7 = 35$
5.	$(2^2)^{\frac{1}{2}}$ $(2^6)^{-2}$ 25
	$\left(2^{2^{n}}\right)^{2^{n}} \div \left(2^{2^{n}}\right)^{n} = 2^{2^{n}}$
	$2^{\frac{1}{n}} \cdot 2^{-12} - 2^{5}$
	$2^{-} \neq 2^{-} = 2^{-}$
	$2^{\frac{1}{n}-(-12)} = 2^5$
	-+12=5
	1 _
	$\frac{n}{n} = -\frac{1}{n}$
	1
	$n = -\frac{1}{7}$
6.	$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$
	$\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB}$
	(5), (3) , (8)
	$= \begin{pmatrix} 1 \end{pmatrix} + \begin{pmatrix} 5 \end{pmatrix} = \begin{pmatrix} 6 \end{pmatrix}$
	$\left \overline{OB}\right = \sqrt{8^2 + 6^2} = 10$
7.	a) 1 cm represent 0.5 km
	0.5 km is represented by 1cm
	24 km is represented by $\frac{24}{24} = 48$ cm
	$\frac{1}{0.5} = \frac{1}{100} \text{ cm}$
	b) 1 cm^2 represents $(0.5 \text{ km})^2$
	1 cm^2 represents 0.25 km ²
	$\therefore 20 \text{ cm}^2 \text{ represents } 0.25 \times 20 = 5 \text{ km}^2$

8.	ř						
	P (2.48, 4.48)						
	$x $ x						
	$\varrho \longleftrightarrow s$						
	\times						
	Let perpendicular line from P to QS be x						
	$\sin 60^\circ = \frac{x}{7} \Longrightarrow x = 7\sin 60^\circ = 6.0622$						
	$PR = 6.0622 \times 2 = 12.1244$						
	$\therefore y - cord.of R = 4.48 - 12.1244$						
	$\therefore R(2.48, -7.64)$						
	$\frac{y}{7} = \cos 60^\circ \Rightarrow y = 3.5$						
	x - cord.of S = 5.98						
	y - cord.of S = 4.48 - 6.0622 = -1.58						
	$\therefore S(5.98, -1.58)$						
9.	The vertical axis did not start from 0.						
	This would exaggerate the difference in the enrolment of the schools.						
10.	$(3xy + x)^2 = 3yz + x^2$						
	$9x^{2}y^{2} + 6x^{2}y + x^{2} = 3yz + x^{2}$						
	$9xy + 6xy = 3yz 9x^2y (3y + 2) = 3yz$						
	$x^2 = \frac{3yz}{2(2-x^2)}$						
	$\frac{3y(3y+2)}{\sqrt{2}}$						
	$x = \pm \sqrt{\frac{z}{3y+2}}$						
11.	a)						

ANSW	ER	KEY

	x = 7 $(x+3)$
	$4 \leq 7 - \left(\frac{1}{2}\right)$
	$\left(\frac{x+3}{2}\right) \le 7-4$
	$\left(\frac{x+3}{x+3}\right) < 3$
	$\left(\begin{array}{c}2\end{array}\right)^{23}$
	$x+3 \le 6$
	$7-\left(\frac{x+3}{2}\right)<\frac{13}{2}$
	$\begin{pmatrix} 2 \\ -(x+3) \leq 13 \end{pmatrix}$
	-(x+3) < -1
	x + 3 > 1
	x > -2
	$-\underline{2 < x \leq 3}$
	b) -1 0 1 2 3
	(0) -1, 0, 1, 2, 5
12.	a) Gradient of $L_1 =$
	Equation of L_1 is y.
	$y = -\frac{1}{2}x + 4$
	b) Sub. $x = 2$, $y = a$ into $y = -\frac{1}{2}x + 4$
	$a = -\frac{1}{2}(2) + 4 \Longrightarrow a = 3$
	QA = 2
	c) $\frac{1}{AP} = \frac{1}{6} = \frac{1}{3}$
13.	a) $\angle ACD = \angle DBA$
	(L in the same segment)
	• •
	b) $\angle BAD = 180^\circ - 25^\circ - 28^\circ = 127^\circ$
14.	a) Median Height for school $X = 153$ cm
	b) Interquartile range for school $Y = 157.5 - 150$
	= <u>7.5cm</u>
	c) No I disagreement median of school Y = 155cm is larger than the median of school Y (152cm)
	median of school A (155cm)

ANSWER KEY

15.	a) $6+5+x+4+x=27$					
	2r = 27 - 15 = 12					
	2x - 27 - 15 - 12					
	<u>x</u>	-0				
	<u>v</u>	y = 4				
	b)					
	A	nswer :				
	Í					
		100	В			
		*	1-1-			
		Fer	$\langle \rangle$			
		FF	\mathcal{N}			
		F	×			
			7			
16.	a)					
101	$\angle BCA =$	$10^{\circ}(AB = BC)$				
	E de la com	(100,100)	200			
	Exterior	$\angle = 10^{\circ} + 10^{\circ} =$	20°	10		
	b) N	umber of side	es = 360/20 =	18		
17.	a)					
		Number of	Maximum	Maximum	Maximum number	
		lines, n	number of line	number of	of regions, R	
			segments, E	intersections, P		
	-	1	22 - 4	0	2 = 1 + 1 4 = 1 + 3	
		2	2 - 4	$1 = \frac{2(1)}{2}$	4-113	
		3	$3^2 = 9$	3(2)	7 == 1+6	
		-		$3 = \frac{3}{2}$		
		4	$4^2 = 16$	4(3)	11 = 1+10	
				2		
		5	$5^2 = 25$	$10 = \frac{5(4)}{10}$	16 = 1 + 15	
			2.20	2	22 - 1:23	
		6	0- = 30	$15 = \frac{6(5)}{2}$	22 = 1+21	
		L		1 2		l .
		n(n 1)	2 m 1			
	b) P	$P = \frac{n(n-1)}{2} or \frac{n}{2}$	$\frac{-n}{2}or\frac{1}{2}(n^2-n)$			
		2	2 2			
		$n = 1 + \frac{n(n+1)}{n(n+1)}$	$r\frac{2+n+n^2}{2}$			
		$\frac{1}{2}$	2			
	d) R	+ P - E = 1				

ANS	WER	KEY

	ii.	$20 \times 20 \times d = 3000$
		$d = \frac{3000}{1000}$
		20 ×20
		= 7.5 cm
		b)
	i	$\frac{1}{2} \times 12 \times 20 \times 20 = 2400 cm^3$
		2
		$\tan \angle BCZ = \frac{12}{12} = 30.9638$
	11.	20
		$=31^{\circ}$
	iii.	$\sin 30.9638 = \frac{BZ}{22} = 10.3cm$
		20
22		
23.	:	a) 150 1 5t m
	1.	150 - 1.51 m
	11.	b)
		$L^2 = (150 - 1.50)^2 + (0.50)^2$
		h = (130 - 1.5t) + (0.5t)
		$= 22500 - 450t + 2.25t^2 + 0.25t^2$
		$= 22500 - 450t + 2.5t^2$
		$= 2.5t^2 - 450t + 22500(shown)$
		c)
		$h^2 = 2.5(60)^2 - 450(60) + 22500$
		$h^2 = 4500$
		h = 67.1m
		d)
		$100^2 = 2.5t^2 - 450t + 22500$
		$2.5t^2 - 450t + 12500 = 0$
		$t = \frac{450 \pm \sqrt{450^2 - 4(2.5) + 12500}}{450^2 - 4(2.5) + 12500}$
		2(2.5)
		=145.68, 34.3224 (145.68 (<i>rej</i>))
		Answer = 34.3s
		e) $150 - 15(343224) = 985m$
24.		a)

ANSWER KEY

SECONDARY 4 PRELIMINARY EXAMINATION

MATHEMATICS Paper 2

4048/02

11 SEPTEMBER 2018 (Tuesday)

2 hours 30 minutes

CANDIDATE NAME Solutions (for students)

CLASS

INDEX NUMBER

For Examiner's Use			
Q1 [_9		
Q2 !	8		
Q3	6		
Q4	7		
Q5	10		
Q6	11		
Q7	9		
Q8	11		
Q9	13		
Q10	16		
Total	/	100	

READ THESE INSTRUCTIONS FIRST

Do not turn over the page until you are told to do so.

Write your name, class and index number on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use paper clips, highlighters, glue or correction fluid.

INFORMATION FOR CANDIDATES

Answer all the questions.

Write your answers on the separate writing paper provided.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The use of a scientific calculator is expected, where appropriate.

If working is needed for any question it must be shown with the answer. Omission of essential working will result in loss of marks.

At the end of the examination, fasten all your answer scripts securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 100.

This document consists of 27 printed pages including the Cover Sheet.

Mathematical Formulae

Compound Interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = $\pi r l$

Surface area of a sphere = $4\pi r^2$

Volume of a cone = $\frac{1}{3}\pi r^2 h$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle $ABC = \frac{1}{2}ab\sin C$

Arc length = $r\theta$, where θ is in radians

Sector area = $\frac{1}{2}r^2\theta$, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

1. [9]	(a)	The following table shows some information on the population of a country in 2016 and 2017. The total population of the country consists of residents and non-residents.					
				P			
		Year		Total population	Residents	Non-residents	
		2016		55.9 million	x	У	
		2017		56.1 million	54.45 million	1.65 million	
		[1 mil	lion	people = 1×10^6 peopl	e]		
		From	2016	5 to 2017, the number	of non-residents de	ecreased by 1.6%.	
		(i)	Fin	id the value of y , expre	essing your answer	as k million, where k	
		(22)	15 8	constant correct to 3	decimal places.	1 10	1
		(II)	He	nce, find the value of a	e, giving your answ	ver in standard form	[12]
			COL	rect to 2 decimal prace	25.		
	(b)	P is pr	opor	tional to Q^n , where <i>n</i>	is an integer.		
	ļ	State tl	he va	alue of <i>n</i> when			
		(i)	Pu	nits is the force betwe	en two particles v	which is inversely	1.41
	ł		prop	portional to the square	e of the distance Q	mm between them,	
	ł	(ii)	P m	$\frac{1}{3}$ is the volume of a s	phere with radius	Q m,	
	ł	(m)	PCI	m ⁻ is the volume of a	cone with radius (2 cm and a fixed height	11
	(c)	Expres	s as	a single fraction in its	s simplest form		
		$2 \qquad 3c-11b$					
		$\frac{1}{2c-b} - \frac{5b^2 - 20c^2}{5b^2 - 20c^2}$ [3]					
							r1
Cal	utions	L			<u> </u>		
(2)(unon: n				2 ⁻		
(a)(1 65-						
y =	1.001	$\frac{1}{2}$	(100				
5	100	-1.6					
<i>y</i> =	1.677	million	(3dp))			
(a)(ii)						
<i>x</i> =	55.9n	uillion –	1.67	7million			
x =	54.22	317073	milli	on			
$x = 54.22317073 \times 10^{6}$							
<i>x</i> -	$x = -34.2231/073 \times 10$						
x =	$x = 5.4223 \Gamma/073 \times 10^{7}$						
<i>x</i> =	$x = 5.42 \times 10^{7} (2 \mathrm{dp})$						
(b)((i)						
P is	propo	ortional	to Q	ⁿ			
P_{111}	P units is the force between two particles which						
is inversely proportional to the square of the							
dis	distance Q mm between them						
n =	n=-2						

(b)(ii)	
P is proportional to Q^n ,	
$P \text{ m}^3$ is the volume of a sphere with radius $Q \text{ m}$	
n = 3	
(b)(iii)	
P is proportional to Q^n ,	
$P \text{ cm}^3$ is the volume of a cone with radius $Q \text{ cm}$	
and a fixed height.	
n = 2	
(c)	
$\frac{2}{3c-11b}$	
$2c-b$ $5b^2-20c^2$	
$=\frac{2}{2}-\frac{3c-11b}{c(c^2-c^2)}$	
$2c-b = 5(b^2-4c^2)$	
$=-\frac{2}{3c-11b}$	
b-2c $5(b+2c)(b-2c)$	
-2(5)(b+2c)-(3c-11b)	
$=$ $\frac{5(b+2c)(b-2c)}{5(b+2c)(b-2c)}$	
-10b - 20c - 3c + 11b	the second second
$= \frac{1}{5(b+2c)(b-2c)}$	
b-23c	а
$-\frac{1}{5(b+2c)(b-2c)}$	
OR	

$\frac{2}{2} \frac{3c-11b}{2}$	
$2c-b$ $5b^2-20c^2$	
2 3c-11b	
$-\frac{1}{2c-b}-\frac{1}{5(b^2-4c^2)}$	
2 3c - 11b	
$=\frac{1}{2c-b}-\frac{1}{5(b+2c)(b-2c)}$	
2(5)(b+2c)(b-2c)-(3c-11b)(2c-b)	
$=\frac{-(-)(2-2c)(2c-b)}{5(b+2c)(b-2c)(2c-b)}$	
$-b^2 + 25ba - 46a^2$	
$=\frac{-60+250c^{2}-40c}{5(b+2c)(b-2c)(2c-b)}$	
(2c-b)(b-23c)	
$=\frac{1}{5(b+2c)(b-2c)(2c-b)}$	
b-23c	
$=\frac{1}{5(b+2c)(b-2c)}$	
OR	
2 3c - 11b	
$\frac{1}{2c-b} - \frac{1}{5b^2-20c^2}$	· · · · · · · · · · · · · · · · · · ·
$-\frac{2(5b^2-20c^2)-(2c-b)(3c-11b)}{2(c-b)(3c-11b)}$	
$= \frac{(2c-b)(5b^2-20c^2)}{(2c-b)(5b^2-20c^2)}$	
$-b^2 + 25bc - 46c^2$	
$=\frac{1}{(2c-b)(5b^2-20c^2)}$	
(2a-b)(b-23a)	
$=\frac{(2c-b)(b-23c)}{(b-23c)}$	
(2c-b)(5)(b+2c)(b-2c)	
$=$ $\frac{b-23c}{c}$	
-5(b+2c)(b-2c)	

2. [8]	Jenn	y bought some jars of cookies for \$9	00. She paid n for each jar of cookies.				
	(a)	Write down an expression, in terms of <i>n</i> , for the number of jars of cookies she bought. [1]					
	(b)	Jenny found that 2 jars of cookies were spoilt and could not be sold. Jenny sold each remaining jar of cookies for \$3 more than she paid for it. Write down an expression, in terms of <i>n</i> , for the total sum of money she					
	(1)	received from the sale of the jars of cookies. [1]					
	(C)	Given that she made a profit of \$9.	2 from the safe of the jars of cookies,	[12]			
	(4)	form an equation in n and show the	at it reduces to $n + 49n - 1330 = 0$.	[#]			
	(u)	Solve $n^2 + 49n - 1350 = 0$, giving places.	your solutions correct to 3 decimal	[2]			
	(e)	Hence, find the selling price of eac your solution correct to the nearest	th jar of cookies sold by Jenny, giving to cent.	[2]			
Rei	mark:	Deduct U for missing/ incorrect uni ble	ts in any part for this question where				
Sol	ution						
	1	\[
(a)	900	jars of cookies					
	n)					
(b)		N					
\$	$\frac{900}{n}$ –	$2\left(n+3\right)$	Remark: Remember to write the corre units	ct			
	OR a la l						
	•	2700)					
\$	900+•	$\frac{2766}{n}$ - 2n - 6	6				
		· · · · ·					
(c)							
$\left \left(\frac{9}{1} \right) \right $	$\left(\frac{900}{n}-2\right)(n+3)-900=92$						
900	$0 + \frac{27}{r}$	$\frac{00}{n} - 2n - 6 - 900 = 92$					
$\frac{27}{1}$	$\frac{2700}{n} - 2n - 6 = 92$						
27	$\frac{2700}{12} - 2n - 98 = 0$						
270	$\frac{n}{2700 - 2n^2 - 98n = 0}$						
n^2	+ 49 <i>n</i>	-1350 = 0 (Shown)					

(d) $n^{2} + 49n - 1350 = 0$ $n = \frac{-49 \pm \sqrt{(49)^{2} - 4(1)(-1350)}}{2(1)}$	Remark: Must show working
n = 19.662 (3dp) or $n = -68.662$ (3dp)	
(e) (Reject $n = -68.662$ as n>0)	
Selling price	
= 19.662 + 3	
=\$22.66 (nearest cent)	

	and the second
Let M is midpoint of BD.	
$\sin \angle BCM = \frac{(7.5 \div 2)}{6}$	
$\angle BCM = \sin^{-1} \frac{(7.5 \div 2)}{6}$	
$\angle BCD = 2\sin^{-1}\frac{(7.5 \div 2)}{(7.5 \div 2)}$	
$\angle BCD = 77.36437491^{\circ}$	
Area of the cross section ABCDE	
$= \left(\frac{1}{2} \times 6 \times 6 \times \sin 77.36437491^{\circ}\right) + (7.5 \times 2.5)$	
=17.56405687+18.75	
= 36.31405687	Remark: Remember to write the correct
$= 36.3 m^{2} (3sf)$	mits
(b)	2. (2.
Let N be the point vertically below R on the	
ground	·
$RN = \sqrt{\frac{351}{16}} + 2.5$	
= 7.183748499 <i>m</i>	
	s
$AN = \sqrt{12^2 + \left(\frac{7.5}{2}\right)^2}$	
= 12.57229096m	
$\tan \angle RAN = \frac{RN}{AN}$	
$\tan \angle RAN = \frac{7.183748499}{12.57229096}$	Remark:
$\angle RAN = \tan^{-1} \frac{7.183748499}{12.57229096}$	-Remember to write statements to define clearly what you are finding
$\angle RAN = 29.7^{\circ}(1dp)$	-Remember to write the correct units
Angle of elevation = $29.7^{\circ}(1dp)$	

4.	(a)	Explain, with mathematical calculation	is, why it is not possible to fold a	[]
[7]		sector of area 115 cm ² into a cone of b	ase radius 8 cm.	[3]
	(b) 	In the diagram below, WZY is a semici- angle $ZOX = 0.93$ radians. WZX is a se- and radius 12.5 cm.	ctor of another circle with centre W	
		*	X Y	
			0.93 rad	
			$\setminus I$	
			72	
<u> </u>		Find the perimeter of the shaded area.		[4]
Sol	ution:			1
(a)	2.4	``````````````````````````````````````		
π(8	8)(slar	ht height) = 115		
slar	nt heig	$ht = \frac{115}{8\pi}$		
		$(115)^2$		
hei	ght =	$\left(\frac{115}{8\pi}\right) - 8^2$	x.*	
$\left \left(\frac{11}{8} \right) \right $	$\left(\frac{15}{\pi}\right)^2 -$	$8^2 = -43.06 < 0$	* ¹ - 9	
As	height	² is negative, height is undefined.	20 - 20 10	
He He	ence 11 5 cm^2	into a cone of base radius 8 cm.		
OR	und an	$r f_{222} = 115$		
	ved su	inace area of cone – 113		
Bas	e area	of cone = $\pi (8)^2 = 201.06(2 dp) > 115$		
Ast	base at	rea of cone is greater than the curved		
surf	ace ar	ea of cone, it is not possible to fold a		
sect	or of a	area 115 cm ² into a cone of base radius		
0.01				
1				

(b) XY = 2(7) - 12.5 = 1.5Arc XZ = $12.5\left(\frac{0.93}{2}\right)$ $\angle WZY = 90^{\circ}$ (angle in a semicircle is a right angle $\sin\left(\frac{0.93}{2}\right) = \frac{YZ}{14}$ $YZ = 14\sin\left(\frac{0.93}{2}\right)$ Perimeter $= 14\sin\left(\frac{0.93}{2}\right) + 12.5\left(\frac{0.93}{2}\right) + 1.5$ = 13.6 cm(3sf)

=	(-)			
5. [10]	(a)	In the The t	e diagram, A , B and C lie on a circle with centre O . angents at A and B meet at D .	
		It is g	given that angle $AOB = (8y-6)^\circ$, angle $ACB = (2x+5y)^\circ$ and	
		angle	$ADB = (10y - 8x)^{\circ}.$	
		Ŭ		
			$\langle 2 \rangle$	
			$(8y-6)^{\circ}$	
			$A (2x+5y)^{\circ} B$	
			C	
			$(10y-8x)^{\circ}$	
			Z	
		(i)	Stating your reasons clearly, show that $(8.1, 6)^{\circ} + (10.1, 8.1)^{\circ} = 180^{\circ}$	[3]
		(ii)	$(\delta y - \delta) + (10y - \delta x) = 180$ Hence, by solving a pair of simultaneous equations, find the value	
		(11)	of x and of y .	[3]
	(b)	The	diagram shows a sizela DOPST with centre O VV is a tangent to the	
		circle	e at Q . It is given that angle $QOR=36^\circ$. TOR and POS are straight	
		lines.		
			X	
			P Q	
			R^{-1}	
			S	
		(i)	Find, giving reasons for your answer, angle RSQ.	[1]
		(ii)	Prove that triangle PTS and triangle RST are congruent.	[3]
1	1			

Solution: (a)(i) $\angle OAD = \angle OBD = 90^{\circ} \ (\angle \text{ between tangent and radius of a circle is a right angle})$ $90^{\circ} + 90^{\circ} + (8y - 6)^{\circ} + (10y - 8x)^{\circ} = 360^{\circ} \ (\angle \text{ sum of quadrilateral})$	Remark: Remember to write the correct reasons in full, no short form
$(8y-6)^{\circ}+(10y-8x)^{\circ}=180^{\circ}$ (Shown)	
(a)(ii) (8y-6)+(10y-8x) = 180 -8x+18y = 186 -4x+9y = 93 - (1) 360-(8y-6) = 2(2x+5y) 360-8y+6 = 4x+10y 4x+18y = 366 2x+9y = 183 - (2) Equations (1) + 2(2): -4x+9y+2(2x+9y) = 93+2(183) 27y = 459 y = 17 Sub y=17 into (1): -4x+9(17) = 93 -4x = -60 x = 15 $\therefore x = 15, y = 17$	
(b) Remark: Remember to write the correct units	
(b)(i) $\angle RSQ = \frac{36^{\circ}}{2} = 18^{\circ}$ (\angle at the centre is twice the \angle at the circumference)	Remark: Remember to write the correct reasons in full, no short form

(b)(ii)	
$\angle PTS = \angle RST = 90^{\circ}$ (\angle in a semicircle is a right angle) TS = ST (common length) PS = RT (diameter of circle)	Remark: -Remember to write the correct reasons in full, no short form -Remember to write the vertices in their corresponding order for all statements and conclusion -Remember to state the congruency test used
Triangle <i>PTS</i> and Triangle <i>RST</i> are congruent (RHS)	
OR	
$\angle PTS = \angle RST = 90^{\circ}$	Remark
$(\angle \text{ in a semicircle is a right angle})$ $\angle TPS = \angle SRT$ $(\angle \text{s in the same segment are equal})$ $\angle OTS = \angle OST$ $(\text{base angles of isosceles triangle})$ so $\angle PST = \angle RTS$ $TS = ST \text{ (common length)}$ OR $PS = RT \text{ (diameter of circle)}$ Triangle <i>PTS</i> and Triangle <i>RST</i> are congruent (AAS/ASA)	Remember to write the correct reasons in full, no short form -Remember to write the vertices in their corresponding order for all statements and conclusion -Remember to state the congruency test used -2 angles and 1 side sufficient for AAS or ASA congruency test
OR	
$\angle OTS = \angle OST$ (base angles of isosceles triangle) so $\angle PST = \angle RTS$ TS = ST (common length) PS = RT (diameter of circle) Triangle PTS and Triangle RST are congruent (SAS)	Remark: -Remember to write the correct reasons in full, no short form -Remember to write the vertices in their corresponding order for all statements and conclusion -Remember to state the congruency test used -For SAS congruency test, the angle must be the included angle between the 2 sides

6. [11]	In th	$=\frac{2}{3}\overline{YZ}$	am, WXYZ is a quadrilateral such that $\overrightarrow{XY} = \mathbf{a}, \overrightarrow{XW} = \mathbf{b}$ and <i>V</i> is a point on <i>WY</i> such that $\overrightarrow{5VY} = \overrightarrow{3WY}$. <i>W V V V V V V V V V V</i>	
		_	Y	
	(a)	What	is the special name given to the quadrilateral WXV7?	[1]
	(b)	Expre	ess, as simply as possible, in terms of a and b .	
		(i)	WY.	[1]
		(ii)	\overline{XZ}	[1]
		(iii)	\overline{XV}	[2]
	(c)	Expla	ain why X, V and Z lie on a straight line.	[2]
	(d)	Prove	e that triangle XWV and triangle ZYV are similar.	[2]
	(e)	Find		
		(i)	Area of triangle XWV Area of triangle ZYV	[1]
		(ii)	Area of triangle ZWV	
			Area of triangle ZYV	[1]
	Rem	ark: R	emember to write correct vector notation for vectors	
Sol	ution:	:	D D	
(a)	Trape	zium		
(b)	(i)			
WY	= WX	+XY		
WY	= -b -	+ a		
$\frac{WY}{WY}$	=XY $= \mathbf{a} -$	-XW b		
	(11)			
$\left \begin{array}{c} \textbf{(b)} \\ \overline{XZ} \end{array} \right $	$= \overrightarrow{XY}$	$+ \overline{YZ}$		
XZ	= a +	$\frac{3}{2}$ b		

[Turn over

$\overrightarrow{VY} = \frac{3}{5} \overrightarrow{WY}$	
$\overline{W}\overline{V} = \frac{2}{5}\overline{W}\overline{Y}$	
XV = XW + WV	
$\overrightarrow{XV} = \overrightarrow{XW} + \frac{2}{5} \overrightarrow{WY}$	
$\overrightarrow{XV} = \mathbf{b} + \frac{2}{5} \ (\mathbf{a} - \mathbf{b})$	
$\overrightarrow{XV} = \frac{2}{5}\mathbf{a} + \frac{3}{5}\mathbf{b} \mathbf{OR} \frac{1}{5} (2\mathbf{a}+3\mathbf{b})$	
OR $\frac{2}{5}$ (a + $\frac{3}{2}$ b)	
OR	
$\overrightarrow{XV} = \overrightarrow{XY} + \overrightarrow{YV}$	
$\overrightarrow{XV} = \overrightarrow{XY} + \frac{3}{5} \left(- \overrightarrow{WY} \right)$	
$\overrightarrow{XV} = \mathbf{a} + \frac{3}{5} \ (\mathbf{b} - \mathbf{a})$	
$\overline{XV} = \frac{2}{5}\mathbf{a} + \frac{3}{5}\mathbf{b} \mathbf{OR} \frac{1}{5} (2\mathbf{a}+3\mathbf{b})$	
OR $\frac{2}{5}$ (a + $\frac{3}{2}$ b)	
(c)	
$\overrightarrow{XZ} = \mathbf{a} + \frac{3}{2}\mathbf{b} = \frac{1}{2}(2\mathbf{a} + 3\mathbf{b})$	
$\overrightarrow{XV} = \frac{2}{5}\mathbf{a} + \frac{3}{5}\mathbf{b} = \frac{1}{5}(2\mathbf{a}+3\mathbf{b})$	
$\frac{XV}{XZ} = \frac{\binom{1}{5}}{\binom{1}{2}} = \frac{2}{5}$	
$\overline{XV} = \frac{2}{5}\overline{XZ}$	Remarks:
$\frac{3}{VV}$ and $\frac{VZ}{VZ}$ are parallel	-Can also use vectors XV and VZ or vectors VZ and XZ
X is a common point.	-Division of vectors is undefined
Hence X , V and Z lie on a straight line.	

	1	
d) $\angle XVW = \angle ZVY$ (vertically opposite $\angle s$) $\angle XWV = \angle ZYV$ alternate $\angle s$, XW parallel to YZ) $\angle WXV = \angle YZV$ alternate $\angle s$, XW parallel to YZ) riangle XWV and Triangle ZYV are similar (AA similarity test)Remark: -Remember to write the correct reaso in full, no short form -Remember to write the vertices in the vertices of t		
OR $\frac{XW}{ZY} = \frac{XV}{ZV} = \frac{WV}{YV} = \frac{2}{3}$ Triangle XWV and Triangle ZYV are similar	-Remember to write the vertices in their corresponding order for all statements and conclusion	
(SSS similarity test)		
UK		
$\frac{XV}{ZV} = \frac{WV}{YV} = \frac{2}{3}$ $\angle XVW = \angle ZVY \text{ (vertically opposite $\angle s$)}$ Triangle XWV and Triangle ZYV are similar (SAS) OR $\frac{XW}{ZY} = \frac{WV}{YV} = \frac{2}{3}$ $\angle XWV = \angle ZYV \text{ (alternate $\angle s$, XW parallel to Y)}$ OR $\frac{XW}{ZY} = \frac{XV}{ZV} = \frac{2}{3}$ $\angle WXV = \angle YZV \text{ (alternate $\angle s$, XW parallel to Y)}$ Triangle XWV and Triangle ZYV are similar (SAS)	S similarity test) Z) S similarity test)	
$\frac{\text{Area of triangle } XWV}{\text{Area of triangle } ZYV} = \left(\frac{2}{3}\right)^2 = \frac{4}{9}$	Remarks: Division of vectors is undefined	
$\frac{\text{Area of triangle } ZWV}{\text{Area of triangle } ZWV} = \frac{\left(\frac{1}{2} \times WV \times h\right)}{\left(\frac{1}{2} \times YV \times h\right)} = \frac{2}{3}$	Remarks: Division of vectors is undefined	

7.	(a)	The cash price of a	waffle m	aker is \$1	49. Rose	wants to	start a waffle	
[9]		shop business and buys 5 waffle makers on hire purchase. She pays a						
		deposit of 15% of the cash price followed by 24 equal monthly						
		instalments with ir	iterest cha	rged at a	flat rate o	f 1.5% p	er annum.	
		Calculate the amount of the monthly instalment, correct to the nearest						
		cent.					[2]	
								_
	(b)	Rose offers three types of waffle fillings at her shop: chocolate, cheese and blueberry.						
		The price of each	type of wa	affle is sho	own in the	e table be	low.	
		Cho	olata	Che	aca	Bhue	harry	
		\$1	.80	\$2.	50	\$1.	.50	
		The table below sl of June and July.	nows the s	sale of wa	ffles at Ro	ose's sho	p for the months	
		Month/ Fillings	Choc	olate	Che	ese	Blueberry]
		June	5	2	8		27	
		July	4	8	13	3	21]
		(i) Represent	the prices	of each ty	pe of wat	ffle in a c	olumn matrix P.	
	<u> </u>	(ii) Represent June and J	the sale of aly in a 2	f waffles a $\times 3$ matrix	t Rose's : W.	shop for	the months of	[1]
		(iii) Evaluate th	ne matrix 1	$\mathbf{R} = \mathbf{W}\mathbf{P}.$				[1]
		(iv) State what	the eleme	ents of R r	epresent.			[1]
		(v) By multipl represents June and J	ying matr the total n uly.	ix W with number of	a row ma each type	atrix, fin of waffl	d the matrix that es Rose sold in	[2]
			(4					
Sol	ution:							
(a) Bala	ance	2						
1	$00 - 1^{4}$	5 /)						
= -	100	$-\times(149\times5) = $ \$633.2	25					
Inte	erest							
= 6	33.25	$\times \frac{1.5}{100} \times \frac{24}{12}$						
= \$	18.991	75						
An	nount c	of monthly instalmer	ıt					
6	533.25	+18.9975						
= -		24					View 2020	
= \$ = \$	27.176	597917 (8dp) (2dp)			Remar units	k: Reme	mber to write the	correct
		• • • c						

(b)(i) $\mathbf{P} = \begin{pmatrix} 1.8 \\ 2.5 \\ 1.5 \end{pmatrix}$	$\mathbf{OR}\left(\begin{array}{c} 1.80\\ 2.50\\ 1.50\end{array}\right)$
(b)(ii) $\mathbf{W} = \begin{pmatrix} 52 & 8 & 27 \\ 48 & 13 & 21 \end{pmatrix}$	
(b)(iii) $\mathbf{R} = \mathbf{WP}$ $= \begin{pmatrix} 52 & 8 & 27 \\ 48 & 13 & 21 \end{pmatrix} \begin{pmatrix} 1.8 \\ 2.5 \\ 1.5 \end{pmatrix}$ $= \begin{pmatrix} 154.1 \\ 150.4 \end{pmatrix}$	
 (b)(IV) The elements of matrix R represent the amount collected from the sales of waffles for the months of June and July respectively. OR The elements of matrix R represent the amount collected from the sales of waffles for each month. OR 154.1 represents the amount collected from the sales of waffles for the month of June. 150.4 represents the amount collected from the sales of waffles for the month of June. 	Remark: Profit means selling price – cost price, different from amount of money collected
(b)(v) $\begin{pmatrix} 1 & 1 \\ 48 & 13 & 21 \end{pmatrix}$ = $\begin{pmatrix} 100 & 21 & 48 \end{pmatrix}$	

8	(c)	The n Inform	nasses of eggs at Farm B are also nation relating to the masses of e	measured and recorded. eggs at Farm B are given below.				
			Mean = 53g Standard Deviation = 9g					
		(i)	A worker at Farm B says to a worker at Farm A:					
			"The masses of the eggs at my farm are more consistent than the masses of the eggs at your farm."					
			Do you agree with the worker a mathematical calculations.	at Farm B? Explain with	[2]			
		(ii)	The worker at Farm B realises Hence the mass of each egg sho mass.	that the weighing machine is spoilt. ould be 1g more than the measured				
			State the correct mean and stan eggs at Farm B.	dard deviation of the masses of	[2]			
Rer ap	nark: plicab	Deduct le	U for missing/ incorrect units ir	any part for this question where				
Solu (a)(50 100 Mec	ution: i) -×80 = lian =	= 40egg 53g	S	Remark: Remember to write the co units	prrect			
(a)(ii)							
$\frac{30}{100}$	-×80 =	= 24egg ntile = 4	s 48g	Remark: Remember to write the counits	orrect			
(a)(<u>25</u> 100 Low <u>75</u> 100 Upp Inter	iii) -×80 = -×80 = -×80 = er qua rquarti	= 20egg artile = = 60egg rtile = 5 le rang	46g s 58g e = 58 - 46 = 12g	Remark: -Remember to show working -Remember to write the correct unit	.5			
(b)(i)							
Free Free m=	quency quency 18-6	for may for may for magnetic for magnetic for magnetic for magnetic for magnetic formation $\delta = 12$ (ass, $x \le 45 = 18$ ass, $x \le 35 = 6$ Shown)					
OR								
6+ m=	m + 30 80 - 6	32 = 30 = 30 = 30	80 32 = 12 (Shown)					

(b)(ii)					
P(both eggs 1	nore than 55g	()			
$=\frac{32}{80}\times\frac{31}{79}$					
$=\frac{62}{395}$					
575					
(c)(i)			I		
Mid value (x)	30	40	50	60	
Mass	$25 < x \le 35$	$35 < x \le 45$	$45 < x \le 55$	$55 < x \le 65$	
(x g)					
Frequency	6	12	30	32	
Mean of mas Standard dev = 9.16515139	ses of eggs at iation of mass 9=9.17g (3sf)	Farm $A = 51$ ses of eggs at	g Farm A		
The standar smaller than	d deviation o that of Farm	of the masses n A. Hence th	of eggs at Fa	arm B, 9g., [,] is eggs at Farm B:	
is more consi	stent than tha	t of Farm A.	So I agree w	ith the worker	1
at Farm B.					
(c)(ii)					
Correct Mear	n = 54g				
Correct Stand	lard Deviation	n = 9g			

9.	Answer the whole of this question on a sheet of graph paper.											
,	The variables x and y are connected by the equation											
	$y = \frac{x}{4} \left(8 - 6x + x^2 \right).$											
	Some corresponding values of x and y , correct to 2 decimal places, are given in											
	the table below.											
		x	-l 3 75	0	0.5	1	1.5	2	2.5	3	5	
	(a)	Ca	lculate t	he value	of k .	0.75	0.47	0	-0.47	-0.75	5.75	
	(b) Using a scale of 2 cm to represent 1			l unit, draw a horizontal x-axis for				[1]				
	$-1 \le x \le 5$. Using a scale of 2 cm to represent 1 unit, draw a vertical y-axis for $-4 \le v \le 4$											
	On your axes, plot the points given in the table and join them with a											
	(c)	sm Th	ooth cui	rve. $r^3 - t$	$5r^2 \pm 8r$	12 1	as only	one sol	ution			[3]
	Explain how this can be seen from your graph.								[2]			
	(d) (e)	By	drawin	g a tange e L has :	ent, find pradient	the grad -0.5 ar	lient of or	the curv s throug	e at the	point (1, int (3, 1	, 0.75).).	[2]
	(c) (f) E has gradient = 0.5 and passes through the point (5, 7). Draw line L on the same axes for $-1 \le x \le 5$.								[2]			
		(u)	wr inte	rsect.	the x-c	oordinat	e of the	point w	here the	two gra	phs	
	-	(iii) Thi	s value	of x is a	solution	of a cul	bic equa	tion. Wi	rite dow	n the	
			cub R a	ne equat	ion in th ers.	ne form	$x^{2} + Px^{2}$	+Qx+	R=0, W	here P,	Q and	[2]
Sol	ution	: [G	raph at	tached]			Rema	rk: Rem	nember t	o write	k= not v	=
(a) $k = 0.66$ (2dp)												
										1		
(0)												
L	1				1	1		3. 1.4 × 1	1000 M	1		

(c)	
$x^3 - 6x^2 + 8x = -12$	
$x\left(x^2-6x+8\right)=-12$	
$\frac{x}{4}\left(x^2-6x+8\right)=-3$	
$\frac{x}{4}\left(8-6x+x^2\right)=-3$	
y = -3 (Draw line $y = -3$. See graph in (b))	
The line $y = -3$ cuts the curve	
$y = \frac{x}{4} (8 - 6x + x^2)$ at only one point.	
Hence $x^3 - 6x^2 + 8x = -12$ has only one solution.	•
(d) Gradient = -0.25	Ĩ
() (P)	
(e)(i)	
(e)(i) $y = -\frac{1}{2}x + c$	Remark: line $y = -\frac{1}{2}x + \frac{5}{2}$ must be drawn
(e)(1) $y = -\frac{1}{2}x + c$ $1 = -\frac{1}{2}(3) + c$	Remark: line $y = -\frac{1}{2}x + \frac{5}{2}$ must be drawn for $-1 \le x \le 5$ as defined in question: Passes through $(-1, 3), (3, 1)$ and $(5, 0)$
$y = -\frac{1}{2}x + c$ $1 = -\frac{1}{2}(3) + c$ $c = \frac{5}{2}$	Remark: line $y = -\frac{1}{2}x + \frac{5}{2}$ must be drawn for $-1 \le x \le 5$ as defined in question: Passes through $(-1, 3)$, $(3, 1)$ and $(5, 0)$
(e)(i) $y = -\frac{1}{2}x + c$ $1 = -\frac{1}{2}(3) + c$ $c = \frac{5}{2}$ $y = -\frac{1}{2}x + \frac{5}{2}$	Remark: line $y = -\frac{1}{2}x + \frac{5}{2}$ must be drawn for $-1 \le x \le 5$ as defined in question: Passes through $(-1, 3)$, $(3, 1)$ and $(5, 0)$
(e)(i) $y = -\frac{1}{2}x + c$ $1 = -\frac{1}{2}(3) + c$ $c = \frac{5}{2}$ $y = -\frac{1}{2}x + \frac{5}{2}$ See graph in (b)	Remark: line $y = -\frac{1}{2}x + \frac{5}{2}$ must be drawn for $-1 \le x \le 5$ as defined in question: Passes through $(-1, 3), (3, 1)$ and $(5, 0)$
(e)(i) $y = -\frac{1}{2}x + c$ $1 = -\frac{1}{2}(3) + c$ $c = \frac{5}{2}$ $y = -\frac{1}{2}x + \frac{5}{2}$ See graph in (b) (e)(ii) $x = 4.18$	Remark: line $y = -\frac{1}{2}x + \frac{5}{2}$ must be drawn for $-1 \le x \le 5$ as defined in question: Passes through $(-1, 3)$, $(3, 1)$ and $(5, 0)$
(e)(i) $y = -\frac{1}{2}x + c$ $1 = -\frac{1}{2}(3) + c$ $c = \frac{5}{2}$ $y = -\frac{1}{2}x + \frac{5}{2}$ See graph in (b) (e)(ii) $x = 4.18$	Remark: line $y = -\frac{1}{2}x + \frac{5}{2}$ must be drawn for $-1 \le x \le 5$ as defined in question: Passes through $(-1, 3)$, $(3, 1)$ and $(5, 0)$ (Accept $4.1 \le x \le 4.3$)
(e)(i) $y = -\frac{1}{2}x + c$ $1 = -\frac{1}{2}(3) + c$ $c = \frac{5}{2}$ $y = -\frac{1}{2}x + \frac{5}{2}$ See graph in (b) (e)(ii) $x = 4.18$	Remark: line $y = -\frac{1}{2}x + \frac{5}{2}$ must be drawn for $-1 \le x \le 5$ as defined in question: Passes through $(-1, 3), (3, 1)$ and $(5, 0)$ (Accept $4.1 \le x \le 4.3$)
(e)(i) $y = -\frac{1}{2}x + c$ $1 = -\frac{1}{2}(3) + c$ $c = \frac{5}{2}$ $y = -\frac{1}{2}x + \frac{5}{2}$ See graph in (b) (e)(ii) $x = 4.18$ (e)(iii) $\frac{x}{4}(8 - 6x + x^2) = -\frac{1}{2}x + \frac{5}{2}$	Remark: line $y = -\frac{1}{2}x + \frac{5}{2}$ must be drawn for $-1 \le x \le 5$ as defined in question: Passes through $(-1, 3), (3, 1)$ and $(5, 0)$ (Accept $4.1 \le x \le 4.3$)
(e)(i) $y = -\frac{1}{2}x + c$ $1 = -\frac{1}{2}(3) + c$ $c = \frac{5}{2}$ $y = -\frac{1}{2}x + \frac{5}{2}$ See graph in (b) (e)(ii) $x = 4.18$ (e)(iii) $\frac{x}{4}(8 - 6x + x^2) = -\frac{1}{2}x + \frac{5}{2}$ $x(8 - 6x + x^2) = -2x + 10$	Remark: line $y = -\frac{1}{2}x + \frac{5}{2}$ must be drawn for $-1 \le x \le 5$ as defined in question: Passes through $(-1, 3), (3, 1)$ and $(5, 0)$ (Accept $4.1 \le x \le 4.3$)
(e)(i) $y = -\frac{1}{2}x + c$ $1 = -\frac{1}{2}(3) + c$ $c = \frac{5}{2}$ $y = -\frac{1}{2}x + \frac{5}{2}$ See graph in (b) (e)(ii) $x = 4.18$ (e)(ii) $\frac{x}{4}(8 - 6x + x^2) = -\frac{1}{2}x + \frac{5}{2}$ $x(8 - 6x + x^2) = -2x + 10$ $8x - 6x^2 + x^3 = -2x + 10$	Remark: line $y = -\frac{1}{2}x + \frac{5}{2}$ must be drawn for $-1 \le x \le 5$ as defined in question: Passes through $(-1, 3), (3, 1)$ and $(5, 0)$ (Accept $4.1 \le x \le 4.3$)

628

(c) $x^3-6x^2+8x=-12$

 $\frac{x}{x}(x^2-6x+8)=-12$

x/4 (8-6x + x^2) = -3

Draw line y =-3

y= -3 intersects graph y= x/4 (8- 6x + x^2) only at 1 point

Hence $x^3-6x^2+8x=-12$ only has one solution

(d) Gradient at (1, 0.75) = 0 - 1/4 - 0

= - 0.25

(e) (i) y= - 0.5 x + b

1=-0.5(3)+b

b= 2.5

y = -0.5x + 2.5

x	-1	0	5
У	3	2.5	0

(ii) x= 4.2 (Accept 4.1 \le x \le 4.3) (iii) x/4 (8- 6x +x²) = -0.5 x + 2.5 8x - 6x² + x³ = -2x + 10 x³-6x² + 10x -10 = 0

(b) Volume of carbonated drink in each soda can $=\frac{90}{100} \times 529.067503$ $= 476.1607527 \text{ cm}^3$	Remarks: Remember to write clear statements and the correct units at each solution step
Mass of each soda can and carbonated drink = $(476.1607527 \times 1.3) + 15$ = 634.0089785g	
Maximum number of cans based on mass $= \frac{55 \times 0.45 \times 1000}{634.0089785}$ $= 39.03730205$	
= 39cans (nearest whole number rounded down)	
Number of layers of cans based on height $= \frac{27}{12.4}$	
= 2.177419355	- *
= 2 layers of cans	
(nearest whole number rounded down)	
Number of cans based on length of basket	4
$=\frac{40}{7.0}$	
= 5.063291139	
= 5 cans (nearest whole number rounded down)	
Number of cans based on width of basket	
$=\frac{25}{7.9}$	
= 3.164556962	
= 3 cans (nearest whole number rounded down)	
Maximum number of cans based on dimensions = $5 \times 3 \times 2$	
= 30 cans	
Since the maximum number of cans by dimensions, 30 cans, is less than the maximum number of cans by mass, 39 cans, the maximum number of cans Harry can transport by basket is 30 cans.	