| Name \quad ($)$ | Class 4 |
| :--- | :--- | :--- |

ANGLICAN HIGH SCHOOL PRELIMINARY EXAMINATION 2018 SECONDARY FOUR

MATHEMATICS
Paper 1

4048/01
Monday 10 September 2018
2 hours

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name and index number on all the work you hand in.
Write in dark blue or black pen on both sides of the paper.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
Answer all questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total of the marks for this paper is $\mathbf{8 0}$.

For Examiner's Use

Question	1	2	3	4	5	6	7	8	9	10
Marks										
Question	11	12	13	14	15	16	17	18	19	20
Marks										

Table of Penalties		Qn. No.	
Presentation	-1		
Units	-1		
Significant Figures	-1		Parent's/ Guardian's Name/ Signature/ Date

This question paper consists of 17 printed pages.

Mathematical Formulae

Compound Interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

> Curved surface area of a cone $=\pi r l$
> Surface area of a sphere $=4 \pi r^{2}$
> Volume of a cone $=\frac{1}{3} \pi r^{2} h$

Volume of a sphere $=\frac{4}{3} \pi r^{3}$

Area of triangle $A B C=\frac{1}{2} a b \sin C$

Arc length $=r \theta$, where θ is in radians

Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

Answer all the questions.
1 One solution of $2 x^{2}+k x-12=0$ is $x=-4$. Find
(a) the value of k,

$$
\text { Answer } k=
$$

(b) the other solution of the equation.

2

Adapted from https://www.youtube.com/watch?v=ETbc8GIhfHo.
State one aspect of the above graph that may be misleading and explain how this may lead to a misinterpretation of the graph.

Answer \qquad
\qquad

3 (a) Express $\sqrt[5]{121}$ in index form with base 11.

Answer
(b) Evaluate $3^{\frac{2}{3}} \times 24^{\frac{1}{3}}$ without using a calculator.

Answer

[2]
(c) \quad Simplify $a b \div\left(\frac{2}{a}\right)^{-2}$

4 (a) Solve the inequality $-\frac{17-8 x}{4}<2-\frac{4-3 x}{2}<5 \frac{1}{3}$.

Answer
(b) Hence, state the smallest prime number that satisfies the inequality.

5 It is given that $a=\sqrt[3]{\frac{2 b+c}{c-b}}$.
(a) Express b in terms of a and c.

Answer
[2]
(b) Find the value of b when $a=2$ and $c=5$.

Answer $b=$
[1]

6 (a) Simplify $5(3 x-5)^{2}-3(5-3 x)$.

Answer
(b) Factorise completely $-25 y^{2}-5 x y+x+1$.

7 (a) It is given that

$$
\begin{aligned}
& \xi=\{x: x \text { is an integer between } 0 \text { and } 9 \text { inclusive }\} \\
& A \subset \xi \text { and } B \subset \xi \\
& \{0,2\} \subset\left(A^{\prime} \cap B\right), 7 \in A \cap B,\{1,4,5,8\} \subset\left((A \cup B) \cap B^{\prime}\right) \text { and } 3,6,9 \notin(A \cup B)
\end{aligned}
$$

Draw a Venn diagram to represent the information given.
Answer
(b) List down all the proper subsets of the $\operatorname{set}\{a, b, c\}$.

Answer

8 In the diagram below, not drawn to scale, A is the point $(1,2), B$ is the point $(p, 2)$ and C is the point $(0,12)$.

(a) Find the length of the line $A C$.

Answer \qquad units [2]
(b) Write down the value of $\cos \angle B A C$.

Answer
(c) Given that the length of the line $B C$ is $5 \sqrt{5}$ units, find the value of p.

9 (a) Mr Tan wants to change $\$ 4000$ Singapore dollars to US dollars for a holiday trip to the USA.
The exchange rate in Singapore is $1 \mathrm{SGD}=0.736$ USD.
The exchange rate in USA is 1 USD $=1.352$ SGD.
In which country should he change his money and how much more USD can he get?

Answer.
[2]
(b) In 2017, Matthew earned an annual income of $\$ 80000$. He is required to pay tax based on net income. His net income is obtained after deducting CPF contribution of $\$ 16000$ and personal expenses relief of $\$ 3000$ from the annual income. The tax rate is $\$ 200$ for the first $\$ 30000$ of net income and 5% for the remaining net income. Calculate Matthew's
(i) net income,
\qquad
(ii) income tax.

10 Amanda wrote down four numbers.
The mean of these numbers is 15 , the median is 12 and the mode is 8 .
Find the four numbers.

Answer

11 Write down a possible equation for each of the graphs shown below.
(a)

Answer
(b)

12 (a) Find the greatest integer that will divide both 126 and 2100.

Answer
(b) A rectangular field is measured as 49.9 and 24.5 correct to the nearest 0.1 metre. Find,
(i) the least possible perimeter in metres.

Answer \qquad
(ii) the greatest possible area in square metres. Express your answer in standard form correct to 4 significant figures.

> Answer
m^{2} [2]

13 The surface area of a sphere is directly proportional to the square of its radius. If the radius increases by 15%, find the percentage increase in the surface area.

14 In the following sequence,

$$
\begin{gathered}
(1 \times 2)-2=0 \\
(2 \times 3)-4=2 \\
(3 \times 4)-6=6 \\
\ldots \\
\ldots \\
(a \times 13)-b=c \\
\ldots \\
\ldots \\
(d \times e)-f=g
\end{gathered}
$$

(a) Find the values of a, b and c.

$$
\begin{aligned}
& \text { Answer } a=\ldots \ldots \\
& b= \\
& c=
\end{aligned}
$$

(b) Express g in terms of d only.
(c) Explain why 343 cannot be the result of an equation in this sequence.

Answer \qquad
\qquad
\qquad
\qquad
\qquad

15 At an online supermarket, a 0.5 kg bag of carrots costs $\$ 0.90$, a 0.5 kg of onions costs $\$ 1.50$ and a 0.5 kg bag of local tomatoes costs $\$ 1.30$. On Monday, there were 730 orders for carrots, 421 orders for onions and 279 orders for tomatoes. On Tuesday, there were x orders for carrots, 355 orders for onions and 249 orders for tomatoes.
(a) Write down a 2×3 matrix, \boldsymbol{M}, representing the orders over Monday and Tuesday.

(b) Find, in terms of x, the matrix $\boldsymbol{P}=\boldsymbol{M}\left(\begin{array}{l}0.90 \\ 1.50 \\ 1.30\end{array}\right)$.

$$
\text { Answer } \boldsymbol{P}=
$$

(c) Explain clearly what each element in matrix P represents.

Answer \qquad
(d) If the total cost of orders on Tuesday is about 10% less than the total cost of orders on Monday,
(i) calculate the value of x.

$$
\begin{equation*}
\text { Answer } x= \tag{1}
\end{equation*}
$$

(ii) use a matrix method to compute the total cost of orders on Monday and Tuesday.

16 The stem-and-leaf diagram below shows the times of two groups of students, Group A and Group B, doing shuttle run.

Group A
Group B

(a) Write down the modal timing of Group B.

Answer
seconds [1]
(b) Write down the median of Group A.

Answer
(c) Explain briefly which group of students ran faster.

Answer \qquad
\qquad
\qquad

17 In the diagram, $B C=B D, \angle A B E=42^{\circ}$ and $\angle B C D=66^{\circ} . A F, B G$ and $C H$ are parallel.

Show your working and give reasons, calculate
(a) $\angle C B D$,
(b) $\angle G B E$,
(c) $\angle B A F$.

18 The diagram shows the cross section of a vase.

A factory produces 3 geometrically similar vases, Small, Medium and Large. The sketch above shows the dimensions of the Large vase. The volume of the Small vase is $67 \frac{2}{3} \pi \mathrm{~cm}^{3}$ with height 14 cm . The Medium vase has a height 50% more than the Small vase.
(a) Calculate
(i) the height of the Large vase, and

Answer \qquad cm [2]
(ii) the volume of the Medium vase, in terms of π.

Answer

\qquad cm^{3} [2]
(b) Water is poured into the Large vase at $1 \mathrm{~cm}^{3} / \mathrm{s}$. Sketch the volume-time graph of the Large vase.
[3]

19 The graph of $y=-4 x^{2}+16 x-13$ is drawn on the grid.

(a) Explain why $y=3.7$ has no solution.

Answer \qquad
(b) The points $(1.5,2)$ and $(2.5,2)$ are the intersection points for this curve and another curve, $y=a x^{2}+b x+c$. Given that $a>0$, find a possible equation for this second curve.

Answer
(c) The equation $-2 x^{2}+7 x-5=0$ can be solved by adding a straight line to the grid above. Find the equation of this line.

Answer

(d) By drawing this straight line, solve the equation $-2 x^{2}+7 x-5=0$.

$$
\text { Answer } x=
$$

\qquad or $x=$

20 (a) Find, by construction, the point P, that is equidistant from the points A, B and C.
Hence, draw a circle passing through A, B and C. Measure the radius of the circle.

Answer
(b) Find, by construction, the point Q, that is equidistant from the lines $X Y, Y Z$ and $X Z$.
Hence, or otherwise, draw a circle that is tangent to the lines $X Y, Y Z$ and $X Z$. Measure the radius of the circle.

| Name \quad ($)$ | Class 4 |
| :--- | :--- | :--- |

ANGLICAN HIGH SCHOOL

 PRELIMINARY EXAMINATION 2018 SECONDARY FOUR
MATHEMATICS

Paper 2
Thursday 13 September 2018
2 hours 30 minutes

Additional Materials

Writing Paper $\times 7$
Graph Paper $\times 1$

READ THESE INSTRUCTIONS FIRST

Write your name and index number on all the work you hand in.
Write in dark blue or black pen on both sides of the paper.
You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Answer all questions.
If working is needed for any question it must be shown with the answer.
Omission of essential working will result in loss of marks.
The use of an approved scientific calculator is expected, where appropriate.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 , unless the question requires the answer in terms of π.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 100.

For Examiner's Use

Question	1	2	3	4	5	6	7	8	9	10	11
Marks											

Table of Penalties		Qn. No.	
Presentation	-1		
Units	-1		
Significant Figures	-1		

This question paper consists of 12 printed pages.

Mathematical Formulae

Compound Interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

Curved surface area of a cone $=\pi r l$
Surface area of a sphere $=4 \pi r^{2}$
Volume of a cone $=\frac{1}{3} \pi r^{2} h$

Volume of a sphere $=\frac{4}{3} \pi r^{3}$

Area of triangle $A B C=\frac{1}{2} a b \sin C$

Arc length $=r \theta$, where θ is in radians
Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Statistics

$$
\begin{aligned}
& \text { Mean }=\frac{\sum f x}{\sum f} \\
& \text { Standard deviation }=\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

1 (a) Express as a single fraction in its simplest form $\frac{3 x}{2-3 y}+\frac{6 x}{9 y^{2}-4}$.
(b) Simplify $\frac{21 p^{2} q^{3} r^{0}}{2 r^{5}} \div \frac{7 p q}{4 p^{2}}$, leaving your answer in positive indices.
[2]
(c) (i) Simplify $\frac{6 x^{2}-x-12}{3 x^{2}-11 x-20}$.
(ii) Hence, or otherwise, solve $\frac{6 x^{2}-x-12}{3 x^{2}-11 x-20}=3$.

2 (a) Each exterior angle of a regular polygon is 24°. Find the number of sides of the polygon.
(b) Interior angles of a hexagon are $(x+20)^{\circ}, 120^{\circ}, 53^{\circ},(2 x-24)^{\circ}, 3 x^{\circ}$ and 17°. Find the value of x.
(c) In the diagram, $A B=2 \mathrm{~cm}, B C=3 \mathrm{~cm}, A F=4 \mathrm{~cm}$ and $F D=6 \mathrm{~cm}$.

(i) Show that $\triangle A C D$ is similar to $\triangle A B F$.
(ii) Explain why $B E$ is parallel to $C D$.
(iii) Given that the area of $\triangle A B F$ is $20 \mathrm{~cm}^{2}$, calculate the area of $B C D F$.

3 A wardrobe has 3 white, 1 black and 2 pink shirts. Two shirts are drawn at random, one after another, without replacement.
(a) Draw the possibility diagram to show the outcome of the draw.
(b) Find, as a fraction in its simplest form, the probability that
(i) both shirts are white,
(ii) both shirts are of different colours,
(iii) at least one of the shirts is pink.

4 Answer the whole of this question on a sheet of graph paper.

A population of flies increases according to the formula

$$
N=30 \times 2^{t}
$$

where N is the population of flies after t days.
The table shows some corresponding values of variables N and t.

t	1	1.5	2	2.5	3	3.5	4
N	60	84.9	120	k	240	339	480

(a) Find the value of k.
(b) Determine the initial number of flies.
(c) Using a scale of 2 cm to represent 1 unit, draw a horizontal scale for $0 \leq t \leq 4$.
Using a scale of 2 cm to represent 100 units, draw a vertical scale for $0 \leq N \leq 500$.

On your axes, plot the points given in the table and join them with a smooth curve.
(d) Use your graph to determine the time when the population reaches 250 .
(e) By drawing a tangent, find the gradient of the curve at $t=2$. Explain what this gradient represents.
(f) Use your graph to determine the time when the population is increasing at 200 flies per day.

5 In the diagram, O is the centre of the circle. $S A T$ and $B T$ are tangents to the circle. $A P$ is the diameter. $\angle S A C=58^{\circ}$ and $\angle A C B=50^{\circ}$.

(a) Show that triangle $A O T$ is congruent to triangle $B O T$.
(b) Find
(i) $\angle C A O$,
(ii) $\angle A O B$,
(iii) $\angle B A O$,
(iv) $\angle A T B$,
(v) $\angle O B C$,
(vi) $\angle O P B$.

Show your working and give reasons.
(c) A point D is such that $A C B D$ is a quadrilateral where $\angle A D B=130^{\circ}$.

Determine whether D lies on the circumference of the circle.

6 In the diagram below, not drawn to scale, P, Q and R are on level ground and Q is due east of $P . P Q=420 \mathrm{~m}, \angle R P Q=50^{\circ}$ and $\angle P R Q=75^{\circ}$.

(a) Find the distance $P R$.
(b) A flag pole is erected at point P such that the angle of depression from the top of the flag pole to point R is 1.93°. Calculate the height of the flag pole.
(c) (i) Find the area of $\triangle P Q R$.
(ii) Hence, find the shortest distance from R to $P Q$.
(d) The bearing of point S from point P is 120°. Given $P S=200 \mathrm{~m}$, find
(i) angle RPS,
(ii) the distance $R S$.
$7 \quad$ Peter bought m kiwi fruits for $\$ 64$.
(a) Find an expression, in terms of m, for the cost of one kiwi fruit in cents. [1]
(b) Given that 5 of the kiwi fruits were rotten and could not be sold, Peter sold each remaining kiwi fruit at 40 cents more than he paid for it.

Without simplifying, write down an expression in terms of m, for the total amount he received from the sale of the kiwi fruits.
(c) He made a profit of $\$ 26$ from the sale of the kiwi fruits.

Write down an equation in m to represent this information, and show that it reduces to $m^{2}-70 m-800=0$.
(d) Solve the equation $m^{2}-70 m-800=0$.
(e) Find the selling price of a kiwi fruit.

8 In the diagram below, $\overrightarrow{O P}=\mathbf{p}$ and $\overrightarrow{O Q}=\mathbf{q}$. It is given that $\overrightarrow{O P}=\frac{2}{3} \overrightarrow{O A}, \overrightarrow{O Q}=\frac{1}{3} \overrightarrow{O S}, O Q=S B$ and $S A=3 S R$.

(a) Express, as simply as possible, in terms of \mathbf{p} and \mathbf{q},
(i) $\overrightarrow{S A}$,
(ii) $\overrightarrow{P B}$,
(iii) $\overrightarrow{P R}$.
(b) Prove that P, R and B are collinear.
(c) Find the numerical value of
(i) $\frac{\text { Area of } \triangle A P R}{\text { Area of } \triangle A R B}$,
(ii) $\frac{\text { Area of } \triangle R S B}{\text { Area of } \triangle A P R}$.

9 (a) The diagram below shows a circle with centre O. The major arc $P Q$ is 30.4 cm . Given that the straight line $P Q$ is 9.4 cm and the minor segment has a vertical height of 2 cm from the centre of line $P Q$.
(i) Show that the radius of the circle is 6.5225 cm .
(ii) Calculate the reflex angle $P O Q$.
(iii) Find the area of the minor segment $P O Q$.

(b) The diagram in (a) is a 2-dimensional view of the body of a teapot with the minor segment being the lid of the teapot.
(i) The volume of the teapot can be calculated using the formula,

$$
V=\frac{\pi}{6} h\left(3 c^{2}+h^{2}\right) .
$$

h is the vertical height of the teapot measured from the bottom to the opening and passing through the centre, O. c is radius of the top opening of the teapot.

Calculate the volume of the teapot.
(ii) How many 250 ml teacups are needed to contain all the tea in the teapot in part (b)(i) given that each cup should be only 60% full?

10 One of the NAPFA test stations is to record the number of sit-ups that each student can do in one minute. The cumulative frequency curve below shows the number of sit-ups by a group of 65 students.

(a) By using the cumulative frequency curve, find the value of a and of b.

Number of sit-ups	$0<x \leq 10$	$10<x \leq 20$	$20<x \leq 30$	$30<x \leq 40$	$40<x \leq 50$	$50<x \leq 60$
Number of students	2	a	7	28	21	b

10 (b) Find the percentage of students who did between 35 and 42 sit-ups inclusive.
(c) Calculate an estimate of
(i) the mean number of sit-ups,
(ii) the standard deviation.
(d) The number of sit-ups by a second group of 65 students is recorded in the table shown below.

Number of sit-ups	$0<x \leq 10$	$10<x \leq 20$	$20<x \leq 30$	$30<x \leq 40$	$40<x \leq 50$	$50<x \leq 60$
Number of students	12	10	7	14	12	5

(i) Given that the standard deviation for the second group of students is about 16.3 , explain briefly which group is more consistent in their performance.
(ii) If the two groups were compared, explain whether the mean or median would be a better measure of central tendency.

11 For a Parent Teacher Conference, a school has to convert the parade square into a parking lot. The parade square is a rectangular plot of land 40 m by 30 m .

ENTRANCE / EXIT
There is an 6 m wide entrance / exit at one corner of the parade square as shown in the sketch above.
You are required to do the parking arrangements.
The Land Transport Authority recommends the following guidelines.
A Parking Stall refers to the space for parking of one motorcar, that is, a car parking lot. The space of the stall should be rectangular. The longer side is known as the length and the shorter side is the width.
A Parking Aisle refers to an access lane or driveway with adjacent parking stalls.
In parallel parking, the longer side is parallel to the parking aisle or driveway. The aisle for cars to move must be at least 3.6 m .
For two-way traffic flow, the width of the aisle must be at least 6 m .
Each parking stall is 5.4 m by 2.4 m .

In 90° parking, the longer side is perpendicular to the parking aisle or driveway.
The aisle or lane for cars to move must be at least 6 m for one-way traffic flow and at least 6.6 m for two-way traffic flow.

Each parking stall is 4.8 m by 2.4 m .

Propose a possible parking arrangement that would maximise the use of space, showing your calculations clearly. Your proposal must include a sketch, not drawn to scale, indicating the location of the parking stalls, the aisles and the type(s) of parking. You should allow for cars to enter and leave the parade square at any time. You can assume that the cars will not leave in large numbers at any one time, and the parking will be supervised by security guards.

Answer Scheme for Sec 4 Math Prelim Paper 12018
1 One solution of $2 x^{2}+k x-12=0$ is $x=-4$. Find
(a) the value of k,
(b) the other solution of the equation.
$\left.\begin{array}{|l|l|l|}\hline \text { 1a } & \text { Sub } x=-4 \text { into } 2 x^{2}+k x-12=0, \\ 2(-4)^{2}+k(-4)-12=0 \\ 20-4 k=0 \\ k=5\end{array}\right) \quad\left[\begin{array}{ll} \\ \hline \text { 1b } & \begin{array}{l}2 x^{2}+5 x-12=0 \\ (x+4)(2 x-3)=0 \\ \text { The other solution is } x=1.5 \text { or } \frac{3}{2} .\end{array} \\ \hline\end{array}\right.$

2
Average Ticket Prices (Sports Events)

Sports
Adapted from https://www. youtube.com/watch?v=ETbc8GIhfHo.
State one aspect of the above graph that may be misleading and explain how this may lead to a misinterpretation of the graph.

| 2 | The three objects are all not the same shape. One is a cylinder and the |
| :--- | :--- | :--- | other two are spheres.

It is not clear how ticket prices can be determined. For Hockey, one can look at the centre of the top of the cylinder or the top of the diagram. For Baseball and Basketball, one may consider the centre of the objects or the top of the circles. The curved tops make finding the highest point inaccurate.

3 (a) Express $\sqrt[5]{121}$ in index form with base 11.
(b) Evaluate $3^{\frac{2}{3}} \times 24^{\frac{1}{3}}$ without using calculator.
(c) Simplify $a b \div\left(\frac{2}{a}\right)^{-2}$.

3a	$\begin{aligned} \sqrt[5]{121} & =121^{\frac{1}{5}} \\ & =\left(11^{2}\right)^{\frac{1}{5}} \\ & -11^{\frac{2}{5}} \end{aligned}$	B1
3b	$\begin{aligned} & 3^{\frac{2}{3}} \times 24^{\frac{1}{3}} \\ & =3^{\frac{2}{3}} \times(3 \times 8)^{\frac{1}{3}} \\ & =3^{\frac{2}{3}} \times 3^{\frac{1}{3}} \times 8^{\frac{1}{3}} \\ & \left.=3 \times\left(2^{3}\right)^{\frac{1}{3}} \quad\right] \\ & =3 \times 2 \\ & =6 \end{aligned}$	M1 for any of the first 3 steps. A1
3c	$\begin{aligned} & a b \div\left(\frac{2}{a}\right)^{-2} \\ & =a b \times\left(\frac{2}{a}\right)^{2} \\ & =a b \times \frac{4}{a^{2}} \\ & =\frac{4 b}{a} \end{aligned}$	B1

4 (a) Solve the inequality $-\frac{17-8 \boldsymbol{x}}{4}<2-\frac{4-3 x}{2}<5 \frac{1}{3}$.
(b) Hence, state the smallest prime number that satisfies the inequality.

4a	$-\frac{17-8 \boldsymbol{x}}{4}<2-\frac{4-3 x}{2}$	$2-\frac{4-3 x}{2}<\frac{16}{3}$	
$-17+8 x<2 \times 4-2(4-3 x)$	$2 \times 6-3(4-3 x)<32$	M1	
$-17<8-8+6 x-8 x$	or	$12-12+9 x<32$	
$-17<-2 x$	$9 x<32$	splitting	
$x<8.5$	$x<3 \frac{5}{9}$	A1	
	Therefore, $x<3 \frac{5}{9}$		B1
4b	Smallest prime number $=2$		

5 It is given that $a=\sqrt[3]{\frac{2 b+c}{c-b}}$.
(a) Express b in terms of a and c.
(b) Find the value of b when $a=2$ and $c=5$.

5 a	$\begin{aligned} & a=\sqrt[3]{\frac{2 b+c}{c-b}} \\ & a^{3}=\frac{2 b+c}{c-b} \\ & a^{3} c-a^{3} b=2 b+c \\ & a^{3} c-c=2 b+a^{3} b \\ & b\left(2+a^{3}\right)=c\left(a^{3}-1\right) \\ & b=\frac{c\left(a^{3}-1\right)}{2+a^{3}} \end{aligned}$	M1 for any first 3 steps Al
5b	$\begin{aligned} & b=\frac{c\left(a^{3}-1\right)}{2+a^{3}} \\ & b=\frac{5(8-1)}{2+8} \\ & b=\frac{35}{10} \\ & b-3.5 \end{aligned}$	B1

6 (a) Simplify $5(3 x-5)^{2}-3(5-3 x)$.
(b) Factorise completely $-25 y^{2}-5 x y+x+1$.

$\mathbf{6 a}$	$5(3 x-5)^{2}-\mathbf{3}(5-3 x)$ $=5\left(9 x^{2}-\mathbf{3 0 x}+25\right)-15+9 x$ $=45 x^{2}-150 x+125-15+9 x$ $=45 x^{2}-141 x+110$	M1
$\mathbf{6 b}$	$1-25 y^{2}+x-5 x y$ $=(1+5 y)(1-5 y)+x(1-5 y)$ $=(1-5 y)(1+5 y+x)$	A1

7 (a) It is given that
$\xi=\{x: x$ is an integer between 0 and 9 inclusive $\}$
$A \subset \xi$ and $B \subset \xi$
$\{0,2\} \subset\left(A^{\prime} \cap B\right), 7 \in A \cap B,\{1,4,5,8\} \subset\left((A \cup B) \cap B^{\prime}\right)$ and
$3,6,9 \notin(A \cup B)$
Draw a Venn diagram to represent the information given.
(b) List down all the proper subsets of the set $\{a, b, c\}$.

8 In the diagram below, not drawn to scale, A is the point $(1,2), B$ is the point $(p, 2)$ and C is the point $(0,12)$.

(a) Find the length of the line $A C$.
(b) Write down the value of $\cos \angle B A C$.
(c) Given that the length of the line $B C$ is $5 \sqrt{5}$ units, find the value of p.

$\mathbf{8 a}$	$A C^{2}=1^{2}+10^{2}$ $=101$	M1
$A C=\sqrt{101}$ $=10.0499$ ≈ 10.0 units	A1	
$\mathbf{8 b}$	$\cos \angle B A C=-\cos \alpha$ $=-\frac{1}{\sqrt{101}} \approx-0.0995$	B1
$\mathbf{8 c}$	$(\boldsymbol{p - 0})^{2}+(\mathbf{2 - 1 2})^{2}=(5 \sqrt{5})^{2}$ $p^{2}+100=125$ $p^{2}=25$ $p=5$ only	M1

9 (a) Mr Tan wants to change $\$ 4000$ Singapore dollars to US dollars for a holiday trip to the USA.
The exchange rate in Singapore is $1 \mathrm{SGD}=0.736$ USD.
The exchange rate in USA is 1 USD $=1.352$ SGD.
In which country should he change his money and how much more USD can he get?
(b) In 2017, Matthew earned an annual income of $\$ 80000$. He is required to pay tax based on net income. His net income is obtained after deducting CPF contribution of $\$ 16000$ and personal expenses relief of $\$ 3000$ from the annual income. The tax rate is $\$ 200$ for the first $\$ 30000$ of net income and 5% for the remaining net income. Calculate Matthew's
(i) net income,
(ii) income tax.

9 a	In Singapore, Mr Tan will get $4000 \times 0.736=2944$ US dollars In USA, Mr Tan will get $4000 \div 1.352=2958.58$ USdollars He should change in USA. He will get 2958.57-2944 =14.58 US dollars more.	M1 for changing both into US dollars A1
9bi	$\begin{aligned} \text { Net Income }= & 80000-16000-3000 \\ & =\$ 61000 \end{aligned}$	B1
9 bii	$\begin{aligned} & \text { Income } \begin{aligned} \operatorname{Tax}= & 200 \end{aligned}+(61000-30000) \times 5 \% \\ &=\$ 1750 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \\ \hline \end{array}$

10 Amanda wrote down four numbers.
The mean of these numbers is 15 , the median is 12 and the mode is 8 .
Find the four numbers.

10	Let the four numbers be a, b, c and d in ascending order.	M1 for either mode, Since the mode is smaller than median, so a and b will be 8. Since median is 12, so $\frac{8+c}{2}=12$ $c=24-8$ $c=16$ Since mean is 15, $8+8+16+d=15 \times 4$ $d-28$ The four numbers are 8, 8,16 and 28.

11 Write down a possible equation for each of the graphs shown below.
(a)

(b)

11a	$y=x^{n}+3$, where n must be odd	B 1
11b	$y=-\frac{3}{x^{n}}$ where n must be even	B 1

12 (a) Find the greatest integer that will divide both 126 and 2100.
(b) A rectangular field is measured as 49.9 and 24.5 correct to the nearest 0.1 metre.

Find,
(i) the least possible perimeter in metres.
(ii) the greatest possible area in square metres. Express your answer in standard form correct to 4 significant figures.

12a	$\begin{aligned} & 126=2 \times 3^{2} \times 7 \\ & 2100=2^{2} \times 3 \times 5^{2} \times 7 \end{aligned}$ HCF value is greatest integer to divide both numbers. $\begin{aligned} \mathrm{HCF} & =2 \times 3 \times 7 \\ & =42 \end{aligned}$	M1 B1
12 bi	Least Perimeter $=2(49.85)+2(24.45)=148.6 \mathrm{~m}$	B1
12 bii	$\begin{aligned} \text { Greatest area } & =49.95 \times 24.55 \\ & =1226.273 \\ & =1.226 \times 10^{3} \mathrm{~m}^{2} \end{aligned}$	M1 A1

13 The surface area of a sphere is directly proportional to the square of its radius. If the radius increases by 15%, find the percentage increase in the surface area.

13	$S=k r^{2}$ Let $S_{1}=k\left(n_{1}\right)^{2}$ $\begin{aligned} r_{2} & =1.15 r_{1} \\ S_{2} & =k\left(r_{2}\right)^{2} \\ & =k\left(1.15 r_{1}\right)^{2} \end{aligned}$ $\begin{aligned} \text { Percentage Increase } & =\frac{S_{2}-S_{1}}{S_{1}} \times 100 \\ & =\frac{k\left(1.15 \eta_{1}\right)^{2}-\left(k \eta_{1}\right)^{2}}{k\left(\boldsymbol{r}_{1}\right)^{2}} \times 100 \\ & =\left((1.15)^{2}-1\right) \times 100 \end{aligned}$	M1

14 In the following sequence,

$$
\begin{gathered}
(1 \times 2)-2=0 \\
(2 \times 3)-4=2 \\
(3 \times 4)-6=6 \\
\ldots \\
\ldots \\
(a \times 13)-b=c \\
\ldots \\
\ldots \\
(d \times e)-f=g
\end{gathered}
$$

(a) Find the values of a, b and c.
(b) Express g in terms of d.
(c) Explain why 343 cannot be the result of an equation in this sequence.

\begin{tabular}{|c|c|c|}
\hline 14a \& $a=12, b=24, c=132$ \& B2

\hline 14b \& $$
\begin{aligned}
e & =d+1 \\
f & =2 d \\
g & =d(d+1)-2 d \\
& =d^{2}+d-2 d \\
& =d^{2}-d \\
& =d(d-1)
\end{aligned}
$$ \& M1

A1

\hline 14c \& | $\begin{aligned} & d^{2}-d=343 \\ & d^{2}-d-343=0 \\ & d=\frac{1 \pm \sqrt{1-4(1)(-343)}}{2} \\ & =\frac{1 \pm 37.054}{2} \\ & \quad=19.03 \text { or }-18.03 \end{aligned}$ |
| :--- |
| Since d cannot be negative and non-integer, therefore 343 cannot be the result of an equation in this sequence. |
| Alternatively, |
| g is the product of an odd and an even number. Therefore g must be even. Since 343 is odd, 343 cannot be the result of an equation. |
| Alternatively, |
| From the pattern shown above, g is always even. Therefore 343 cannot be the answer as it is odd. | \& B1

or
B1
or
B1

\hline
\end{tabular}

15 At an on-line supermarket, a 0.5 kg bag of carrots costs $\$ 0.90$, a 0.5 kg of onions costs $\$ 1.50$ and a 0.5 kg bag of local tomatoes costs $\$ 1.30$. On Monday, there were 730 orders for carrots, 421 orders for onions and 279 orders for tomatoes. On Tuesday, there were x orders for carrots, 355 orders for onions and 249 orders for tomatoes.
(a) Write down a 2×3 matrix, M, representing the orders over Monday and Tuesday.
(b) Find, in terms of x, the matrix $P=M\left(\begin{array}{l}0.90 \\ 1.50 \\ 1.30\end{array}\right)$.
(c) Explain clearly what each element in matrix P represents.
(d) If the total cost of orders on Tuesday is about 10% less than the total cost of orders on Monday,
(i) calculate the value of x.
(ii) use a matrix method to compute the total cost of orders on Monday and Tuesday.

15a	$M=\left(\begin{array}{ccc}730 & 421 & 279 \\ \boldsymbol{x} & 355 & 249\end{array}\right)$	B1
15b	$\begin{aligned} P= & \left(\begin{array}{ccc} 730 & 421 & 279 \\ x & 355 & 249 \end{array}\right)\left(\begin{array}{l} 0.90 \\ 1.50 \\ 1.30 \end{array}\right) \\ & -\binom{1651.20}{0.9 x+856.20} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
15c	The elements show that on Monday, the total cost of orders was $\$ 1651.20$ and on Tuesday, the total cost of orders was \$ $0.9 x+856.20$.	B1
15di	$\begin{aligned} 0.9 x+856.20 & =0.9 \times 1651.20 \\ x & =699.88 \\ x & -700 \end{aligned}$	B1
15dii	$\left.\begin{array}{rl} \left(\begin{array}{ll} 1 & 1 \end{array}\right)\binom{1651.20}{0.9 \times 699.88+856.20} \end{array}\right)=\left(\begin{array}{ll} 1 & 1 \end{array}\right)\binom{1651.20}{1486.092}, ~\left(\begin{array}{ll} 1 \times 1651.20+1 \times 1486.092) \\ & =(137.292) \\ & =(3137 \end{array}\right.$ The total cost of orders for Monday and Tuesday was $\$ 3137.29$.	B1

16 The stem-and-leaf diagram below shows the times of two groups of students, Group A and Group B, doing shuttle run.

Group A
Group B

Key (Group A)
$7 \mid 10$ means 10.7 seconds

Key (Group B)
9| 4 means 9.4 seconds
(a) Write down the modal timing of Group B
(b) Write down the median of Group A.
(c) Explain briefly which group of students ran faster.

16a	Mode $=10.4$ seconds	B1
	-11.4 seconds	B1
$\mathbf{1 6 b}$	Median $=\frac{11.3+11.5}{2}-$Median for Group A $=11.4$ seconds Mor Group B $=\frac{10.4+10.4}{2}=10.4$ seconds. Since Group B has a smaller median than Group A, so Group B ran faster. 16c Note: Mode is not acceptable in this answer as not many students recorded the modal values.	B1

17 In the diagram, $B C=B D, \angle A B E=42^{\circ}$ and $\angle B C D=66^{\circ} . A F, B G$ and $C H$ are parallel.

Showing your working and giving reasons, calculate
(a) $\angle C B D$,
(b) $\angle G B E$,
(c) $\angle B A F$.

\begin{tabular}{|c|c|c|}
\hline 17a \& $$
\begin{aligned}
\angle C B D & =180^{\circ}-66^{\circ}-66^{\circ}\left(\text { angle sum of isosceles tilic } \text { s }^{\prime}\right. \text {, } \\
& =48^{\circ}
\end{aligned}
$$ \& B1

\hline 17b \& $$
\begin{aligned}
\angle H D B= & 180^{\circ}-66^{\circ} \text { (adjacent angle on a straight line) } \\
& =114^{\circ} \\
\angle G B E & +42^{\circ}=\angle H D B(\text { corr angles, } \mathrm{BG} / / \mathrm{CH}) \\
\angle G B E & =114^{\circ}-42^{\circ} \\
& =72^{\circ}
\end{aligned}
$$ \& M1

A1

\hline 17c \& | $\begin{aligned} \angle B A F & =180^{\circ}-\angle H D B \text { (interior angles, } A F / / D H \text {) } \\ & =180^{\circ}-114^{\circ} \\ & =66^{\circ} \end{aligned}$ |
| :--- |
| Deduct 1 mark from the whole of question for not stating reason or incorrect reason. | \& B1

\hline
\end{tabular}

18 The diagram shows the cross section of a vase.

A factory produces 3 geometrically similar vases, Small, Medium and Large. The sketch above shows the dimensions of the Large vase. The volume of the Small vase is $67 \frac{2}{3} \pi \mathrm{~cm}^{3}$ with height 14 cm . The Medium vase has a heic'?t 50% more than the Small vase.
(a) Calculate
(i) the height of the Large vase, and
(ii) the volume of the Medium vase, in terms of π.
(b) Water is poured into the Large vase at $1 \mathrm{~cm}^{3} / \mathrm{s}$. The height of Section A is approximately 6 cm . Sketch the height-time graph of the water in the Large vase.

18a	Volume of the Small vase $=67 \frac{2}{3} \pi \mathrm{~cm}^{3}$ Volume of Large vase $=452 \frac{2}{3} \pi+88 \frac{2}{3} \pi=541 \frac{1}{3} \pi \mathrm{~cm}^{3}$	
18ai	$\begin{aligned} & \text { Height of the Small vase }=14 \mathrm{~cm} \\ & \begin{aligned} \left(\frac{\text { Height of Large vase }}{14}\right)^{3} & =\frac{541 \frac{1}{3} \pi}{67 \frac{2}{3} \pi} \\ & =8 \\ \frac{\text { Height of Large vase }}{14} & =2 \\ \text { Height of Large vase } & =28 \mathrm{~cm} \end{aligned} \end{aligned}$	M1 A1
18aii	$\left.\begin{array}{l} \text { Height of the Medium vase }=14+7=21 \mathrm{~cm} \\ \frac{\text { Volume of Medium vase }}{\text { Volume of Small vase }}=\left(\frac{21}{14}\right)^{3} \\ \frac{\text { Volume of Medium vase }}{67 \frac{2}{3} \pi}=\left(\frac{3}{2}\right)^{3} \\ \text { Volume of Medium vase } \end{array}=\left(\frac{3}{2}\right)^{3} \times 67 \frac{2}{3} \pi\right] \text {. } \begin{aligned} & \\ &=228 \frac{3}{8} \pi \mathrm{~cm}^{3} \end{aligned}$	M1 A1
18b	Time taken to fill Section A $=88 \frac{2}{3} \pi \times 1=279 \sec$ (3 significant figures) Time taken to fill Section B $=452 \frac{2}{3} \pi \times 1=1420 \sec$ (3 significant figures)	B1 B1 for A B1 for B

19 The graph of $y=-4 x^{2}+16 x-13$ is drawn on the grid.

(a) Explain why $y=3.7$ has no solution.
(b) The points $(1.5,2)$ and $(2.5,2)$ are the intersection points for this curve and another curve, $y=a x^{2}+b x+c$. Given that $a>0$, find a possible equation for this second curve.
(c) The equation $-2 x^{2}+7 x-5=0$ can be solved by adding a straight line to the grid above. Find the equation of this line:
(d) By drawing this straight line, solve the equation $-2 x^{2}+7 x-5=0$.

19a	The maximum value for y is 3 . Hence there is no solution for $y=3.7$.	B1
19b	The solutions $x=1.5$ and $x=2.5$ come from the equation $(x-1.5)(x-2.5)=0$. $(x-1.5)(x-2.5)=0$ $\left(x-\frac{3}{2}\right)\left(x-\frac{5}{2}\right)=0$ $(2 x-3)(2 x-5)=0$ $4 x^{2}-16 x+15=0$ When $x=1.5, y=2$, when $x=2.5, y=2$ One possible equation is$y=4 x^{2}-16 x+15+2$ $y=4 x^{2}-16 x+17$ Or	B1

20 (a) Find, by construction, the point P, that is equidistant from the points A, B and C. Hence, draw a circle passing through A, B and C. Measure the radius of the circle.
(b) Find, by construction, the point Q, that is equidistant from the lines $X Y, Y Z$ and $X Z$. Hence, or otherwise, draw a circle that is tangent to the lines $X Y, Y Z$ and $X Z$. Measure the radius of the circle.
20b

Total Length of car park $=40 \mathrm{~m}$

B1 - sketch is clearly labelled
B1 - layout of parking stalls using parallel parking
B1 - layout of parking stalls using 90° parking
B1 - layout of aisles clearly showing that cars can move in or out at any time.
B1 - aisles are at appropriate width, either 6 m for one-way or 6.6 m for two-way.

Number of lots in Row A $=\frac{40}{2.4}=16 \frac{2}{3} \approx 16$ Number of lots in Row B or $\mathrm{C}=\frac{40-6.6}{2.4}=13 \frac{11}{12} \approx 13$ Length of Row A $=16 \times 2.4=38.4 \mathrm{~m}<40 \mathrm{~m}$ Length of Row B $=13 \times 2.4=31.2 \mathrm{~m}<40 \mathrm{~m}$ Length of Row $\mathrm{C}=13 \times 2.4=31.2 \mathrm{~m}<40 \mathrm{~m}$ Number of lots for parallel parking $=\frac{40-6}{5.4}=6 \frac{8}{27} \approx 6$ Length of parallel parking $=6 \times 5.4=32.4 \mathrm{~m}<36 \mathrm{~m}$	Considering the length M1 A1
Width of the rows of parking stalls and aisles $\begin{aligned} & =4.8 \times 3+2.4+2 \times 6.6 \\ & =30 \mathrm{~m} \end{aligned}$	Considering the width M1 A1
Total number of parking stalls $=16+2 \times 13+6=48$	A1 - Accept minimum as 42
Remarks - Students who consider only parallel parking or 90° parking but not both get a maximum of 8 marks.	

1 (a) Express as a single fraction in its simplest form $\frac{3 x}{2-3 y}+\frac{6 x}{9 y^{2}-4}$.
(b) Simplify $\frac{21 p^{2} q^{3} r^{0}}{2 r^{5}} \div \frac{7 p q}{4 p^{2}}$, leaving your answer in positive indices.
(c) (i) Simplify $\frac{6 x^{2}-x-12}{3 x^{2}-11 x-20}$.
(ii) Hence, or otherwise, solve $\frac{6 x^{2}-x-12}{3 x^{2}-11 x-20}=3$.

1(a)	$\begin{aligned} \frac{3 x}{2-3 y}+\frac{6 x}{9 y^{2}-4} & =\frac{3 x}{2-3 y}-\frac{6 x}{4-9 y^{2}} \\ & =\frac{3 x}{2-3 y}-\frac{6 x}{(2+3 y)(2-3 y)} \\ & =\frac{3 x(2+3 y)-6 x}{(2+3 y)(2-3 y)} \\ & =\frac{9 x y}{(2+3 y)(2-3 y)} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { Al } \end{aligned}$
1(b)	$\begin{aligned} \frac{21 p^{2} q^{3} r^{0}}{2 r^{5}} \div \frac{7 p q}{4 p^{2}} & =\frac{21 p^{2} q^{3}}{2 r^{5}} \times \frac{4 p^{2}}{7 p q} \\ & =\frac{3 p^{2} q^{3}}{r^{5}} \times \frac{2 p}{q} \\ & -\frac{6 p^{3} q^{2}}{r^{5}} \end{aligned}$	M1 A1
1(c)(i)	$\begin{aligned} \frac{6 x^{2}-x-12}{3 x^{2}-11 x-20} & =\frac{(3 x+4)(2 x-3)}{(3 x+4)(x-5)} \\ & =\frac{2 x-3}{x-5} \end{aligned}$	M1 A1
1(c)(ii)	$\begin{aligned} & \frac{6 x^{2}-x-12}{3 x^{2}-11 x-20}=3 \\ & \frac{2 x-3}{x-5}-\frac{3}{1} \\ & 2 x-3=3 x-15 \\ & x=12 \end{aligned}$	M1 Al

2 (a) Each exterior angle of a regular polygon is 24°. Find the number of sides of the polygon.
(b) Interior angles of a hexagon are $(x+20)^{\circ}, 120^{\circ}, 53^{\circ},(2 x-24)^{\circ}, 3 x^{\circ}$ and 17°. Find the value of x.
(c) In the diagram, $A B=2 \mathrm{~cm}, B C=3 \mathrm{~cm}, A F=4 \mathrm{~cm}$ and $F D=6 \mathrm{~cm}$.

(i) Show that $\triangle A C D$ is similar to $\triangle A B F$.
(ii) Explain why $B E$ is parallel to $C D$.
(iii) Given that the area of $\triangle A B F$ is $20 \mathrm{~cm}^{2}$, calculate the area of $B C D F$.

2(a)	Let \boldsymbol{n} be the number of sides $\begin{aligned} & 24 n=360 \\ & n=15 \end{aligned}$	B1
2(b)	$\begin{aligned} & \text { Total interior of hexagon }=(6-2) \times 180^{\circ}=720^{\circ} \\ & x+20^{\circ}+120^{\circ}+53^{\circ}+2 \boldsymbol{x}-24^{\circ}+3 \boldsymbol{x}+17^{\circ}=720^{\circ} \\ & 6 \boldsymbol{x}+186=720 \\ & 6 \boldsymbol{x}=534 \\ & x=89 \end{aligned}$	M1
2(c)(i)	$\begin{aligned} & \angle C A D=\angle B A F \quad \text { (common angle) } \\ & \frac{A C}{A B}-\frac{A D}{A F}-\frac{5}{2} \end{aligned}$ By SAS Similarity Test, $\triangle A C D$ is similar to $\triangle A B F$.	M1 A1
2(c)(ii)	Since $\triangle A C D$ is similar to $\triangle A B F$, $\angle A B F=\angle A C D$ They are corresponding angles to lines BE and CD , hence BE and CD are parallel	M1 A1
2(c)(iii)	$\text { Area of triangle } \begin{aligned} A C D & =\left(\frac{5}{2}\right)^{2} \times 20 \\ & =125 \mathrm{~cm}^{2} \end{aligned}$ $\text { Therefore area of quadrilateral } \begin{aligned} B C D F & =125-20 \\ & =105 \mathrm{~cm}^{2} \end{aligned}$	M1 A1

3 A wardrobe has 3 white, 1 black and 2 pink shirts. Two shirts are drawn at random, one after another, without replacement.
(a) Draw the possibility diagram to show the outcome of the draw.
(b) Find, as a fraction in its simplest form, the probability that
(i) both shirts are white,
(ii) both shirts are of different colours,
(iii) at least one of the shirts is pink.

4 Answer the whole of this question on a sheet of graph paper.

A population of flies increases according to the formula

$$
N=30 \times 2^{t}
$$

where N is the population of flies after t days.
The table shows some corresponding values of variables N and t.

t	1	1.5	2	2.5	3	3.5	4
N	60	84.9	120	k	240	339	480

(a) Find the value of k.
(b) Determine the initial number of flies.
(c) Using a scale of 2 cm to represent 1 unit, draw a horizontal scale for $0 \leq t \leq 4$. Using a scale of 2 cm to represent 100 units, draw a vertical scale for $0 \leq N \leq 500$.
On your axes, plot the points given in the table and join them with a smooth curve.
(d) Use your graph to determine the time when the population reaches 250 .
(e) By drawing a tangent, find the gradient of the curve at $t=2$. Explain what this gradient represents.
(f) Use your graph to determine the time when the population is increasing at 200 flies per day.

4(a)	$k=30 \times 2^{2.5}=169.706=170$	81
4(b)	When $\boldsymbol{t}=0, N=30 \times 2^{0}=30$ Initial number of flies is 30 .	B1
4(c)	B1 - correct plotting B1 - smooth curve B1 - labelling and correct scale	
4(d)	$2.9 \leq t \leq 3.15$	B1
4(e)	$78 \leq$ gradient ≤ 85. At $t-2$, the flies are increasing at 83 flies per day.	B1 - tangent B1 - statement
4(f)	$2.8 \leq t \leq 3.8$	B1- tangent with gradient 200 B1 - value

5
In the diagram, O is the centre of the circle. $S A T$ and $B T$ are tangents to the circle. $A P$ is the diameter. $\angle S A C=58^{\circ}$ and $\angle A C B=50^{\circ}$.
(a) Show that triangle $A O T$ is congruent to triangle $B O T$.
(b) Find
(i) $\angle C A O$,
(ii) $\angle A O B$,
(iii) $\angle B A O$,
(iv) $\angle A T B$,
(v) $\angle O B C$,
(vi) $\angle O P B$.

Show your working and give reasons.
(c) A point D is such that $A C B D$ is a quadrilateral where $\angle A D B=130^{\circ}$.

Determine whether D lies on the circumference of the circle.

5(a)	$A O=O B$ (radii of circle) $\angle T A O=\angle T B O=90^{\circ}$ (radius perpendicular to tangent) $O T=O T$ (common side, hypotenuse) By RHS, $\triangle A O T$ is congruent to $\triangle B O T$.	M1
5(b)(i)	$\begin{gathered} \angle C A O=90^{\circ}-58^{\circ} \text { (radius perpendicular to tangent) } \\ =32^{\circ} \end{gathered}$	B1
5(b)(ii)	$\begin{gathered} \text { obtuse } \begin{array}{c} \angle A O B=50^{\circ} \times 2(\angle \text { at centre }=2 \times \angle \text { at circumference }) \\ =100^{\circ} \end{array} \end{gathered}$	B1
5(b)(iii)	$\begin{gathered} \angle B A O=\frac{180^{\circ}-100^{\circ}}{2} \text { (isosceles } \triangle A O B \text {) } \\ =40^{\circ} \end{gathered}$	B1

54
7

5(b)(iv)	$\begin{aligned} & \angle A T B=360^{\circ}- \angle T A O-\angle T B O-\text { obtuse } \angle A O B \\ &=360^{\circ}-90^{\circ}-90^{\circ}-100^{\circ}(\text { property of quadrilateral ATBO) } \\ &=80^{\circ} \\ & O R \\ & \angle A O T=100^{\circ} \div 2 \\ &=50^{\circ} \\ & \angle A T O=180^{\circ}-90^{\circ}-50^{\circ} \text { (sum of angles of triangle) } \\ & \angle A T B= 40^{\circ} \times 2 \\ &=80^{\circ} \end{aligned}$	B1
5 (b)(v)	$\begin{aligned} \angle A C O=\angle C A O & =32^{\circ}(\text { isosceles } \triangle A O C) \\ \angle O C B & =\angle A C B-\angle A C O \\ & =50^{\circ}-32^{\circ} \\ & =18^{\circ} \\ \angle O B C & =\angle O C B(\text { isosceles } \triangle C O B) \\ & =18^{\circ} \end{aligned}$	M1
5(b)(vi)	$\angle O P B=50^{\circ}(\angle \mathrm{s}$ in the same segment)	B1
5(c)	By angles in opposite segment property, D is a point on the circle. Deduct 1 mark from the whole of question for not stating reason or incorrect reason.	B1

6 In the diagram below, not drawn to scale, P, Q and R are on level ground and Q is due east of $P . P Q=420 \mathrm{~m}, \angle R P Q=50^{\circ}$ and $\angle P R Q=75^{\circ}$.

(a) Find the distance $P R$.
(b) A flag pole is erected at point P such that the angle of depression from the top of the flag pole to point R is 1.93°. Calculate the height of the flag pole.
(c) (i) Find the area of $\triangle P Q R$.
(ii) Hence, find the shortest distance from R to $P Q$.

The bearing of point S from point P is 120°. Given $P S=200 \mathrm{~m}$, find
(d) (i) angle $R P S$
(ii) the distance $R S$.

6(a)	$\begin{aligned} & \angle R Q P=180^{\circ}-75^{\circ}-50^{\circ}=55^{\circ} \\ & \frac{\sin 55^{\circ}}{P R}=\frac{\sin 75^{\circ}}{420} \\ & P R=356.18 \\ & \quad \approx 356 \mathrm{~m} \end{aligned}$	M1 Al
6(b)	$\begin{aligned} & \begin{array}{r} \tan 1.93^{\circ}=\frac{\text { height of flagpole }}{356.18} \\ \text { height of flagpole }=12.002 \\ \\ \approx 12.0 \mathrm{~m} \end{array} \end{aligned}$	M1 Al
6(c)(i)	$\text { Area of } \begin{aligned} \triangle P Q R & =\frac{1}{2}(356.18)(420) \sin 50^{\circ} \\ & =57298.4 \\ & \approx 57300 \mathrm{~m}^{2} \end{aligned}$	B1
6(c)(ii)	$\begin{aligned} & \frac{1}{2}(420) h=57298.4 \\ & h=272.85 \\ & h \approx 273 \mathrm{~m} \end{aligned}$	M1 Al
6(d)(i)	$\angle R P S=80^{\circ}$	B1
6(d)(ii)	$\begin{aligned} & R S^{2}=356.18^{2}+200^{2}-2(\mathbf{3 5 6 . 1 8})(\mathbf{2 0 0}) \cos 80^{\circ} \\ & R S^{2}-142124.19 \\ & R S=376.99 \\ & R S \approx 377 \mathrm{~m} \end{aligned}$	M1

7 Peter bought m kiwi fruits for $\$ 64$.
(a) Find an expression, in terms of m, for the cost of one kiwi fruit in cents.
(b) Given that 5 of the kiwi fruits were rotten and could not be sold, Peter sold each remaining kiwi fruit at 40 cents more than he paid for it.
Without simplifying, write down an expression in terms of m, for the total amount he received from the sale of the kiwi fruits.
(c) He made a profit of $\$ 26$ from the sale of the kiwi fruits.

Write down an equation in m to represent this information, and show that it reduces to $m^{2}-70 m-800=0$.
(d) Solve the equation $m^{2}-70 m-800=0$.
(e) Find the selling price of a kiwi fruit.

$7(\mathrm{a})$	Cost of each kiwi fruit $=\frac{6400}{m}$ cents	B1
7 (b)	Total sum received $=(\boldsymbol{m}-5)\left(\frac{6400}{m}+40\right)$ cents	B1
		$(\boldsymbol{m}-5)\left(\frac{6400}{m}+40\right)-6400=2600$ $7(\mathrm{c})$ $40 \boldsymbol{m}-2800-\frac{32000}{m}=0$ $40 \boldsymbol{m}^{2}-2800 \boldsymbol{m}-32000=0$ $m^{2}-70 \boldsymbol{m}-800=0$
7 (d)	$m^{2}-70 \boldsymbol{m}-800=0$ $(m-80)(\boldsymbol{m}+10)=0$ $m=80$ or $\boldsymbol{m}=-10$	M1 form equations M1 expansion
		A1
7 (e)	Selling price of each kiwi $=\frac{6400}{80}+40$ $=120$ cents or $\$ 1.20$	M1 factorisation A2

8 In the diagram below, $\overrightarrow{O P}=\mathbf{p}$ and $\overrightarrow{O Q}=\mathbf{q}$. It is given that $\overrightarrow{O P}=\frac{2}{3} \overrightarrow{O A}, \overrightarrow{O Q}=\frac{1}{3} \overrightarrow{O S}, O Q=S B$ and $S A=3 S R$.

(a) Express, as simply as possible, in terms of \mathbf{p} and \mathbf{q},
(i) $\overrightarrow{S A}$,
(ii) $\overrightarrow{P B}$,
(iii) $\overrightarrow{P R}$.
(b) Prove that P, R and B are collinear.
(c) Find the numerical value of
(i) $\frac{\text { Area of } \triangle A P R}{\text { Area of } \triangle A R B}$,
(ii) $\frac{\text { Area of } \triangle R S B}{\text { Area of } \triangle A P R}$.

8(a)(i)	$\begin{aligned} \overline{S A} & =\overrightarrow{S O}+\overline{O A} \\ & =-3 \mathbf{q}+\frac{3}{2} \mathbf{p} \end{aligned}$	B1
8(a)(ii)	$\begin{aligned} \overrightarrow{P B} & =\overrightarrow{P O}+\overrightarrow{O B} \\ & =-\mathbf{p}+4 \mathbf{q} \end{aligned}$	B1
8(a)(iii)	$\begin{aligned} \overrightarrow{P A} & =\frac{1}{2} \mathbf{p} \\ \overrightarrow{A R} & =\frac{2}{3} \overrightarrow{A S} \\ & =-\frac{2}{3}\left(-3 \mathbf{q}+\frac{3}{2} \mathbf{p}\right) \\ & =2 \mathbf{q}-\mathbf{p} \\ \overrightarrow{P R} & =\frac{1}{2} \mathbf{p}+2 \mathbf{q}-\mathbf{p}=2 \mathbf{q}-\frac{1}{2} \mathbf{p} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
8(b)	$\begin{aligned} \overrightarrow{P B} & =-\mathbf{p}+4 \mathbf{q} \\ \overrightarrow{P R} & =2 \mathbf{q}-\frac{1}{2} \mathbf{p} \\ & =\frac{1}{2}(4 \mathbf{q}-\mathbf{p}) \\ & =\frac{1}{2} \overrightarrow{P B} \end{aligned}$ Since $\overrightarrow{P R}=\frac{1}{2} \overrightarrow{P B}, \therefore P, R$ and B are collinear.	M1 A1
8(c)(i)	$\frac{\text { Area of } \triangle A P R}{\text { Area of } \triangle A R B}=1$	B1

8(c)(ii)$\frac{\text { Area of } \triangle R S B}{\text { Area of } \triangle A R B}$ $=\frac{1}{2}$ $\frac{\text { Area of } \triangle R S B}{\text { Area of } \triangle A P R}$ $=\frac{\text { Area of } \triangle R S B}{\text { Area of } \triangle A R B} \times \frac{\text { Area of } \triangle A R B}{\text { Area of } \triangle A P R}$ $=\frac{1}{2} \times \frac{1}{1}$ $=\frac{1}{2}$ M 1 A 1 l

9 (a) The diagram below shows a circle with centre O. The major arc $P Q$ is 30.4 cm . Given that the straight line $P Q$ is 9.4 cm and the minor segment has a vertical height of 2 cm from the centre of line $P Q$.
(i) Show that the radius of the circle is 6.5225 cm .
(ii) Calculate the reflex angle $P O Q$.
(iii) Find the area of the minor segment $P O Q$.

(b) The diagram in (a) is a 2-dimensional view of the body of a teapot with the minor segment being the lid of the teapot.
(i) The volume of the teapot can be calculated using the formula,

$$
V=\frac{\pi}{6} h\left(3 c^{2}+h^{2}\right) .
$$

h is the vertical height of the teapot measured from the bottom to the opening and passing through the centre, O. c is radius of the top opening of the teapot.

Calculate the volume of the teapot.
(ii) How many 250 ml teacups are needed to contain all the tea in the teapot in part (b)(i) given that each cup should be only 60% full?

9(ai)	Let the radius of the circle be $r \mathrm{~cm}$. $\begin{aligned} & r^{2}-(r-2)^{2}=\left(\frac{9.4}{2}\right)^{2} \\ & (r+r-2)(r-r+2)=22.09 \\ & 2(2 r-2)=22.09 \\ & 4(r-1)=22.09 \\ & r=\frac{22.09}{4}+1 \\ & r=6.5225 \end{aligned}$ The radius is 6.5225 cm .	M1 forming equation M1 simplify equation A1
9(aii)	$\begin{aligned} & 6.5225 \times \angle P O Q=30.4 \\ & \angle P O Q=\frac{30.4}{6.5225} \\ & \angle P O Q \approx 4.66078 \mathrm{rad} \\ & \angle P O Q \approx 4.66 \mathrm{rad} \\ & \text { Or } \\ & \frac{\angle P O Q}{360^{\circ}} \times 2 \times 6.5225 \times \pi=30.4 \\ & \angle P O Q=\frac{30.4 \times 360^{\circ}}{2 \times 6.5225 \times \pi} \\ & \angle P O Q \approx 267.043^{\circ} \\ & \angle P O Q \approx 267.0^{\circ} \\ & \hline \end{aligned}$	M1 A1
9(aiii)	Area of the minor segment POQ $\begin{aligned} & =\frac{1}{2}(6.5225)^{2}[(2 \pi-4.66078)-\sin (2 \pi-4.66078)] \\ & \approx 13.268 \mathrm{~cm}^{2} \\ & \approx 13.3 \mathrm{~cm}^{2} \end{aligned}$ Or Area of the minor segment POQ $\begin{aligned} & =\frac{360^{\circ}-267.043^{\circ}}{360^{\circ}} \times \pi \times(6.5225)^{2}-\frac{1}{2}(6.5225)^{2} \times \sin \left(360^{\circ}-267.043^{\circ}\right) \\ & \approx 13.268 \mathrm{~cm}^{2} \\ & \approx 13.3 \mathrm{~cm}^{2} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$

9 (bi)	$\begin{aligned} & h=2 \times .65225-2 \\ & h=11.045 \mathrm{~cm} \end{aligned}$ $\begin{aligned} \text { Volume of the teapot } & =\frac{\pi}{6}(11.045)\left[3\left(\frac{9.4}{2}\right)^{2}+11.045^{2}\right] \\ & \approx 1088.747 \\ & \approx 1090 \mathrm{~cm}^{3} \end{aligned}$	M1 M1 A1
9(bii)	$\begin{aligned} \text { Number of teacups needed } & =\frac{1088.747}{0.6 \times 250} \\ & \approx 7.2583 \\ & \approx 8 \end{aligned}$	M1 A1

10 One of the NAPFA test station is to record the number of sit-ups that each student can do in one minute. Below shows the cumulative frequency curve of the number of situps by a group of 65 students.

(a) By using the cumulative frequency curve, find the value of a and of b.

Number of sit-ups	$0<x \leq 10$	$10<x \leq 20$	$20<x \leq 30$	$30<x \leq 40$	$40<x \leq 50$	$50<x \leq 60$
Number of students	2	a	7	28	21	b

(b) Find the percentage of students who did between 35 and 42 sit-ups inclusive.
(c) Calculate an estimate of
(i) the mean number of sit-ups,
(ii) the standard deviation.
(d) The number of sit-ups by a second group of 65 students is recorded in the table shown below.

Number of sit-ups	$0<x \leq 10$	$10<x \leq 20$	$20<x \leq 30$	$30<x \leq 40$	$40<x \leq 50$	$50<x \leq 60$
Number of students	12	10	7	14	12	5

(i) Given that the standard deviation for the second group of students is about 16.3 , explain briefly which group is more consistent in their performance.
(ii) If the two groups were compared, explain whether the mean or median would be a better measure of central tendency.

10 (a)	$a=2, b=5$	B 2
10 (b)	Percentage of students $=\frac{44-24}{65} \times 100 \%=30.8 \%$	B 1
10 (c)(i)	Mean number of sit-ups $=37 \frac{2}{13}$ or $\approx 37.154 \approx 37.2$	B 1
	Standard deviation $==\sqrt{\frac{968825}{65}-\left(37 \frac{2}{13}\right)^{2}}$ ≈ 10.4502 ≈ 10.5	B 1
10 (c)(ii)	Since first group has a smaller standard deviation, so the students in first group are more consistent in their performance.	B 1
10 (d)(i)		
10 (d)(ii)	The median is a better measure due to the outliers. Note: Award mark as long as the description is similar to outlier. No mark at all if students compare mean.	B 1

For a Parent Teacher Conference, a school has to convert the parade square into a parking lot. The parade square is a rectangular plot of land 40 m by 30 m .

ENTRANCE / EXIT

There is an 6 m wide entrance / exit at one corner of the parade square as shown in the sketch above.
You are required to do the parking arrangements.
The Land Transport Authority recommends the following guidelines.
A Parking Stall refers to the space for parking of one motorcar, that is, a car parking lot. The space of the stall should be rectangular. The longer side is known as the length and the shorter side is the width.

A Parking Aisle refers to an access lane or driveway with adjacent parking stalls.
In parallel parking, the longer side is parallel to the parking aisle or driveway.
The aisle for cars to move must be at least 3.6 m . For two-way traffic flow, the width of the aisle must be at least 6 m . Each parking stall is 5.4 m by 2.4 m .

In 90° parking, the longer side is perpendicular to the parking aisle or driveway.
The aisle or lane for cars to move must be at least 6 m for one-way traffic flow and at least 6.6 m for two-way traffic flow.

Each parking stall is 4.8 m by 2.4 m .
Propose a possible parking arrangement that would maximise the use of space, showing your calculations clearly. Your proposal must include a sketch, not drawn to scale, indicating the location of the parking stalls, the aisles and the type(s) of parking. You should allow for cars to enter and leave the parade square at any time. You can assume that the cars will not leave in large numbers at any one time, and the parking will be supervised by security guards. [10]

Possible Solution

Total Length of car park $=40 \mathrm{~m}$

2.4 m		
4.8 m	Row A - 90° parking. 16 stalls	Gap of 1.6 m
6.6 m	Aisle of width 6.6 m for Two-Way Traffic	
4.8 m	Row $\mathrm{B}-90^{\circ}$ parking. 13 stalls	Aisle of width
	Row $\mathrm{C}-90^{\circ}$ parking. 13 stalls	8.8 m
6.6 m	Aisle of width 6.6 m for Two-Way Traffic	
2.4 m	Parallel parking. 6 stalls	ance / Exi

B1 - sketch is clearly labelled
B1 - layout of parking stalls using parallel parking
B1 - layout of parking stalls using 90° parking
B1 - layout of aisles clearly showing that cars can move in or out at any time.
B1 - aisles are at appropriate width, either 6 m for one-way or 6.6 m for two-way.

Number of lots in Row A $=\frac{40}{2.4}=16 \frac{2}{3} \approx 16$ Number of lots in Row B or $\mathrm{C}=\frac{40-6.6}{2.4}=13 \frac{11}{12} \approx 13$ Length of Row A $=16 \times 2.4=38.4 \mathrm{~m}<40 \mathrm{~m}$ Length of Row $B=13 \times 2.4=31.2 \mathrm{~m}<40 \mathrm{~m}$ Length of Row $C=13 \times 2.4=31.2 \mathrm{~m}<40 \mathrm{~m}$ Number of lots for parallel parking $=\frac{40-6}{5.4}=6 \frac{8}{27} \approx 6$ Length of parallel parking $=6 \times 5.4=32.4 \mathrm{~m}<36 \mathrm{~m}$	Considering the length M1 A1
Width of the rows of parking stalls and aisles $\begin{aligned} & =4.8 \times 3+2.4+2 \times 6.6 \\ & =30 \mathrm{~m} \end{aligned}$	Considering the width M1 A1
Total number of parking stalls $=16+2 \times 13+6=48$	A1 - Accept minimum as 42
Remarks - Students who consider only parallel parking or 90° parking but not both get a maximum of 8 marks.	

