Class：

（8）
 南唀中學

 NAN CHIAU HIGH SCHOOL
 PRELIMINARY EXAMINATION（2） 2018
 SECONDARY FOUR EXPRESS

MATHEMATICS

4048／01

Paper 1

6 August 2018，Monday
Candidates answer on the Question Paper 2 hours

READ THESE INSTRUCTIONS FIRST

Write your name，class and index number on all the work you hand in．
Write in dark blue or black pen．
You may use a 2B pencil for any diagrams or graphs．
Do not use staples，paper clips，highlighters，glue or correction fluid．
Answer all questions．
If working is needed for any question it must be shown with the answer．
Omission of essential working will result in loss of marks．
The use of an approved calculator is expected，where appropriate．
If the degree of accuracy is not specified in the question，and if the answer is not exact，give the answer to three significant figures．Give answers in degrees to one decimal place．
For π ，use either your calculator value or 3.142 ，unless the question requires the answer in terms of π ．
The number of marks is given in brackets［ ］at the end of each question or part question．
The total marks for this paper is 80 ．

Mathematical Formulae

Compound interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\begin{gathered}
\text { Curved surface area of a cone }=\pi r l \\
\text { Surface area of a sphere }=4 \pi r^{2} \\
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3} \\
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C \\
\text { Arc length }=r \theta \text {, where } \theta \text { is in radians } \\
\text { Sector area }=\frac{1}{2} r^{2} \theta \text {, where } \theta \text { is in radians }
\end{gathered}
$$

Trigonometry

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\Sigma f x}{\Sigma f} \\
\text { Standard deviation } & =\sqrt{\frac{\Sigma f x^{2}}{\Sigma f}-\left(\frac{\Sigma f x}{\Sigma f}\right)^{2}}
\end{aligned}
$$

Answer all the questions.

1 A range of values of x is represented on the number line below.

Write down inequalities that represent this range of values of x.
Answer

2 The stem-and-leaf diagram shows the masses, in grams, of some oranges.

19	1	2	2	m	5	6	6	8
20	0	0	3	4	6			
21	1	4	7					

Key: $\quad 19 \left\lvert\, \begin{array}{ll}2 & \text { represents } 192 \text { grams }\end{array}\right.$
(a) Find the median of these masses.
Answer median =
(b) Given that the interquartile range is 10 , find the value of m.

$$
\text { Answer } m=\text {. }
$$

3 Given that $2^{x+1}+2^{x}=24$, find the value of x.

4 The diagram shows part of the curve $y=a x^{2}+b x+10$. It cuts the x-axis at 5 and the coordinates of the maximum point is $(1.5,12.25)$. Find the value of a and of b.

$$
\text { Answer } \begin{aligned}
a & = \\
b & =
\end{aligned}
$$

5 The first four terms in a sequence of numbers $T_{1}, T_{2}, T_{3}, T_{4}, \ldots$, are given below.

$$
\frac{1}{3}, \frac{7}{15}, \frac{13}{35}, \frac{19}{63}, \ldots
$$

Find an expression, in terms of n, for T_{n}.

Answer $T_{n}=$

6 The diagram shows an irregular polygon.
Find the sum of all interior angles of this polygon.

Answer .

7 The diagram shows the speed-time graph of a remote controlled toy car for the first 30 seconds of the journey.

(a) Given that the deceleration of the car is $0.5 \mathrm{~m} / \mathrm{s}^{2}$, find the greatest speed, $u \mathrm{~m} / \mathrm{s}$.

$$
\text { Answer } u=
$$

(b) Calculate the average speed of the car for the first 30 seconds of the journey.

Answer \qquad m/s
(c) Sketch the distance-time graph below for the car's journey.

Answer

$8 \varepsilon=\{$ natural number less than 10$\}$
$A=\{$ factors of 6$\}$
$B=\{$ prime numbers $\}$
$C=\{$ perfect squares $\}$
Use one of the symbols below to complete each statement.

$$
\emptyset \quad \in \subseteq \subset \nsubseteq
$$

(a) $B \cap C=$
(b) $\{2,3\} \ldots \ldots \ldots \ldots A$
(c) 8 \qquad $(A \cup B)^{\prime} \cap C^{\prime}$

9 (a) Factorise $9 x^{2}-3 x-16 y^{2}+4 y$ completely.

Answer

(b) Given that $(2 x-1)^{4}+(y+2)^{4}=0$, find the value of $x-y$.

10 The diagram shows a milk container which is made up of a frustum and a cylinder. The height, $h \mathrm{~cm}$, of the cylinder is the same as the height of the frustum. The radius of the cylinder base is twice the radius of the top circular surface of the frustum, $r \mathrm{~cm}$. Given that the curved surface areas of the frustum and cylinder are equal, find an expression for h, in terms of r.

11 Solve $\frac{2}{1-x^{2}}-\frac{3}{x-1}=5$.

12 In the diagram $P Q R S$ represents a plot of land. A multi-storey carpark is to be built within $P Q R S$ with the following conditions:

- nearer to $P S$ than $P Q$,
- nearer to P than S and
- nearer to Q than P.

Shade the region where the carpark is to be built.

13 Given $A B C$ is a triangle where $\overrightarrow{A B}=\binom{5}{-1}$ and $\overrightarrow{A C}=\binom{-1}{8}$.
(a) Find $\overrightarrow{B C}$.

Answer [2]
(b) Hence, or otherwise, show that $\angle B A C=108.4^{\circ}$.

Answer
(c) Hence, calculate the area of $\triangle A B C$.

14 Four numbers a, b, c, d are such that $a+b+c+d=14$ and $a^{2}+b^{2}+c^{2}+d^{2}=54$.
When the fifth number, e, is added, the standard deviation of the five numbers became 1 . Find the value of e.

Answer $e=$

15 The line graph below shows the profit made by Company X over the 4 years.

State one aspect of the graph that may be misleading and explain how this may lead to a misinterpretation of the graph.

Answer \qquad
\qquad
\qquad

16 The diagram shows a circle $A B C$, with centre $O . A C$ is the diameter of the circle. M is the midpoint of chord $A B$ and $T A P$ is tangent to the circle at point A.

Show, with reasons, that $\angle B A P=\angle A O M$.
Answer

17 Mrs Teo wishes to open an account with a bank by investing $\$ 5000$ for 5 years.
Bank A offers 3\% per annum, compounded half-yearly.
Bank B offers $r \%$ per annum simple interest.
Given that both banks offer the same amount of interest at the end of 5 years, find the value of r.

In the diagram, A, B, C and D are points on a circle, centre O.
Angle $A B C=83^{\circ}$ and angle $A C D=52^{\circ}$.
Find angle $O D C$.
\qquad \circ

19 (a) The volume of cube A is $1176 x \mathrm{~cm}^{3}$, where the length of the sides is an integer.
Find the smallest possible positive integer x.

$$
\text { Answer } x=
$$

(b) What is the maximum number of cube A that a container of dimensions 5 m by 1 m by 3 m can hold?

20 Singapore Chinese Dance Theatre put up a production in July.
The tickets pricing for senior citizens, students and adults were $\$ 28, \$ 38$ and $\$ 48$ respectively This information can be represented by the matrix $\mathbf{Q}=\left(\begin{array}{l}28 \\ 38 \\ 48\end{array}\right)$
(a) 2 senior citizens, 15 students and 10 adults order tickets through NC School.

21 students and x adults order tickets through RV School.
Represent this information in a 2×3 matrix \mathbf{P}.

$$
\begin{equation*}
\text { Answer } \mathbf{P}=(\quad)_{R V}^{N C} \tag{1}
\end{equation*}
$$

(b) Find the matrix \mathbf{R}, in terms of x, such that $\mathbf{R}=\mathbf{P Q}$.

$$
\text { Answer } \mathbf{R}=(\quad)
$$

(c) Explain what each element in matrix \mathbf{R} represents.
\qquad
\qquad
(d) The total amount of money collected from NC School is less than RV School. Work out the least value of x.

$$
\text { Answer } x=
$$

(e) All tickets ordered through school will be entitled to a 25% discount for senior citizens, 20% discount for students and 15% discount for adults. Write down matrix D such that the elements in matrix multiplication of PDQ gives the total amount of money collected from each school after discount.

$$
\text { Answer } \mathbf{D}=
$$

21 Anna and Betty have been given a task to complete 24 stamps in 15 days. If Anna fall sick after 12 days, Betty will take additional 2 days to complete the task. If Betty fall sick after 12 days, Anna will take additional n days to complete the task.
(a) Find the value of n.

$$
\text { Answer } n=
$$

(b) State an assumption you have made for part (a).
\qquad

22 The cost of a mobile phone plan, $\$ C$, with respect to the amount of additional talktime, t minutes, by the user can be represented by the graph below.

(a) State the equation of this line.

> Answer
(b) Explain what the vertical C-intercept value represents.

Answer \qquad
\qquad
(c) Give a reason why the cost is not directly proportional to the additional talktime.

Answer \qquad
\qquad

23 The graph of $y=\frac{1}{x-1}+2$ is drawn on the grid.

(a) The equation $x^{2}-x=1$ can be solved by drawing a suitable straight line on the grid. Find the equation of this straight line.

Answer
[2]
(b) By drawing the straight line from part (a), solve the equation $x^{2}-x=1$.

$$
\text { Answer } x=
$$

\qquad or

NAN CHIAU HIGH SCHOOL
 PRELIMINARY EXAMINATION（2） 2018
 SECONDARY FOUR EXPRESS

MATHEMATICS

4048／02
10 September 2018，Monday
2 hours 30 minutes
Additional materials：Writing Papers（8 sheets） Graph Paper（1 sheet）

READ THESE INSTRUCTIONS FIRST

Write your name，class and index number at the top of the cover page．
Write in dark blue or black pen．
You may use a pencil for any diagrams or graphs．
Do not use staples，paper clips，highlighters，glue or correction fluid．
Answer all questions．
If working is needed for any question it must be shown with the answer．
Omission of essential working will result in loss of marks．
Calculators should be used where appropriate．
If the degree of accuracy is not specified in the question，and if the answer is not exact，give the answer to three significant figures．Give answers in degrees to one decimal place．
For π ，use either your calculator value or 3.142 ，unless the question requires the answer in terms of π ．

At the end of the examination，fasten all your work securely together．
The number of marks is given in brackets［ ］at the end of each question or part question．
The total marks for this paper is $\mathbf{1 0 0}$ ．

Setter：Mrs Sim Hwee Mung

This document consists of $\mathbf{1 2}$ printed pages including the cover page．

Mathematical Formulae

Compound interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

$$
\begin{gathered}
\text { Curved surface area of a cone }=\pi r l \\
\text { Surface area of a sphere }=4 \pi r^{2} \\
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h \\
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3} \\
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C \\
\text { Arc length }=r \theta \text {, where } \theta \text { is in radians } \\
\text { Sector area }=\frac{1}{2} r^{2} \theta \text {, where } \theta \text { is in radians }
\end{gathered}
$$

Trigonometry

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\Sigma f x}{\Sigma f} \\
\text { Standard deviation } & =\sqrt{\frac{\Sigma f x^{2}}{\Sigma f}-\left(\frac{\Sigma f x}{\Sigma f}\right)^{2}}
\end{aligned}
$$

Answer all questions.
1 (a) Simplify $\frac{(2 x y)^{2}}{35 x y^{7}} \div\left(\frac{x^{-1} y^{-2}}{4}\right)^{-2}$, leaving your answer in positive index form.
(b) Solve the inequality $\frac{1}{4} x-\frac{3}{5}\left(x+\frac{1}{3}\right) \geq \frac{1}{2}(x-9)$.
(c) (i) Express $\frac{2}{1-2 x}+\frac{3(x-1)}{2 x^{2}-5 x+2}+\frac{1}{x-2}$ as a single fraction in its simplest form.
(ii) Hence solve the equation $\frac{2}{1-2 x}+\frac{3(x-1)}{2 x^{2}-5 x+2}+\frac{1}{x-2}=\frac{3}{x-2}$.

2 (a) $P Q R S$ is a parallelogram in which the coordinates of P and Q are $(p, 4)$ and $(7,11)$ respectively. The line $9 y+27-7 x=0$ cuts the y-axis at R and is parallel to the line $P Q$.
Find
(i) the value of p,
(ii) the coordinates of S by vector method.
(b) In the diagram, $W X Y Z$ is a parallelogram and U is a point on $Z Y$ such that $W Z=W U$. The lines $W Y$ and $U X$ intersect at V.

Prove that $\triangle W U Y$ is congruent to $\triangle X Y U$.

3 (a) The radius of a particular spherical cell is approximately 6.2×10^{-11} metre.
(i) 88 of these spherical cells are arranged to form a straight line such that each cell touches one another without overlapping. Calculate the length, in metre, of the straight line formed. Give your answer in standard form.
(ii) Calculate the volume of a spherical cell, in cubic centimetre. Give your answer in standard form correct to 2 decimal places.
(b) The planet Mercury is approximately 77 billion metre from the Earth. Given that radio waves travel at a speed of $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$, find the time taken for radio waves to travel from the Earth to Mercury, giving your answer to the nearest minutes.
(c) The word 'Googol' is defined as 1×10^{100}. If a man has ten 'Googol' cents and a Boeing 737 aircraft costs $\$ 72$ million, how many such aircrafts can he buy? Give your answer in standard form correct to 5 significant figures.

4 In the diagram, $\overrightarrow{O A}=12 \boldsymbol{p}$ and $\overrightarrow{O B}=9 \boldsymbol{q}$.
It is given that $3 D B=2 O B$ and $O A=3 O C$.

(a) Express, as simply as possible, in terms of \boldsymbol{p} and \boldsymbol{q},
(i) $\overrightarrow{B C}$,
(ii) $\overrightarrow{D A}$.
(b) Given that $\frac{\text { area of triangle } O D E}{\text { area of triangle } O D A}=\frac{1}{4}$, find $\overrightarrow{O E}$ in terms of \boldsymbol{p} and \boldsymbol{q}.
(c) Find the value of $\frac{\text { area of triangle } B D E}{\text { area of quadrailateral } E D O C}$.

5 Answer the whole of this question on a sheet of graph paper.

A radioactive substance decays such that its mass, m grams, after d days is given by the equation $m=43(3)^{-d}$.
The table below shows record of the mass, m grams of the substance, corrected to 1 decimal place, after d days.

d (days)	0	1	2	3	4	5	6
m (grams)	43	14.3	4.8	p	0.5	0.2	0.1

(a) Find the value of p.
(b) Using a horizontal scale of 2 cm to represent 1 day and a vertical scale of 2 cm to represent 5 grams, draw the graph of $m=43(3)^{-d}$ for $0 \leq d \leq 6$.
(c) Use your graph to estimate the value of d when the mass of substance is reduced to 65% of its original mass.
(d) By drawing a tangent, find the gradient of the curve at the point when $d=2.5$.
State briefly what this gradient represents.
(e) Using your graph, find the range of d for $86(3)^{-d}+12 d<60$.
$6 P Q R$ represents a triangular plot of land on horizontal ground.
$P Q=50 \mathrm{~km}, Q R=107 \mathrm{~km}$ and $P R=125 \mathrm{~km}$.
R is due east of P.

(a) Calculate
(i) the bearing of Q from P,
(ii) the bearing of P from Q,
(iii) the obtuse angle $P Q R$,
(iv) the area of the triangular plot of land $P Q R$.
(b) A vertical pole of height 9 km is erected at Q. Calculate the greatest angle of elevation of the top of the pole from a point S along $P R$.

7 In the diagram, the circle C_{1} with centre X has a radius $(3 r+1) \mathrm{cm}$, where r is a constant. Two identical semicircles, S_{1} and S_{2} with centre at Y and Z respectively, have a radius $(13-6 r) \mathrm{cm}$.
Another semicircle, S_{3} with centre O has a diameter $A B$.
C_{1} touches S_{1} and S_{2} at P and Q respectively while S_{1} and S_{2} touches one another at O. S_{3} touches C_{1}, S_{1} and S_{2} at R, A and B respectively.
$A Y O Z B$ is a straight line.

(a) Write down an expression, in its simplest form and in terms of r, for
(i) $X Z$,
(ii) $X O$.
(b) Hence, form an equation in terms of r and show that it reduces to $126 r^{2}-411 r+299=0$.
(c) Solve the equation $126 r^{2}-411 r+299=0$.
(d) Hence, find the area of the shaded region.

8 (a) The diagram shows a circle with centre O and radius of $12 \mathrm{~cm} . A B$ is the diameter of the circle and $A C$ is a tangent to the circle at A with $A C=17 \mathrm{~cm}$. The circle intersects the line $B C$ at D.

(i) Show that angle $D O A=1.23$ radians.

Calculate
(ii) the length of minor arc $A D$,
(iii) the area of the shaded region.
(b) Diagram I shows an open container which is made up of a cylinder and a cone. The cylinder has radius $r \mathrm{~cm}$ and height 30 cm .
The cone has base radius $r \mathrm{~cm}$ and slant height $l \mathrm{~cm}$.
The container is fully filled with water.
Diagram II shows a spherical object in which half of it is immersed into the container and some water is displaced. The radius of the sphere is the same as the radius of the cylinder. Assume the thickness of the container and the spherical object are negligible.

Given that the volume of the water displaced is $1152 \pi \mathrm{~cm}^{3}$ and the volume of the water left in the container is $3600 \pi \mathrm{~cm}^{3}$, find
(i) the value of r and of l,
(ii) the total internal area of the container and the sphere that is in contact with water, leaving your answer in terms of π.

9 (a) The following box-and-whisker diagrams show the distribution of the mass of 300 students from each school, SK Secondary School and HG Secondary School respectively.

(i) What is the median mass for each school?
(ii) Compare the mass of the students from SK Secondary School and HG Secondary School in two ways.
(iii) Mary commented that there are more students in HG Secondary School than SK Secondary School who weigh more than or equal to 70 kg . Do you agree with Mary? Support with a reason.
(b) The cumulative frequency curve shows the height distribution of 80 plants.

(i) Use the graph to find
(a) the value of m, if 32.5% of the plants have heights more than m cm ,
(b) the probability that two plants chosen will each has a height of more than 118 cm .
(ii) (a) The height distribution of the 80 plants was also recorded in the following frequency table. Find the value of a and of b.

Height $(\boldsymbol{h} \mathbf{~ c m})$	Number of plants
$60<h \leq 70$	2
$70<h \leq 80$	a
$80<h \leq 90$	9
$90<h \leq 100$	27
$100<h \leq 110$	23
$110<h \leq 120$	b
$120<h \leq 130$	4

(b) Hence find the mean and the standard deviation of the height of the 80 plants.

10 Mr and Mrs Tan bought a 3-bedroom unit at a newly launched condominium project at Serangoon. The unit has a floor area of 1152 square foot (sqft). The selling price for the unit is at $\$ 1494$ per sqft. The developer gives a 5% early bird discount to all buyers.
(a) Calculate the price that they paid for the unit.

Mr and Mrs Tan are both Singapore citizens and they also owned a HDB 5-room flat and they do not have any intention of selling their flat. As such, they will have to pay Additional Buyer's Stamp Duty (ABSD) to the government on top of the Buyer's Stamp Duty (BSD). Table 1 shows the BSD rate and Table 2 shows the ABSD rate.

Table 1. BSD

Based on purchase price	Rate
First $\$ 180000$	1%
Next $\$ 180000$	2%
Next $\$ 640000$	3%
Remaining amount	4%

Table 2. ABSD

Based on purchase price	Rate
SC^{1} buying first residential property	NA
SC^{1} buying second residential property	12%
SC^{1} buying third and subsequent residential property	15%

SC^{1} denotes Singapore Citizens
(b) Calculate the total Buyer's Stamp Duty paid by Mr and Mrs Tan.

Mr and Mrs Tan made a 20\% down-payment based on the amount paid for the unit obtained in (a). For the remaining amount, which exclude the total Buyer's Stamp Duty, they had decided to sign up either for a 20 -years Home Loan plan from CBCO Bank or a 30-years Home Loan plan from BSOP Bank.
(c) Determine which bank they should sign up if they can only afford a monthly instalment of not more than $\$ 6000$.
Support you answer with appropriate workings.

Simple Interest Rate for CBCO

Bank

Loan period: 20 years

$1^{\text {st }}$ year:	$2^{\text {nd }}$ Year:
2.18% p.a.	2.18% p.a.

Thereafter: 2.68% p.a.

Simple Interest Rate for BSOP

Bank

Loan period: 30 years

$1^{\text {st }}$ year:	$2^{\text {nd }}$ Year:
1.95% p.a.	1.95% p.a.
Thereafter: 2.15% p.a.	

Answer all the questions.

1 A range of values of x is represented on the number line below.

Write down inequalities that represent this range of values of x.

$$
\begin{equation*}
\text { Answer } \quad-2 \leq x<7 \quad \text { B1 } \tag{1}
\end{equation*}
$$

2 The stem-and-leaf diagram shows the masses, in grams, of some oranges.

$$
\begin{array}{c|cccccccc}
19 & 1 & 2 & 2 & m & 5 & 6 & 6 & 8 \\
20 & 0 & 0 & 3 & 4 & 6 & & & \\
21 & 1 & 4 & 7 & & & & &
\end{array}
$$

Key: $\quad 19 |$| 2 | represents 192 grams |
| :--- | :--- |

(a) Find the median of these masses.

$$
\begin{equation*}
\text { Answer median }=.199 \ldots \text { B1 } \tag{1}
\end{equation*}
$$

(b) Given that the interquartile range is 10 , find the value of m.

$$
\begin{array}{rlrl}
205-Q_{1} & =10 & \\
Q_{1} & =195 & \mathbf{M 1} \\
\therefore m & =5 & & \mathbf{A 1}
\end{array}
$$

$$
\text { Answer } m=\ldots \ldots .
$$

3 Given that $2^{x+1}+2^{x}=24$, find the value of x.

$$
\begin{array}{rlr}
2^{x}(2+1) & =24 \\
2^{x} & =8 & \text { M1 } \\
2^{x} & =2^{3} \\
\therefore x & =3 \quad \text { A1 }
\end{array}
$$

Answer $x=$ \qquad 3

4 The diagram shows part of the curve $y=a x^{2}+b x+10$. It cuts the x axis at 5 and the coordinates of the maximum point is $(1.5,12.25)$. Find the value of a and of b.

$$
\begin{aligned}
& y=a(x-1.5)^{2}+12.25 \\
& y=a\left(x^{2}-3 x+2.25\right)+12.25 \\
& \therefore a(2.25)+12.25=10 \quad \text { M1 } \\
& a=-1 \quad \text { A1 } \\
& \therefore b=3 \quad \text { B1 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { An: wer } a=\ldots \ldots \ldots \ldots \ldots \ldots \\
& b=\ldots 3
\end{aligned}
$$

5 The first four terms in a sequence of numbers $T_{1}, T_{2}, T_{3}, T_{4}, \ldots$, are given below.

$$
\frac{1}{3}, \frac{7}{15}, \frac{13}{35}, \frac{19}{63}
$$

Find an expression, in terms of n, for T_{n}.

Note: If students only find numerator or denominator, award B1
Answer $T_{n}=\ldots \frac{6 n-5}{4 n^{2}-1} \quad$ B2

6 The diagram shows an irregular polygon.
Find the sum of all interior angles of this polygon.

$$
\begin{aligned}
& 8 \times 180 \\
= & 1440^{\circ}
\end{aligned} \quad \text { M1 }
$$

Answer
1440
-

7 The diagram shows the speed-time graph of a remote controlled toy car for the first 30 seconds of the journey.

(a) Given that the deceleration of the car is $0.5 \mathrm{~m} / \mathrm{s}^{2}$, find the greatest speed, $u \mathrm{~m} / \mathrm{s}$.

Answer $u=$
$7.5 \quad$ B1
(b) Calculate the average speed of the car for the first 30 secinds of the journey.

$$
\begin{aligned}
\text { Total distance } & \left.=\frac{1}{2}(2+7.5)(5)+(7.5)(10)+\frac{1}{2}(7.5)(1.5)\right) \\
& =23.75+75+56.25 \\
& =155 \quad \text { M1 }
\end{aligned}
$$

$$
\text { Average speed }=\frac{155}{30}=5 \frac{1}{6}
$$

Only accept exact proper fraction

A1
Answer
m / s
(c) Sketch the distance-time graph below for the car's journey.

[3]
$8 \varepsilon=\{$ natural number less than 10$\}=\{1,2,3,4,5,6,7,8,9\}$
$A=\{$ factors of 6$\}=\{1,2,3,6\}$
$B=\{$ prime numbers $\}=\{2,3,5,7\}$
$C=\{$ perfect squares $\}=\{1,4,9\}$
Use one of the symbols below to complete each statement.

$$
\emptyset \quad \subseteq \subseteq \subset \nsubseteq
$$

(a) $B \cap C=$ \qquad B1
(b) $\{2,3\} \ldots \ldots \ldots, A$
B1
(c) 8 \qquad $(A \cup B)^{\prime} \cap C^{\prime}$
B1

9 (a) Factorise $9 x^{2} \quad 3 x \quad 16 y^{2}+4 y$ completely.

$$
\begin{array}{rlr}
& 9 x^{2}-16 y^{2}-3 x+4 y \\
= & (3 x-4 y)(3 x+4 y)-(3 x-4 y) & \text { M1 } \\
= & (3 x-4 y)(3 x+4 y-1) & \text { A1 }
\end{array}
$$

$$
\text { Answer }(3 x-4 y)(3 x+4 y-1)
$$

(b) Given that $(2 x-1)^{4}+(y+2)^{4}=0$, find the value of $x y$.

Since $(2 x-1)^{4} \geq 0$ and $(y+2)^{4} \geq 0, \quad$ B1 reason
$2 x-1=0$ and $y+2=0$
$x=\frac{1}{2}$ and $y=-2 \quad$ M1
$\therefore x-y=2.5 \quad$ A1

10 The diagram shows a milk container which is made up of a frustum and a cylinder. The height, $h \mathrm{~cm}$, of the cylinder is the same as the height of the frustum. The radius of the cylinder base is twice the radius of the top circular surface of the frustum, $r \mathrm{~cm}$. Given that the curved surface areas of the frustum and cylinder are equal, find an expression for h, in terms of r.

$$
\begin{gathered}
\frac{\text { Area }_{\text {small cone }}}{\text { Area }_{\text {big cone }}}=\left(\frac{1}{2}\right)^{2}=\frac{1}{4} \\
\text { Surface area of frustum }=3 \pi r \sqrt{h^{2}+r^{2}} \\
3 \pi r \sqrt{h^{2}+r^{2}}=2 \pi(2 r) h \\
3 \sqrt{h^{2}+r^{2}}=4 h \\
9\left(h^{2}+r^{2}\right)=16 h^{2} \\
9 r^{2}=7 h^{2} \\
h^{2}=\frac{9 r^{2}}{7} \\
h=\frac{3}{\sqrt{7}} r \text { or } \frac{3 \sqrt{7}}{7} r \text { or } 1.13 r
\end{gathered}
$$

11 Solve $\frac{2}{1-x^{2}}-\frac{3}{x-1}=5$.

$$
\begin{array}{cl}
\frac{2}{(1-x)(1+x)}+\frac{3}{1-x}=5 \\
\frac{2+3(1+x)}{(1-x)(1+x)}=5 \quad \text { M1 } \\
2+3(1+x)=5(1-x)(1+x) & \\
5 x^{2}+3 x=0 \\
x(5 x+3)=0 & \text { M1 } \\
x=0 \quad \text { or } x=-\frac{3}{5} \quad \text { A1 } \\
\text { Answer } x=\ldots \ldots \ldots \ldots \ldots \ldots \ldots
\end{array}
$$

12 In the diagram $P Q R S$ represents a plot of land. A multi-storey carpark is to be built within $P Q R S$ with the following conditions:

- nearer to $P S$ than $P Q$,
- nearer to P than S and
- nearer to Q than P.

Shade the region where the carpark is to be built.

13 Given $A B C$ is a triangle where $\overrightarrow{A B}=\binom{5}{-1}$ and $\overrightarrow{A C}=\binom{-1}{8}$.
(a) Find $\overrightarrow{B C}$.

$$
\begin{array}{rlr}
\overrightarrow{B C} & =\overrightarrow{B A}+\overrightarrow{A C} \\
& =-\binom{5}{-1}+\binom{-1}{8} & \text { м1 } \\
& =\binom{-6}{9} & \text { A1 }
\end{array}
$$

(b) Hence, or otherwise, show that $\angle B A C=108.4^{\circ}$.

Answer
"Hence" method
$\begin{aligned} &|\overrightarrow{B C}|=\sqrt{117} \\ &|\overrightarrow{A B}|=\sqrt{26} \\ &|\overrightarrow{A C}|=\sqrt{65} \\ & 117=26+65-(\sqrt{26})(\sqrt{65}) \cos \angle B A C \quad \mathrm{M} 1 \\ & \cos \angle B A C=-0.3162277 \\ & \angle B A C=108.4^{\circ} \quad \mathrm{A} 1\end{aligned}$
\qquad

$$
x-2
$$

(b) ${ }^{\circ}$, or 108.4°
"Otherwise" method

$$
\begin{aligned}
\angle B A C & =90+\tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{8} \\
& =108.4^{\circ}
\end{aligned}
$$

(c) Hence, calculate the area of $\triangle A B C$.

$$
\begin{array}{rlrl}
\text { Area } & =\frac{1}{2}(\sqrt{26})(\sqrt{65}) \sin 108.4 & & \text { M1 length of } \mathrm{AB} \text { and } \mathrm{AC} \\
& =19.5 \text { units }^{2} & & \text { M1 formula } \\
& & \text { A1 }
\end{array}
$$

If students calculate the length in part (b), award them the M1 too.

14 Four numbers $a, b, c ; d$ are such that $a+b+c+d=14$ and $a^{2}+b^{2}+c^{2}+d^{2}=54$.
When the fifth number, e, is added, the standard deviation of the five numbers became 1 . Find the value of e.

$$
\begin{array}{cc}
\sqrt{\frac{54+e^{2}}{5}-\left(\frac{14+e}{5}\right)^{2}}=1 \\
\frac{5\left(54+e^{2}\right)-(14+e)^{2}}{25} & =1 \\
270+5 e^{2}-196-28 e-e^{2}=25 \\
4 e^{2}-28 e+49=0 \\
(2 e-7)^{2}=0 & \text { M1 } \\
e=3.5 & \text { M1 }
\end{array}
$$

Afiswer $e=$.

$$
3.5
$$

15 The line graph below shows the profit made by Company X over the 4 years.

State one aspect of the graph that may be misleading and explain how this may lead to a misinterpretation of the graph.

B1
Answer
The vertical axis is inconsistent, hence making the increase from 2016 to 2017
looks the same as the increase from 2018 to 2019, but the actual is lesser.

```
B1
```

OR The data for 2019 is invalid. There can be a decrease instead of increase.

16 The diagram shows a circle $A B C$, with centre $O . A C$ is the diameter of the circle. M is the midpoint of chord $A B$ and $T A P$ is tangent to the circle at point A.

Show, with reasons, that $\angle B A P=\angle A O M$.
Answer

$$
\left.\begin{array}{rl}
\angle O A P & =90^{\circ} \quad \text { (Tangent perpendicular to radius) } \\
\angle A M 0 & =90^{\circ} \quad \text { (Perpendicular bisector of chord) } \\
\angle A O M & =180-90-\angle O A M(\angle \text { sum of } \triangle) \\
& =90-(90-\angle B A P) \\
& =\angle B A P
\end{array}\right\} \text { M1 }
$$

Any missing reasons:
overall-1 mark.

17 Mrs Teo wishes to open an account with a bank by investing $\$ 5000$ for 5 years.
Bank A offers 3\% per annum, compounded half-yearly.
Bank B offers $r \%$ per annum simple interest.
Given that both banks offer the same amount of interest at the end of 5 years, find the value of r.

$$
\begin{array}{rlrl}
\text { Interest } & =5000\left(1+\frac{3}{200}\right)^{\mathbf{1 0}}-5000 & \mathbf{M 1} & \begin{array}{l}
\text { If student write } 3.21 \% \text { on } \\
\text { answer blank, }-1 \text { mark. }
\end{array} \\
\frac{5000 \times r \times 5}{100} & =802.7041 & \mathbf{M 1} & \\
250 r & =802.7041 & & \\
r & =3.21 & \mathbf{A 1} &
\end{array}
$$

18

In the diagram, A, B, C and D are points on a circle, centre O.
Any missing reasons:
Angle $A B C=83^{\circ}$ and angle $A C D=52^{\circ}$.
Find angle $O D C$.

$$
\left.\left.\begin{array}{rl}
\angle A O D & =52 \times 2=104^{\circ} \quad(\angle \text { at centre }=2 \angle \text { at circumference })
\end{array} \quad \begin{array}{l}
\text { M1 } \\
\angle O D A
\end{array}\right)=(180-104) \div 2=38^{\circ} \text { (base of isosceles } \triangle\right) \quad \text { M1 } \quad \begin{aligned}
\angle O D C & =180-83-38 \quad(\angle \text { in opposite segment }) \\
& =59^{\circ}
\end{aligned}
$$

19 (a) The volume of cube A is $1176 x \mathrm{~cm}^{3}$, where the length of the sides is an integer.
Find the smallest possible positive integer x.

$$
\begin{aligned}
& 1176=2^{3} \times 3 \times 7^{2} \\
& \therefore x=3^{2} \times 7=63
\end{aligned}
$$

63
Answer $x=$
(b) What is the maximum number of cube A that a container of dimensions 5 m by 1 m by 3 m can hold?

Length of cube $=2 \times 3 \times 7=42 \quad$ M1
$\frac{500}{42}=11 \frac{19}{21}$
$\frac{100}{42}=2 \frac{8}{21}$
$\frac{300}{42}=7 \frac{1}{7}$$\quad[\mathrm{M} 1$
No. of cubes $=11 \times 2 \times 7=154 \quad$ A1

20 Singapore Chinese Dance Theatre put up a production in July.
The tickets pricing for senior citizens, students and adults were $\$ 28, \$ 38$ and $\$ 48$ respectively.
This information can be represented by the matrix $\mathbf{Q}=\left(\begin{array}{l}28 \\ 38 \\ 48\end{array}\right)$
(a) 2 senior citizens, 15 students and 10 adults order tickets through NC School.

21 students and x adults order tickets through RV School.
Represent this information in a 2×3 matrix \mathbf{P}.
B1

$$
\text { Answer } \mathbf{P}=\left(\begin{array}{lll}
2 & 15 & 10 \tag{1}\\
0 & 21 & x
\end{array}\right)_{R V}^{N C}
$$

(b) Find the matrix \mathbf{R}, in terms of x, such that $\mathbf{R}=\mathbf{P Q}$.

$$
\text { in } \cdot \operatorname{ver} \mathbf{R}=\binom{1106}{798+48 x}
$$

(c) Explain what each element in matrix \mathbf{R} represents.

It represents the total amount collected/ to be paid by NC and RV respectively \quad B1
\qquad
(d) The total amount of money collected from NC School is less than RV School. Work out the least value of x.

$$
\begin{aligned}
798+48 x & >1106 \quad \text { M1 } \\
x & >6 \frac{5}{12} \\
\therefore x & =7 \quad \text { A1 }
\end{aligned}
$$

$$
\begin{equation*}
\text { Answer } x= \tag{2}
\end{equation*}
$$

(e) All tickets ordered through school will be entitled to a 25% discount for senior citizens, 20% discount for students and 15% discount for adults. Write down matrix D such that the elements in matrix multiplication of PDQ gives the total amount of money collected from each school after discount.

$$
\text { Answer } \mathbf{D}=\left(\begin{array}{ccc}
0.75 & 0 & 0 \\
0 & 0.8 & 0 \\
0 & 0 & 0.85
\end{array}\right)
$$

21 Anna and Betty have been given a task to complete 24 stamps in 15 days. If Anna fall sick after 12 days, Betty will take additional 2 days to complete the task. If Betty fall sick after 12 days, Anna will take additional n days to complete the task.
(a) Find the value of n.

A+B: 15 days, 24 stamps
1 day, 1.6 stamps
3 days, 4.8 stamps left M1 no. of stamps left
B: $\quad 5$ days, 4.8 stamps 1 day, 0.96 stamp M1 rate of B

A: $\quad(3+n)$ days, 4.8 stamps
1 day,$\frac{4.8}{3+n}$

$$
\begin{aligned}
\frac{4.8}{3+n}+0.96 & =1.6 \quad \text { M1 } \\
\frac{4.8}{3+n} & =0.64 \\
3+n & =7.5 \\
n & =3.5 \quad \text { A1 }
\end{aligned}
$$

$$
\begin{equation*}
\text { Answer } n= \tag{4}
\end{equation*}
$$

(b) State an assumption you have made for part (a).

Answer Both Anna and Betty worked at a constant rate. B1

22 The cost of a mobile phone plan, $\$ C$, with respect to the amount of additional talktime, t minutes, by the user can be represented by the graph below.

(a) State the equation of this line.

$$
\text { Answer } \ldots \ldots .
$$

(b) Explain what the vertical C-intercept value represents.

Answer
It represents the basic cost without any additional talktime.
B1
\qquad
(c) Give a reason why the cost is not directly proportional to the additional talktime.

Answer. The graph does not start from origin. B1

OR $\frac{C}{t} \neq$ constant B1 Students cannot write $\frac{C}{t} \neq k$
and not defining what k is.

23 The graph of $y=\frac{1}{x-1}+2$ is drawn on the grid.

(a) The equation $x^{2}-x=1$ can be solved by drawing a suitable straight line on the grid. Find the equation of this straight line.

$$
\begin{aligned}
x(x-1) & =1 \quad \text { M1 } \\
x & =\frac{1}{x-1} \\
x+2 & =\frac{1}{x-1}+2 \\
y & =x+2 \quad \text { A1 }
\end{aligned}
$$

$$
\begin{equation*}
\text { Answer } \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \tag{2}
\end{equation*}
$$

(b) By drawing the straight line from part (a), solve the equation $x^{2}-x=1$.

B1 for both ans

$$
\begin{array}{r}
\text { Answer } x=\ldots . .65 \text { or } 1.65 . . . \tag{2}\\
\text { Accept }-\mathbf{0 . 6} \pm \mathbf{0 . 0 5} \text { and } \mathbf{1 . 6} \pm \mathbf{0 . 0 5}
\end{array}
$$

NAN CHIAU HIGH SCHOOL
PRELIMINARY EXAMINATION (2) 2018
SECONDARY FOUR EXPRESS

SUGGESTED SOLUTIONS

1 (a) Simplify $\frac{(2 x y)^{2}}{35 x y^{2}} \div\left(\frac{x^{-1} y^{-2}}{4}\right)^{-2}$, leaving your answer in positive index form.
(b) Solve the inequality $\frac{1}{4} x-\frac{3}{5}\left(x+\frac{1}{3}\right) \geq \frac{1}{2}(x-9)$.
(c) (i) Express $\frac{2}{1-2 x}+\frac{3(x-1)}{2 x^{2}-5 x+2}+\frac{1}{x-2}$ as a single fraction in its simplest form.
(ii) Hence solve the equation $\frac{2}{1-2 x}+\frac{3(x-1)}{2 x^{2}-5 x+2}+\frac{1}{x-2}=\frac{3}{x-2}$.

1	(a)	$\begin{aligned} & \frac{(2 x y)^{2}}{35 x y^{7}} \div\left(\frac{x^{-1} y^{-2}}{4}\right)^{-2} \\ & =\frac{4 x^{2} y^{2}}{35 x y^{7}} \div\left(\frac{4}{x^{-2} y^{-2}}\right)^{2} \\ & =\frac{4 x^{2} y^{2}}{35 x y^{7}} \times \frac{x^{-2} y^{-4}}{16} \quad \text { [Able to remove both brackets][M1] } \\ & =\frac{1}{140 x y^{9}} \quad[\text { A1] } \end{aligned}$
	(b)	$\begin{aligned} & \frac{1}{4} x-\frac{3}{5}\left(x+\frac{1}{3}\right) \geq \frac{1}{2}(x-9) \\ & \frac{1}{4} x-\frac{3}{5} x-\frac{1}{5} \geq \frac{1}{2} x-\frac{9}{2} \text { [Able to expand all terms correctly][M1] } \\ & -\frac{17}{20} x \geq-\frac{43}{10} \\ & x \leq 5 \frac{1}{17} \quad[\text { A1] } \end{aligned}$
	(c)(i)	$\begin{aligned} & \frac{2}{1-2 x}+\frac{3(x-1)}{2 x^{2}-5 x+2}+\frac{1}{x-2} \\ & \left.=\frac{-2}{2 x-1}+\frac{3 x-3}{(x-2)(2 x-1)}+\frac{1}{x-2} \quad \text { [Able to factorise } 2 x^{2}-5 x+2\right][\text { M1] } \\ & =\frac{-2(x-2)+3(x-1)+2 x-1}{(x-2)(2 x-1)} \text { [Able to combine into common denominator][M1] } \\ & =\frac{-2 x+4+3 x-3+2 x-1}{(x-2)(2 x-1)} \text { [Able to expand correctly][M1] } \\ & =\frac{3 x}{(x-2)(2 x-1)} \quad[\text { A1] } \end{aligned}$
	(c)(ii)	$\begin{aligned} & \frac{2}{1-2 x}+\frac{3(x-1)}{2 x^{2}-5 x+2}+\frac{1}{x-2}=\frac{3}{x-2} \\ & \frac{3 x}{(x-2)(2 x-1)}=\frac{3}{x-2}, x \neq 2 \quad[\mathrm{M} 1] \\ & \frac{3 x}{2 x-1}=3 \\ & 6 x-3=3 x \\ & 3 x=3 \\ & x=1 \quad[\text { A1 }] \end{aligned}$

2 (a) $P Q R S$ is a parallelogram in which the coordinates of P and Q are $(p, 4)$ and $(7,11)$ respectively. The line $9 y+27-7 x=0$ cuts the y-axis at R and is parallel to the line $P Q$.
Find
(i) the value of p,
(ii) the coordinates of S by vector method.

(a)(i)	$\begin{aligned} & 9 y=7 x-27 \\ & y=\frac{7}{9} x-3 \end{aligned}$ Gradient of the line $=\frac{7}{9}$ Gradient of $P Q=\frac{7}{9}$ (parallel lines) [M1] $\begin{aligned} & m_{\mathrm{RD}}=\frac{11-4}{7-p} \\ & \frac{11-4}{7-p}=\frac{7}{9} \quad[\mathrm{M} 1] \\ & 7-p=9 \\ & p=-2 \quad[\mathrm{Al}] \\ & \hline \end{aligned}$
(a)(ii)	$\begin{aligned} & \overrightarrow{O P}=\binom{-2}{4}, \overrightarrow{O Q}=\binom{7}{11}, \\ & \overrightarrow{O S}=\binom{x}{y}, \overrightarrow{O R}=\binom{0}{-3} \end{aligned}$ By vector method, $\overrightarrow{P S}=\overrightarrow{Q R} \quad$ [Concept of equal vectors][M1]

(b) In the diagram, $W X Y Z$ is a parallelogram and U is a point on $Z Y$ such that $W Z=W U$. The lines $W Y$ and $U X$ intersect at V.

Prove that $\triangle W U Y$ is congruent to $\triangle X Y U$.

(b)	

3 (a) The radius of a particular spherical cell is approximately 6.2×10^{-11} metre.
(i) 88 of these spherical cells are arranged to form a straight line such that each cell touches one another without overlapping. Calculate the length, in metre, of the straight line formed. Give your answer in standard form.
(ii) Calculate the volume of a spherical cell, in cubic centimetre. Give your answer in standard form correct to 2 decimal places.
(b) The planet Mercury is approximately 77 billion metre from the Earth. Given that radio waves travel at a speed of $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$, find the time taken for radio waves to travel from the Earth to Mercury, giving your answer to the nearest minutes.
(c) The word 'Googol' is defined as 1×10^{100}. If a man has ten 'Googol' cents and a Boeing 737 aircraft costs $\$ 72$ million, how many such aircrafts can he buy? Give your answer in standard form correct to 5 significant figures.

(a)(i)	$\begin{aligned} & \text { Diameter }=2 \times 6.2 \times 10^{-11} \\ & \begin{aligned} \text { Length } & =88 \times 2 \times 6.2 \times 10^{11} \\ & =1.09 \times 10^{-8} \mathrm{~m} \quad\lfloor\mathrm{Bl}\rfloor \end{aligned} \end{aligned}$
(a)(ii)	$\begin{aligned} \text { Volume }= & \frac{4}{3} \pi \times\left(6.2 \times 10^{-9}\right)^{3} \quad \text { Note: } \mathrm{r}=6.2 \times 10^{-11} \mathrm{~m}=6.2 \times 10^{-9} \mathrm{~cm} \\ & =9.98 \times 10^{-25} \mathrm{~cm}^{3}(2 \mathrm{dp})[\mathrm{B} 1] \end{aligned}$
(b)	$\begin{align*} t & =\frac{77 \times 10^{9}}{3 \times 10^{8}}\lfloor\mathrm{M} 1\rfloor \\ & =256 \frac{2}{3} \mathrm{~s} \\ & =4 \mathrm{~min} \text { (nearest min) } \tag{A1} \end{align*}$
(c)	$\begin{aligned} \text { ten 'Googol' cents } & =\$ \frac{10 \times 1 \times 10^{100}}{100} \\ & =\$ 10^{99}[\text { Change to } \$][\mathrm{M} 1] \\ \text { No of aircrafts } & =\frac{10^{99}}{72 \times 10^{6}}[\mathrm{M} 1] \\ & =1.3889 \times 10^{91}[\mathrm{Al}] \end{aligned}$

\qquad

4 In the diagram, $\overrightarrow{O A}=12 p$ and $\overrightarrow{O B}=9 \boldsymbol{q}$.
It is given that $3 D B=20 B$ and $O A=30 C$.

(a) Express, as simply as possible, in terms of \boldsymbol{p} and \boldsymbol{q},
(i) $\overrightarrow{B C}$,
(ii) $\overrightarrow{D A}$.
(b) Given that $\frac{\text { area of triangle } O D E}{\text { area of triangle } O D A}=\frac{1}{4}$, find $\overrightarrow{O E}$ in terms of \boldsymbol{p} and \boldsymbol{q}.
(c) Find the value of $\frac{\text { area of triangle } B D E}{\text { area of quadrailateral } E D O C}$.

(a)(i)	$\begin{align*} \overrightarrow{B C} & =\overrightarrow{B O}+\overrightarrow{O C} \\ & =-9 \boldsymbol{q}+\frac{1}{3} \overrightarrow{O A} \\ & =-9 \boldsymbol{q}+4 \boldsymbol{p} \tag{B1} \end{align*}$
(a)(ii)	$\begin{aligned} \overrightarrow{D A} & =\overrightarrow{D O}+\overrightarrow{O A} \\ & =\frac{1}{3} \overrightarrow{B O}+12 \boldsymbol{p}[\mathrm{M1}] \\ & =-3 \boldsymbol{q}+12 \boldsymbol{p} \quad[\mathrm{~A} 1] \end{aligned}$
(b)	$\frac{\text { area of triangle } O D E}{\text { area of triangle } O D A}-\frac{1}{4}$ $\frac{0.5 \times \mathrm{ED} \times \mathrm{h}}{0.5 \times \mathrm{AD} \mathrm{xh}}=\frac{1}{4}$ [Shared same perpendicular height][M1] $\frac{\mathrm{ED}}{\mathrm{AD}}=\frac{1}{4}$ $\overrightarrow{O E}=\overrightarrow{O A}+\overrightarrow{A E}$ $=12 \boldsymbol{p}+\frac{3}{4} \overrightarrow{A D}$ $=12 p+\frac{3}{4}(3 q-12 p) \quad[\mathrm{M} 1]$ $=3 p+\frac{9}{4} q$ [A1]

$\left.\begin{array}{|c|l|}\left.\left.\hline \text { (c) } \left\lvert\, \begin{array}{l}\frac{\text { area of triangle } O D E}{\text { area of triangle } \mathrm{DEB}}=\frac{O D}{D \mathrm{~B}}=\frac{1}{2} \\ \frac{\text { area of triangle } \mathrm{AEC}}{\text { area of triangle } \mathrm{OEC}}=\frac{A C}{\mathrm{OC}}=\frac{2}{1} \\ \begin{array}{l}\text { Triangle } \mathrm{ODE}: \text { Triangle } \mathrm{DEB} \text { : Triangle AEC : Triangle OEC } \\ =1: 2: 2: 1\end{array} \\ \begin{array}{l}\frac{\text { area of triangle } B D E}{\text { area of quadrailateral } E D O C} \\ =\frac{2}{2} \\ =1\end{array}\end{array}\right.\right] \mathrm{AA}\right]\end{array}\right]$

5 Answer the whole of this question on a sheet of graph paper.

A radioactive substance decays such that its mass, m grams, after d days is given by the equation $m=43(3)^{-d}$.

The table below shows record of the mass, m grams of the substance, corrected to 1 decimal place, after d days.

d (days)	0	1	2	3	4	5	6
m (grams)	43	14.3	4.8	p	0.5	0.2	0.1

(a) Find the value of p.
(b) Using a horizontal scale of 2 cm to represent 1 day and a vertical scale of 2 cm to represent 5 grams, draw the graph of $m=43(3)^{d}$ for $0 \leq d \leq 6$.
(c) Use your graph to estimate the value of d when the mass of substance is reduced to 65% of its original mass.
(d) By drawing a tangent, find the gradient of the curve at the point when $d=2.5$.

State briefly what this gradient represents.
(e) Using your graph, find the range of d for $86(3)^{-d}+12 d<60$.

$6 P Q R$ represents a triangular plot of land on horizontal ground.
$P Q=50 \mathrm{~km}, Q R=107 \mathrm{~km}$ and $P R=125 \mathrm{~km}$.
R is due east of P.

(a) Calculate
(i) the bearing of Q from P,
(ii) the bearing of P from Q,
(iii) the obtuse angle $P Q R$,
(iv) the area of the triangular plot of land $P Q R$.
(b) A vertical pole of height 9 km is erected at Q. Calculate the greatest angle of elevation of the top of the pole from a point S along $P R$.

(a)(i)	$\begin{aligned} & \cos \mathrm{Q} \widehat{P} R=\frac{125^{2}+50^{2}-107^{2}}{(2)(125)(50)} \quad[\mathrm{M} 1] \\ & \mathrm{Q} \widehat{P} R=57.718 \\ & \text { Bearing of } \mathrm{Q} \text { from } \mathrm{P} \\ & =90-57.718 \quad[\mathrm{M} 1] \\ & =032.3^{\circ}(1 \mathrm{dp}) \quad[\mathrm{A} 1] \end{aligned}$	
(a)(ii)	$\begin{aligned} & \text { Bearing of P from } \mathrm{Q} \\ & =360-(180-32.282) \quad[\mathrm{M} 1] \\ & =212.3^{\circ}(1 \mathrm{dp}) \quad[\mathrm{A} 1] \end{aligned}$	
(a)(iii)	$\begin{aligned} & \frac{\sin \mathrm{P} \hat{Q} R}{125}=\frac{\sin 57.718}{107} \quad[\mathrm{M} 1] \\ & \mathrm{P} \widehat{Q} R=80.987^{\circ} \text { (rejected) or } \mathrm{P} \hat{Q} R=99.013^{\circ} \\ & \text { or } \quad \text { obtuse } \mathrm{P} \widehat{Q} R=99.0^{\circ} \quad \text { [A1] } \\ & \begin{array}{l} \text { or } \\ \cos \mathrm{P} \hat{Q} R=\frac{107^{2}+50^{2}-125^{2}}{(2)(107)(50)} \quad[\mathrm{M} 1] \\ \text { obtuse } \mathrm{P} \hat{Q} R=99.0^{\circ} \quad[\mathrm{Al}] \end{array} \end{aligned}$	

(a)(iv)	Area of the triangular plot of land $P Q R$ $\begin{aligned} & =\frac{1}{2}(125)(50) \sin 57.718 \quad[\mathrm{M} 1] \\ & =2640 \mathrm{~km}^{2} \quad[\mathrm{~A} 1] \end{aligned}$
(b)	In triangle PQS, $\begin{aligned} & \sin 57.718=\frac{d}{50} \quad[\mathrm{M} 1] \\ & \mathrm{d}=42.271 \end{aligned}$ In triangle PQT , $\begin{array}{ll} \tan e=\frac{9}{42.271} & {[\mathrm{M} 1]} \\ e=12.0^{\circ} & \lfloor\mathrm{Al}\rfloor \end{array}$

7 In the diagram, the circle C_{1} with centre X has a radius $(3 r+1) \mathrm{cm}$, where r is a constant. Two identical semicircles, S_{1} and S_{2} with centre at Y and Z respectively, have a radius $(13-6 r) \mathrm{cm}$.
Another semicircle, S_{3} with centre O has a diameter $A B$.
C_{1} touches S_{1} and S_{2} at P and Q respectively while S_{1} and S_{2} touches one another at O.
S_{3} touches C_{1}, S_{1} and S_{2} at R, A and B respectively.
$A Y O Z B$ is a straight line.

(a) Write down an expression, in its simplest form and in terms of r, for
(i) $X Z$,
(ii) $X O$.
(b) Hence, form an equation in terms of r and show that it reduces to $126 r^{2}-411 r+299=0$.
(c) Solve the equation $126 r^{2}-411 r+299=0$.
(d) Hence, find the area of the shaded region.

(a)(i)	$\begin{aligned} X Z & =\mathrm{XQ}+\mathrm{QZ} \\ & =3 \mathrm{r}+1+13-6 \mathrm{r} \\ & =14-3 \mathrm{r}[\mathrm{~B} 1] \end{aligned}$	
(a)(ii)	$\begin{aligned} X O & =2(13-6 \mathrm{r})-(3 \mathrm{r}+1) \quad[\mathrm{M} 1] \\ & =25 \quad 15 \mathrm{r}\lfloor\mathrm{Al}\rfloor \end{aligned}$	
(b)	$\begin{aligned} & X Z^{2}=X O^{2}+O Z^{2} \\ & (14-3 \mathrm{r})^{2}=(25-15 \mathrm{r})^{2}+(13-6 \mathrm{r})^{2} \quad \quad \text { [M1] } \\ & 196-84 r+9 r^{2}=625-750 r+225 r^{2}+169-156 r+36 r^{2}[\mathrm{M} 1] \\ & 252 r^{2}-822 r+598=0\lfloor\mathrm{~A} 1\rfloor \\ & 126 r^{2}-411 r+299=0 \text { (shown) } \end{aligned}$	
(c)	$\begin{aligned} r & =\frac{411 \pm \sqrt{(-411)^{2}-4(126)(299)}}{2(126)} \quad[\mathrm{M} 1] \\ & =2 \frac{1}{6} \text { or } 1 \frac{2}{21} \quad[\mathrm{Al}] \end{aligned}$	
(d)	If $\mathrm{r}=2 \frac{1}{6}$, then $\mathrm{XO}<0$. Hence $\mathrm{r}=1 \frac{2}{21}$	[11]

	Area of the shaded region $=\frac{1}{2} \pi\left(26-12\left(1 \frac{2}{21}\right)\right)^{2}-\pi\left(3\left(1 \frac{2}{21}\right)+1\right)^{2}-\pi\left(13-6\left(1 \frac{2}{21}\right)\right)^{2}[\mathrm{M} 1-$ Area of S3][M1 - correct unshaded area] $=72.1 \mathrm{~cm}^{2}$ [A1]

8 (a) The diagram shows a circle with centre O and radius of $12 \mathrm{~cm} . A B$ is the diameter of the circle and $A C$ is a tangent to the circle at A with $A C=17 \mathrm{~cm}$. The circle intersects the line $B C$ at D.

(i) Show that angle $D O A=1.23$ radians.

Calculate

(ii) the length of minor arc $A D$,
(iii) the area of the shaded region.
(b) Diagram I shows an open container which is made up of a cylinder and a cone.

The cylinder has radius $r \mathrm{~cm}$ and height 30 cm .
The cone has base radius $r \mathrm{~cm}$ and slant height $l \mathrm{~cm}$.
The container is fully filled with water.
Diagram II shows a spherical object in which half of it is immersed into the container and some water is displaced. The radius of the sphere is the same as the radius of the cylinder. Assume the thickness of the container and the spherical object are negligible.

Diagram I

Given that the volume of the water displaced is $1152 \pi \mathrm{~cm}^{3}$ and the volume of the water left in the container is $3600 \pi \mathrm{~cm}^{3}$, find
(i) the value of r and of l,
(ii) the total internal area of the container and the sphere that is in contact with water, leaving your answer in terms of π.

(a)(i)	In triangle $C A B$, $\tan \mathrm{C} \hat{B A}=\frac{17}{24} \quad[\mathrm{M} 1]$ $\mathrm{C} \hat{B} A=0.61630 \mathrm{rad}$ $\begin{aligned} \mathrm{D} \hat{O} A & =2 \times 0.61630 \text { (angle at centre }=2 \times \text { angle at circumference) } \\ & =1.2326 \\ & =1.23 \mathrm{rad} \text { (shown) [A1] } \end{aligned}$	
(a)(ii)	$\begin{aligned} & \text { length of minor arc } A D \\ & =12(1.2326) \\ & =14.8 \mathrm{~cm}[\mathrm{Bl}] \end{aligned}$	
(a)(iii)	Area of the shaded region (Join OD) $=\frac{1}{2}(17)(24)-\frac{1}{2}(12)^{2}(1.2326)-\frac{1}{2}(12)^{2} \sin (\pi-1.2326)[\text { M1- }$ Sector area][M1-area of triangle] $\begin{aligned} & =204-88.747-67.922 \\ & =47.3 \mathrm{~cm}^{3}\lfloor\mathrm{Al}\rfloor \end{aligned}$	
(b)(i)	Vol of water displaced $=1152 \pi$ $\begin{aligned} & \frac{1}{2} \times \frac{4}{3} \pi(\mathrm{r})^{3}=1152 \pi \quad[\mathrm{M} 1] \\ & r^{3}=1728 \\ & \mathrm{r}=12 \mathrm{~cm} \quad\lfloor\mathrm{~A} 1\rfloor \end{aligned}$ Total volume $\begin{aligned} & =1152 \pi+3600 \pi \\ & =4752 \pi \end{aligned}$ $\begin{aligned} & \pi(12)^{2}(30)+\frac{1}{3} \pi(12)^{2} h=4752 \pi[\text { M1] } \\ & 48 \mathrm{~h}=432 \\ & \mathrm{~h}=9 \mathrm{~cm} \end{aligned}$ By Pythagoras' Theorem, $\begin{aligned} & l^{2}=9^{2}+12^{2} \\ & l=15 \mathrm{~cm} \quad[\mathrm{Al}] \end{aligned}$	A
(b)(ii)	$\begin{aligned} & \text { Internal area } \\ & =\pi(12)(15)+2 \pi(12)(30)+2 \pi\left(12^{2}\right) \quad[\mathrm{M} 1] \\ & =1188 \pi \mathrm{~cm}^{2}[\mathrm{Al}] \end{aligned}$	[12]

9 (a) The following box-and-whisker diagrams show the distribution of the mass of 300 students from each school, SK Secondary School and HG Secondary School respectively.

(i) What is the median mass for each school?
(ii) Compare the mass of the students from SK Secondary School and HG Secondary School in two ways.
(iii) Mary commented that there are more students in HG Secondary School than SK Secondary School who weigh more than or equal to 70 kg . Do you agree with Mary? Support with a reason.

	(i)	For SK Sec, median = 65 kg For HG Sec, median = $58 \mathrm{~kg} \quad$ Both correct [B1]	
(ii)	Generally, the students for SK Sec Sch are heavier compared to the students in HG Sec Sch because of the higher median. [B1]		
	For SK, IQR= 32 kg ; For HG, IQR $=18 \mathrm{~kg}$ The mass of the students in HG Sec Sch is more consistent than that of SK Sec Sch because of smaller interquartile range. [B1]	(iii) Disagree as there are more than 25\% of the students from SK Sec Sch weigh more than 70 kg while there are less than 25% of the students fron HG Sec Sch weigh more than 70 kg. [B1] Accept: There are more students in SK Sec Sch weigh more than 70 kg because it has a higher upper quartile than HG Sec Sch.	[4]

(b) The cumulative frequency curve shows the height distribution of 80 plants.

(i) Use the graph to find
(a) the value of m, if 32.5% of the plants have heights more than m cm ,
(b) the probability that two plants chosen will each has a height of more than 118 cm .
(ii) (a) The height distribution of the 80 plants was also recorded in the following frequency table. Find the value of a and of b.

Height $(\boldsymbol{h} \mathbf{~ c m})$	Number of plants
$60<\boldsymbol{h} \leq 70$	2
$70<\boldsymbol{h} \leq 80$	a
$80<h \leq 90$	9
$90<\boldsymbol{h} \leq 100$	27
$100<h \leq 110$	23
$110<h \leq 120$	b
$120<h \leq 130$	4

(b) Hence find the mean and the standard deviation of the height of the 80 plants.

10 Mr and Mrs Tan bought a 3-bedroom unit at a newly launched condominium project at Serangoon. The unit has a floor area of 1152 square foot (sqft). The selling price for the unit is at $\$ 1494$ per sqft. The developer gives a 5% early bird discount to all buyers.
(a) Calculate the price that they paid for the unit.

Mr and Mrs Tan are both Singapore citizens and they also owned a HDB 5-room flat and they do not have any intention of selling their flat. As such, they will have to pay Additional Buyer's Stamp Duty (ABSD) to the government on top of the Buyer's Stamp Duty (BSD). Table 1 shows the BSD rate and Table 2 shows the ABSD rate.

Table 1. BSD

Based on purchase price	Rate
First $\$ 180000$	1%
Next $\$ 180000$	2%
Next $\$ 640000$	3%
Remaining amount	4%

Table 2. ABSD

Based on purchase price	Rate
SC^{1} buying first residential property	NA
SC^{1} buying second residential property	12%
SC^{1} buying third and subsequent residential property	15%

SC 1 denotes Singapore Citizens

(b) Calculate the total Buyer's Stamp Duty paid by Mr and Mrs Tan.

Mr and Mrs Tan made a 20% down-payment based on the amount paid for the unit obtained in (a). For the remaining amount, which exclude the total Buyer's Stamp Duty, they had decided to sign up either for a 20 -years Home Loan plan from CBCO Bank or a 30-years Home Loan plan from BSOP Bank.
(c) Determine which bank they should sign up if they can only afford a monthly instalment of not more than $\$ 6000$.
Support you answer with appropriate workings.

Simple Interest Rate for CBCO Bank
Loan period: 20 years

$1^{\text {st }}$ year:	$2^{\text {nd }}$ Year:
2.18% p.a.	2.18% p.a.
Thereafter: 2.68% p.a.	

Simple Interest Rate for BSOP

Bank

Loan period: 30 years

$1^{\text {st }}$ year:	$2^{\text {nd }}$ Year:
1.95% p.a.	1.95% p.a.
Thereafter: $\mathbf{2 . 1 5 \%} \%$ p.a.	

